Bone Formation in Zebrafish: The Significance of DAF-FM DA Staining for Nitric Oxide Detection
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
GACR n° 22-25061S
Czech Science Foundation
AUFF-E-2021-9-17
Aarhus University Research Foundation, Denmark
No 766347
the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement
INTEC, International Network on Ectopic Calcification
Ghent University
PubMed
38136650
PubMed Central
PMC10742054
DOI
10.3390/biom13121780
PII: biom13121780
Knihovny.cz E-zdroje
- Klíčová slova
- bulbus arteriosus, nitric oxide, notochord sheath, ossification, osteoblasts, zebrafish,
- MeSH
- barvení a značení MeSH
- barvicí látky metabolismus MeSH
- dánio pruhované * metabolismus MeSH
- kosti a kostní tkáň metabolismus MeSH
- osteogeneze * MeSH
- oxid dusnatý metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- barvicí látky MeSH
- oxid dusnatý MeSH
DAF-FM DA is widely used as a live staining compound to show the presence of nitric oxide (NO) in cells. Applying this stain to live zebrafish embryos is known to indicate early centers of bone formation, but the precise (cellular) location of the signal has hitherto not been revealed. Using sections of zebrafish embryos live-stained with DAF-FM DA, we could confirm that the fluorescent signals were predominantly located in areas of ongoing bone formation. Signals were observed in the bone and tooth matrix, in the notochord sheath, as well as in the bulbus arteriosus. Surprisingly, however, they were exclusively extracellular, even after very short staining times. Von Kossa and Alizarin red S staining to reveal mineral deposits showed that DAF-FM DA stains both the mineralized and non-mineralized bone matrix (osteoid), excluding that DAF-FM DA binds non-specifically to calcified structures. The importance of NO in bone formation by osteoblasts is nevertheless undisputed, as shown by the absence of bone structures after the inhibition of NOS enzymes that catalyze the formation of NO. In conclusion, in zebrafish skeletal biology, DAF-FM DA is appropriate to reveal bone formation in vivo, independent of mineralization of the bone matrix, but it does not demonstrate intracellular NO.
Department for Biomedicine Aarhus University Høegh Guldbergs Gade 10 8000 Aarhus Denmark
Department of Zoology Faculty of Science Charles University Vinicna 7 128 44 Prague Czech Republic
Zobrazit více v PubMed
Lundberg J.O., Weitzberg E. Nitric oxide signaling in health and disease. Cell. 2022;185:2853–2878. doi: 10.1016/j.cell.2022.06.010. PubMed DOI
Piacenza L., Zeida A., Trujillo M., Radi R. The superoxide radical switch in the biology of nitric oxide and peroxynitrite. Physiol. Rev. 2022;102:1881–1906. doi: 10.1152/physrev.00005.2022. PubMed DOI
Brandi M.L., Hukkanen M., Umeda T., Moradi-Bidhendi N., Bianchi S., Gross S.S., Polak J.M., MacIntyre I. Bidirectional regulation of osteoclast function by nitric oxide synthase isoforms. Proc. Natl. Acad. Sci. USA. 1995;92:2954–2958. doi: 10.1073/pnas.92.7.2954. PubMed DOI PMC
Helfrich M.H., Evans D.E., Grabowski P.S., Pollock J.S., Ohshima H., Ralston S.H. Expression of nitric oxide synthase isoforms in bone and bone cell cultures. J. Bone Miner. Res. 1997;12:1108–1115. doi: 10.1359/jbmr.1997.12.7.1108. PubMed DOI
Evans D.M., Ralston S.H. Nitric oxide and bone. J. Bone Miner. Res. 1996;11:300–305. doi: 10.1002/jbmr.5650110303. PubMed DOI
Burger E.H., Klein-Nulend J., Smit T.H. Strain-derived canalicular fluid flow regulates osteoclast activity in a remodeling osteon—A proposal. J. Biomech. 2003;36:1453–1459. doi: 10.1016/S0021-9290(03)00126-X. PubMed DOI
Saura M., Tarin C., Zaragoza C. Recent insights into the implication of nitric oxide in osteoblast differentiation and proliferation during bone development. Sci. World J. 2010;10:624–632. doi: 10.1100/tsw.2010.58. PubMed DOI PMC
Moharrer Y., Boerckel J.D. Tunnels in the rock: Dynamics of osteocyte morphogenesis. Bone. 2021;153:116104. doi: 10.1016/j.bone.2021.116104. PubMed DOI PMC
Yan T., Xie Y., He H., Fan W., Huang F. Role of nitric oxide in orthodontic tooth movement. Int. J. Molec. Med. 2021;48:168. doi: 10.3892/ijmm.2021.5001. PubMed DOI PMC
