Evolution of the nitric oxide synthase family in vertebrates and novel insights in gill development

. 2022 Aug 10 ; 289 (1980) : 20220667. [epub] 20220810

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S., Research Support, N.I.H., Extramural

Perzistentní odkaz   https://www.medvik.cz/link/pmid35946155

Grantová podpora
P40 OD019794 NIH HHS - United States
R01 OD011116 NIH HHS - United States

Nitric oxide (NO) is an ancestral key signalling molecule essential for life and has enormous versatility in biological systems, including cardiovascular homeostasis, neurotransmission and immunity. Although our knowledge of NO synthases (Nos), the enzymes that synthesize NO in vivo, is substantial, the origin of a large and diversified repertoire of nos gene orthologues in fishes with respect to tetrapods remains a puzzle. The recent identification of nos3 in the ray-finned fish spotted gar, which was considered lost in this lineage, changed this perspective. This finding prompted us to explore nos gene evolution, surveying vertebrate species representing key evolutionary nodes. This study provides noteworthy findings: first, nos2 experienced several lineage-specific gene duplications and losses. Second, nos3 was found to be lost independently in two different teleost lineages, Elopomorpha and Clupeocephala. Third, the expression of at least one nos paralogue in the gills of developing shark, bichir, sturgeon, and gar, but not in lamprey, suggests that nos expression in this organ may have arisen in the last common ancestor of gnathostomes. These results provide a framework for continuing research on nos genes' roles, highlighting subfunctionalization and reciprocal loss of function that occurred in different lineages during vertebrate genome duplications.

Zobrazit více v PubMed

Koshland D. 1992. The molecule of the year. Science 258, 1861. (10.1126/science.1470903) PubMed DOI

Strijdom H, Chamane N, Lochner A. 2009. Nitric oxide in the cardiovascular system: a simple molecule with complex actions. Cardiovasc. J. Afr. 20, 303-310. PubMed PMC

Esplugues JV. 2002. NO as a signalling molecule in the nervous system. Br. J. Pharmacol. 135, 1079-1095. (10.1038/sj.bjp.0704569) PubMed DOI PMC

Bogdan C. 2001. Nitric oxide and the immune response. Nat. Immunol. 2, 907-916. (10.1038/ni1001-907) PubMed DOI

Knott AB, Bossy-Wetzel E. 2009. Nitric oxide in health and disease of the nervous system. Antioxid Redox Signal. 11, 541-553. (10.1089/ars.2008.2234) PubMed DOI PMC

Kamm A, Przychodzen P, Kuban-Jankowska A, Jacewicz D, Dabrowska AM, Nussberger S, Wozniak M, Gorska-Ponikowska M. 2019. Nitric oxide and its derivatives in the cancer battlefield. Nitric Oxide 93, 102-114. (10.1016/j.niox.2019.09.005) PubMed DOI

Andreakis N, D'Aniello S, Albalat R, Patti FP, Garcia-Fernandez J, Procaccini G, Sordino P, Palumbo A. 2011. Evolution of the nitric oxide synthase family in metazoans. Mol. Biol. Evol. 28, 163-179. (10.1093/molbev/msq179) PubMed DOI

Förstermann U, Sessa WC. 2012. Nitric oxide synthases: regulation and function. Eur. Heart J. 33, 829-837. (10.1093/eurheartj/ehr304) PubMed DOI PMC

Tota B, Amelio D, Pellegrino D, Ip YK, Cerra MC. 2005. NO modulation of myocardial performance in fish hearts. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 142, 164-177. (10.1016/j.cbpb.2005.04.019) PubMed DOI

Agnisola C, Pellegrino D. 2007. Role of nitric oxide in vascular regulation in fish. Adv. Exp. Biol. 293-310. (10.1016/S1872-2423(07)01013-7) DOI

Donald JA, Forgan LG, Cameron MS. 2015. The evolution of nitric oxide signalling in vertebrate blood vessels. J. Comp. Physiol. B 185, 153-171. (10.1007/s00360-014-0877-1) PubMed DOI

Hughes LC, et al. 2018. Comprehensive phylogeny of ray-finned fishes (Actinopterygii) based on transcriptomic and genomic data. Proc. Natl Acad. Sci. USA 115, 6249-6254. (10.1073/pnas.1719358115) PubMed DOI PMC

Du K, et al. 2020. The sterlet sturgeon genome sequence and the mechanisms of segmental rediploidization. Nat. Ecol. Evol. 4, 841-852. (10.1038/s41559-020-1166-x) PubMed DOI PMC

Thompson A, et al. 2021. The genome of the bowfin (Amia calva) illuminates the developmental evolution of ray-finned fishes. Nat. Genet. 53, 1373-1384. (10.1038/s41588-021-00914-y) PubMed DOI PMC

Gallant JR, Losilla M, Tomlinson C, Warren WC. 2017. The genome and adult somatic transcriptome of the mormyrid electric fish Paramormyrops kingsleyae. Genome Biol. Evol. 9, 3525-3530. (10.1093/gbe/evx265) PubMed DOI PMC

Mehta TK, et al. 2013. Evidence for at least six Hox clusters in the Japanese lamprey (Lethenteron japonicum). Proc. Natl Acad. Sci. USA 110, 16 044-16 049. (10.1073/pnas.1315760110) PubMed DOI PMC

Xu P, et al. 2019. The allotetraploid origin and asymmetrical genome evolution of the common carp Cyprinus carpio. Nat. Commun. 10, 4625. (10.1038/s41467-019-12644-1) PubMed DOI PMC

Berthelot C, et al. 2014. The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates. Nat. Commun. 5, 3657. (10.1038/ncomms4657) PubMed DOI PMC

Lien S, et al. 2016. The Atlantic salmon genome provides insights into rediploidization. Nature 533, 200-205. (10.1038/nature17164) PubMed DOI PMC

Braasch I, et al. 2016. The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nat. Genet. 48, 427-437. (10.1038/ng.3526) PubMed DOI PMC

Annona G, Ferran JL, De Luca P, Conte I, Postlethwait JH, D'Aniello S. 2022. Expression pattern of nos1 in the developing nervous system of ray-finned fish. Genes 13, 918. (10.3390/genes13050918) PubMed DOI PMC

Gibbins IL, Olsson C, Holmgren S. 1995. Distribution of neurons reactive for NADPH-diaphorase in the branchial nerves of a teleost fish, Gadus morhua. Neurosci. Lett. 193, 113-116. (10.1016/0304-3940(95)11680-U) PubMed DOI

Mauceri A, Fasulo S, Ainis L, Licata A, Rita lauriano E, Martfnez A, Mayer B, Zaccone G. 1999. Neuronal nitric oxide synthase (nNOS) expression in the epithelial neuroendocrine cell system and nerve fibers in the gill of the catfish, Heteropneustes fossilis. Acta Histochem. 101, 437-448. (10.1016/S0065-1281(99)80044-0) PubMed DOI

Evans DH. 2002. Cell signaling and ion transport across the fish gill epithelium. J. Exp. Zool. 293, 336-347. (10.1002/jez.10128) PubMed DOI

Pellegrino D, Sprovieri E, Mazza R, Randall D, Tota B. 2002. Nitric oxide-cGMP-mediated vasoconstriction and effects of acetylcholine in the branchial circulation of the eel. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 132, 447-457. (10.1016/S1095-6433(02)00082-X) PubMed DOI

Gillis JA, Tidswell ORA. 2017. The origin of vertebrate gills. Curr. Biol. 27, 729-732. (10.1016/j.cub.2017.01.022) PubMed DOI PMC

Warga RM, Nüsslein-Volhard C. 1999. Origin and development of the zebrafish endoderm. Development 126, 827-838. (10.1242/dev.126.4.827) PubMed DOI

Poon K-L, Richardson M, Korzh V. 2008. Expression of zebrafish nos2b surrounds oral cavity. Dev. Dyn. 237, 1662-1667. (10.1002/dvdy.21566) PubMed DOI

Lepiller S, Franche N, Solary E, Chluba J, Laurens V. 2009. Comparative analysis of zebrafish nos2a and nos2b genes. Gene 445, 58-65. (10.1016/j.gene.2009.05.016) PubMed DOI

Postlethwait J, Amores A, Force A, Yan YL. 1998. The zebrafish genome. Methods Cell Biol. 60, 149-163. (10.1016/S0091-679X(08)61898-1) PubMed DOI

Amores A. 1998. Zebrafish hox clusters and vertebrate genome evolution. Science 282, 1711-1714. (10.1126/science.282.5394.1711) PubMed DOI

Dehal P, Boore JL. 2005. Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol. 3, e314. (10.1371/journal.pbio.0030314) PubMed DOI PMC

Nakatani Y, Shingate P, Ravi V, Pillai NE, Prasad A, McLysaght A, Venkatesh B. 2021. Reconstruction of proto-vertebrate, proto-cyclostome and proto-gnathostome genomes provides new insights into early vertebrate evolution. Nat. Commun. 12, 1-4. (10.1038/s41467-020-20314-w) PubMed DOI PMC

Tota B, Amelio D, Cerra MC, Garofalo F. 2018. The morphological and functional significance of the NOS/NO system in the respiratory, osmoregulatory, and contractile organs of the African lungfish. Acta Histochem. 120, 654-666. (10.1016/j.acthis.2018.08.011) PubMed DOI

Tipsmark CK. 2003. Regulation of Na+/K+-ATPase activity by nitric oxide in the kidney and gill of the brown trout (Salmo trutta). J. Exp. Biol. 206, 1503-1510. (10.1242/jeb.00284) PubMed DOI

Ebbesson LOE. 2005. Nitric oxide synthase in the gill of Atlantic salmon: colocalization with and inhibition of Na+,K+-ATPase. J. Exp. Biol. 208, 1011-1017. (10.1242/jeb.01488) PubMed DOI