Kojima H., Nakatsubo N., Kikuchi K., Kawahara S., Kirino Y., Nagoshi H., Hirata Y., Nagano T. Detection and imaging of nitric oxide with novel fluorescent indicators: Diaminofluoresceins. Anal. Chem. 1998;70:2446–2453. doi: 10.1021/ac9801723. PubMed DOI
Kojima H., Urano Y., Kikuchi K., Higuchi T., Hirata Y., Nagano T. Fluorescent indicators for imaging nitric oxide production. Angew. Chem. Int. Ed. 1999;38:3209–3212. doi: 10.1002/(SICI)1521-3773(19991102)38:21<3209::AID-ANIE3209>3.0.CO;2-6. PubMed DOI
Lepiller S., Laurens V., Bouchot A., Herbomel P., Solary E., Chlub J. Imaging of nitric oxide in a living vertebrate using a diaminofluorescein probe. Free Radic. Biol. Med. 2007;43:619–627. doi: 10.1016/j.freeradbiomed.2007.05.025. PubMed DOI
Renn J., Pruvot B., Muller M. Detection of nitric oxide by diaminofluorescein visualizes the skeleton in living zebrafish. J. Appl. Ichthyol. 2014;30:701–706. doi: 10.1111/jai.12514. DOI
Windhausen T., Squifflet S., Renn J., Muller M. BMP signaling regulates bone morphogenesis in zebrafish through promoting osteoblast function as assessed by their nitric oxide production. Molecules. 2015;20:7586–7601. doi: 10.3390/molecules20057586. PubMed DOI PMC
Westerfield M. The Zebrafish Book. A Guide for the Laboratory Use of Zebrafish (Danio rerio) 4th ed. University of Oregon Press; Eugene, ON, USA: 2000.
Strähle U., Scholz S., Geisler R., Greiner P., Hollert H., Rastegar S., Schumacher A., Selderslaghs I., Weiss C., Witters H., et al. Zebrafish embryos as an alternative to animal experiments—A commentary on the definition of the onset of protected life stages in animal welfare regulations. Reprod. Toxicol. 2012;33:128–132. doi: 10.1016/j.reprotox.2011.06.121. PubMed DOI
Annona G., Sato I., Pascual-Anaya J., Osca D., Braasch I., Voss R., Stundl J., Soukup V., Ferrara A., Fontenot Q., et al. Evolution of the nitric oxide synthase family in vertebrates and novel insights in gill development. Proc. R. Soc. B. 2022;289:20220667. doi: 10.1098/rspb.2022.0667. PubMed DOI PMC
Oralová V., Rosa J.T., Soenens M., Bek J.W., Willaert A., Witten P.E., Huysseune A. Beyond the whole-mount phenotype: High-resolution imaging in fluorescence-based applications on zebrafish. Biol. Open. 2019;8:bio042374. doi: 10.1242/bio.042374. PubMed DOI PMC
Sheehan D., Hrapchak B. Theory and Practice of Histotechnology. 2nd ed. Battelle Press; Columbus, OH, USA: 1987. p. 481.
Presnell J.K., Schreibman M.P. Humason’s Animal Tissue Techniques. 5th ed. The Johns Hopkins University Press; Baltimore, MD, USA: 1997. p. 600.
Huysseune A., Soenens M., Sire J.-Y., Witten P.E. High resolution histology for craniofacial studies on zebrafish and other teleost models. Meth. Molec. Biol. 2022;2403:249–262. PubMed
Hauschka P.V., Damoulis P.D. Functions of nitric oxide in bone. Biochem. Soc. Trans. 1998;26:39–44. doi: 10.1042/bst0260039. PubMed DOI
Li Y., Tan Y., Yang B., Zhang G., Xiao X., Zheng L. Effect of calcitonin gene-related peptide on nitric oxide production in osteoblasts: An experimental study. Cell Biol. Int. 2011;35:757–765. doi: 10.1042/CBI20100832. PubMed DOI
Suh K.S., Chon S., Choi E.M. Limonene protects osteoblasts against methylglyoxal-derived adduct formation by regulating glyoxalase, oxidative stress, and mitochondrial function. Chem. Biol. Interact. 2017;278:15–21. doi: 10.1016/j.cbi.2017.10.001. PubMed DOI
Jin Z., Kho J., Dawson B., Jiang M.-M., Chen Y., Ali S., Burrage L.C., Grover M., Palmer D.J., Turner D.L., et al. Nitric oxide modulates bone anabolism through regulation of osteoblast glycolysis and differentiation. J Clin. Investig. 2021;131:e138935. doi: 10.1172/JCI138935. PubMed DOI PMC
Lancaster J.R. A tutorial on the diffusibility and reactivity of free nitric oxide. Nitric Oxide—Biol. Chem. 1997;1:18–30. doi: 10.1006/niox.1996.0112. PubMed DOI
Hilderbrand S.A., Lim M.H., Lippard S.J. Fluorescence-based nitric oxide detection. In: Geddes C.D., Lakowicz J.R., editors. Topics in Fluorescence Spectroscopy. Volume 9. Springer; Boston, MA, USA: 2005. pp. 163–188.