Hyndman KA, Choe KP, Havird JC, Rose RE, Piermarini PM, Evans DH. 2006. Neuronal nitric oxide synthase in the gill of the killifish, Fundulus heteroclitus. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 144, 510-519. (10.1016/j.cbpb.2006.05.002) PubMed DOI

Campos-Perez JJ, Ward M, Grabowski PS, Ellis AE, Secombes CJ. 2000. The gills are an important site of iNOS expression in rainbow trout Oncorhynchus mykiss after challenge with the Gram-positive pathogen Renibacterium salmoninarum. Immunology 99, 153-161. (10.1046/j.1365-2567.2000.00914.x) PubMed DOI PMC

Mistri A, Kumari U, Mittal S, Mittal AK. 2018. Immunohistochemical localization of nitric oxide synthase (NOS) isoforms in epidermis and gill epithelium of an angler catfish, Chaca chaca (Siluriformes, Chacidae). Tissue Cell 55, 25-30. (10.1016/j.tice.2018.09.008) PubMed DOI

Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J. 1999. Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151, 1531-1545. (10.1093/genetics/151.4.1531) PubMed DOI PMC

Farnsworth DR, Saunders LM, Miller AC. 2020. A single-cell transcriptome atlas for zebrafish development. Dev. Biol. 459, 100-108. (10.1016/j.ydbio.2019.11.008) PubMed DOI PMC

Stundl J, Pospisilova A, Jandzik D, Fabian P, Dobiasova B, Minarik M, Metscher BD, Soukup V, Cerny R. 2019. Bichir external gills arise via heterochronic shift that accelerates hyoid arch development. Elife 8, e43531. (10.7554/eLife.43531) PubMed DOI PMC

Annona G, Caccavale F, Pascual-Anaya J, Kuratani S, De Luca P, Palumbo A, D'Aniello S. 2017. Nitric oxide regulates mouth development in amphioxus. Sci. Rep. 7, 8432. (10.1038/s41598-017-08157-w) PubMed DOI PMC

Caccavale F, Annona G, Subirana L, Escriva H, Bertrand S, D'Aniello S. 2021. Crosstalk between nitric oxide and retinoic acid pathways is essential for amphioxus pharynx development. Elife 10, e58295. (10.7554/eLife.58295) PubMed DOI PMC

Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792-1797. (10.1093/nar/gkh340) PubMed DOI PMC

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547-1549. (10.1093/molbev/msy096) PubMed DOI PMC

Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. 2009. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972-1973. (10.1093/bioinformatics/btp348) PubMed DOI PMC

Ronquist F, et al. 2012. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539-542. (10.1093/sysbio/sys029) PubMed DOI PMC

Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268-274. (10.1093/molbev/msu300) PubMed DOI PMC

Kalyaanamoorthy S, Minh BQ, Wong TKF, Von Haeseler A, Jermiin LS. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587-589. (10.1038/nmeth.4285) PubMed DOI PMC

Hoang DT, Chernomor O, Von Haeseler A, Minh BQ, Vinh LS. 2018. UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518-522. (10.1093/molbev/msx281) PubMed DOI PMC

Nguyen NTT, Vincens P, Roest Crollius H, Louis A. 2018. Genomicus 2018: karyotype evolutionary trees and on-the-fly synteny computing. Nucleic Acids Res. 46, D816-D822. (10.1093/nar/gkx1003) PubMed DOI PMC

Catchen JM, Conery JS, Postlethwait JH. 2009. Automated identification of conserved synteny after whole-genome duplication. Genome Res. 19, 1497-1505. (10.1101/gr.090480.108) PubMed DOI PMC

Jowett T, Yan Y-L. 1996. Double fluorescent in situ hybridization to zebrafish embryos. Trends Genet. 12, 387-389. (10.1016/S0168-9525(96)90091-8) PubMed DOI

Minarik M, et al. 2017. Pre-oral gut contributes to facial structures in non-teleost fishes. Nature 547, 209-212. (10.1038/nature23008) PubMed DOI

Sugahara F, Murakami Y, Kuratani S. 2015. Gene expression analysis of lamprey embryos. In situ hybridization methods, pp. 263-278. New York, NY: Humana Press.

Adachi N, Takechi M, Hirai T, Kuratani S. 2012. Development of the head and trunk mesoderm in the dogfish, Scyliorhinus torazame: II. Comparison of gene expression between the head mesoderm and somites with reference to the origin of the vertebrate head. Evol. Dev. 14, 257-276. (10.1111/j.1525-142X.2012.00543.x) PubMed DOI

Annona G, et al. . 2020. Evolution of the nitric oxide synthase family in vertebrates and novel insights in gill development. Figshare. (10.6084/m9.figshare.c.6136963) DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Bone Formation in Zebrafish: The Significance of DAF-FM DA Staining for Nitric Oxide Detection

. 2023 Dec 12 ; 13 (12) : . [epub] 20231212

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...