Silveira A., Kardjilov N., Markötte H., Longo E., Grevin I., Lasch P., Shahar R., Zaslansky P. Water flow through bone: Neutron tomography reveals differences in water permeability between osteocytic and anosteocytic bone material. Mater. Des. 2022;224:111275. doi: 10.1016/j.matdes.2022.111275. DOI
Huysseune A. Skeletal system. In: Ostrander G., editor. The Laboratory Fish. Academic Press; London, UK: 2000. pp. 307–317.
D’Alessandro S., Posocco B., Costa A., Zahariou G., Lo Schiavo F., Carbonera D., Zottini M. Limits in the use of cPTIO as nitric oxide scavenger and EPR probe in plant cells and seedlings. Front. Plant Sci. 2013;4:340. doi: 10.3389/fpls.2013.00340. PubMed DOI PMC
Arita N.O., Cohen M.F., Tokuda G., Yamasaki H. Fluorometric detection of nitric oxide with diaminofluoresceins (DAFs): Applications and limitations for plant NO research. Plant Cell Monogr. 2006;5:269–280. doi: 10.1007/7089_2006_097. DOI
Wardman P. Fluorescent and luminescent probes for measurement of oxidative and nitrosative species in cells and tissues: Progress, pitfalls, and prospects. Free Radic. Biol. Med. 2007;43:995–1022. doi: 10.1016/j.freeradbiomed.2007.06.026. PubMed DOI
Kim W.-S., Ye X., Rubakhin S.S., Sweedler J.V. Measuring nitric oxide in single neurons by capillary electrophoresis with laser-induced fluorescence: Use of ascorbate oxidase in diaminofluorescein measurements. Anal. Chem. 2006;78:1859–1865. doi: 10.1021/ac051877p. PubMed DOI
Balcerczyk A., Soszynski M., Bartosz G. On the specificity of 4-amino-5-methylamino-2′,7′-difluorofluorescein as a probe for nitric oxide. Free Radic. Biol. Med. 2005;39:327–335. doi: 10.1016/j.freeradbiomed.2005.03.017. PubMed DOI
Benjamin M., Norman D., Santer R.M., Scarborough D. Histological, histochemical and ultrastructural studies on the bulbus arteriosus of the sticklebacks, Gasterosteus aculeatus and Pungitius pungitius (Pisces: Teleostei) J. Zool. 1983;200:325–346. doi: 10.1111/j.1469-7998.1983.tb02314.x. DOI
Icardo J.M. The teleost heart: A morphological approach. In: Sedmera D., Wang T., editors. Ontogeny and Phylogeny of the Vertebrate Heart. Springer; New York, NY, USA: 2012. pp. 35–53. DOI
Rodriguez J., Specian V., Maloney R., Jourd’heuil D., Feelisch M. Performance of diamino fluorophores for the localization of sources and targets of nitric oxide. Free Radic. Biol. Med. 2005;38:356–368. doi: 10.1016/j.freeradbiomed.2004.10.036. PubMed DOI
McCarthy D.A. Fluorochromes and fluorescence. In: Macey M.G., editor. Flow Cytometry: Principles and Applications. Humana Press Inc.; Totowa, NJ, USA: 2007. pp. 59–112.
Witten P.E., Hall B.K. The Notochord. Development, Evolution and Contributions to the Vertebral Column. CRC Press; Boca Raton, FL, USA: 2022. pp. 1–250.
Lundberg J.O., Weitzberg E., Gladwin M.T. The nitrate–nitrite–nitric oxide pathway in physiology and therapeutics. Nat. Rev. Drug Discov. 2008;7:156–167. doi: 10.1038/nrd2466. PubMed DOI
Lundberg J.O.N., Weitzberg E., Lundberg J.M., Alving K. Intragastric nitric oxide production in humans: Measurements in expelled air. Gut. 1994;35:1543–1546. doi: 10.1136/gut.35.11.1543. PubMed DOI PMC
Archer S. Measurement of nitric oxide in biological models. FASEB J. 1993;7:349–360. doi: 10.1096/fasebj.7.2.8440411. PubMed DOI
Wang Q., Huang H., Ning B., Li M., He L. A Highly sensitive and selective spectrofluorimetric method for the determination of nitrite in food products. Food Anal. Methods. 2016;9:1293–1300. doi: 10.1007/s12161-015-0306-4. DOI
Neuman M.W., Neuman W.F. On the measurement of water compartments, pH, and gradients in calvaria. Calcif. Tissue Int. 1980;31:135–145. doi: 10.1007/BF02407174. PubMed DOI