Enhanced Response of ZnO Nanorod-Based Flexible MEAs for Recording Ischemia-Induced Neural Activity in Acute Brain Slices

. 2025 Jul 30 ; 15 (15) : . [epub] 20250730

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40801712

Grantová podpora
956325 European Commission
101130650 European Commission
23-06269S Czech Science Foundation
LM2023050 Ministry of Education Youth and Sports
LX22NPO5107 Ministry of Education, Youth and Sports (Financed by EU-Next Generation EU)
VP29 Czech Academy of Sciences (Strategy AV21)

Brain ischemia is a severe condition caused by reduced cerebral blood flow, leading to the disruption of ion gradients in brain tissue. This imbalance triggers spreading depolarizations, which are waves of neuronal and glial depolarization propagating through the gray matter. Microelectrode arrays (MEAs) are essential for real-time monitoring of these electrophysiological processes both in vivo and in vitro, but their sensitivity and signal quality are critical for accurate detection of extracellular brain activity. In this study, we evaluate the performance of a flexible microelectrode array based on gold-coated zinc oxide nanorods (ZnO NRs), referred to as nano-fMEA, specifically for high-fidelity electrophysiological recording under pathological conditions. Acute mouse brain slices were tested under two ischemic models: oxygen-glucose deprivation (OGD) and hyperkalemia. The nano-fMEA demonstrated significant improvements in event detection rates and in capturing subtle fluctuations in neural signals compared to flat fMEAs. This enhanced performance is primarily attributed to an optimized electrode-tissue interface that reduces impedance and improves charge transfer. These features enabled the nano-fMEA to detect weak or transient electrophysiological events more effectively, making it a valuable platform for investigating neural dynamics during metabolic stress. Overall, the results underscore the promise of ZnO NRs in advancing electrophysiological tools for neuroscience research.

Zobrazit více v PubMed

Serra J., Mateus J.C., Cardoso S., Ventura J., Aguiar P., Leitao D.C. Stress-actuated Flexible Microelectrode Arrays for Activity Recording in 3D Neuronal Cultures. bioRxiv. 2024 doi: 10.1101/2024.12.12.628189. DOI

Tang X., Shen H., Zhao S., Li N., Liu J. Flexible brain–computer interfaces. Nat. Electron. 2023;6:109–118. doi: 10.1038/s41928-022-00913-9. DOI

Someya T., Bao Z., Malliaras G.G. The rise of plastic bioelectronics. Nature. 2016;540:379–385. doi: 10.1038/nature21004. PubMed DOI

Minev I.R., Musienko P., Hirsch A., Barraud Q., Wenger N., Moraud E.M., Gandar J., Capogrosso M., Milekovic T., Asboth L., et al. Electronic dura mater for long-term multimodal neural interfaces. Science. 2015;347:159–163. doi: 10.1126/science.1260318. PubMed DOI

Lacour S.P., Courtine G., Guck J. Materials and technologies for soft implantable neuroprostheses. Nat. Rev. Mater. 2016;1:16063. doi: 10.1038/natrevmats.2016.63. DOI

Zhou H., Jin Z., Xu Y., Lu Y., Xia Z., Yang F., Wu Q., Gao Y., Yin J., Zhang J., et al. Enhanced laser-induced PEDOT-based hydrogels for highly conductive bioelectronics. Natl. Sci. Rev. 2025;12:nwaf136. doi: 10.1093/nsr/nwaf136. PubMed DOI PMC

Xu K., Ko S.H., Chen J. Advances in wearable and implantable bioelectronics for precision medicine. Bio-Design Manuf. 2024;7:383–387. doi: 10.1007/s42242-024-00302-5. DOI

Xu K., Cai Z., Luo H., Lu Y., Ding C., Yang G., Wang L., Kuang C., Liu J., Yang H. Toward Integrated Multifunctional Laser-Induced Graphene-Based Skin-Like Flexible Sensor Systems. ACS Nano. 2024;18:26435–26476. doi: 10.1021/acsnano.4c09062. PubMed DOI

Rivnay J., Wang H., Fenno L., Deisseroth K., Malliaras G.G. Next-generation probes, particles, and proteins for neural interfacing. Sci. Adv. 2017;3:e1601649. doi: 10.1126/sciadv.1601649. PubMed DOI PMC

Song X., Gu Y., Wang S., Wang J., Yu L. Nanowire-Based Flexible Sensors for Wearable Electronics, Brain–Computer Interfaces, and Artificial Skins. Electron. 2025;3:e77. doi: 10.1002/elt2.77. DOI

Simon D.T., Gabrielsson E.O., Tybrandt K., Berggren M. Organic Bioelectronics: Bridging the Signaling Gap between Biology and Technology. Chem. Rev. 2016;116:13009–13041. doi: 10.1021/acs.chemrev.6b00146. PubMed DOI

Raos B., Maddah M., Graham E., Plank N., Unsworth C. ZnO nanowire florets promote the growth of human neurons. Materialia. 2020;9:100577. doi: 10.1016/j.mtla.2019.100577. DOI

Maddah M., Unsworth C.P., Plank N.O.V. Selective growth of ZnO nanowires with varied aspect ratios on an individual substrate. Mater. Res. Express. 2019;6:015905. doi: 10.1088/2053-1591/aae6a2. DOI

Maddah M., Unsworth C.P., Gouws G.J., Plank N.O.V. Synthesis of encapsulated ZnO nanowires provide low impedance alternatives for microelectrodes. PLoS ONE. 2022;17:e0270164. doi: 10.1371/journal.pone.0270164. PubMed DOI PMC

Babu K.S., Pinheiro P.F., Marques C.F., Justino G.C., Andrade S.M., Alves M.M. Flexible ZnO-mAb nanoplatforms for selective peripheral blood mononuclear cell immobilization. Sci. Rep. 2020;10:15018. doi: 10.1038/s41598-020-72133-0. PubMed DOI PMC

Giakoumaki A.N., Kenanakis G., Klini A., Androulidaki M., Viskadourakis Z., Farsari M., Selimis A. 3D micro-structured arrays of ZnO nanorods. Sci. Rep. 2017;7:2100. doi: 10.1038/s41598-017-02231-z. PubMed DOI PMC

Fan Z., Lu J.G. Zinc Oxide Nanostructures: Synthesis and Properties. J. Nanosci. Nanotechnol. 2005;5:1561–1573. doi: 10.1166/jnn.2005.182. PubMed DOI

Rinaldi A., Pea M., Notargiacomo A., Ferrone E., Garroni S., Pilloni L., Araneo R. A Simple Ball Milling and Thermal Oxidation Method for Synthesis of ZnO Nanowires Decorated with Cubic ZnO2 Nanoparticles. Nanomaterials. 2021;11:475. doi: 10.3390/nano11020475. PubMed DOI PMC

Carofiglio M., Barui S., Cauda V., Laurenti M. Doped Zinc Oxide Nanoparticles: Synthesis, Characterization and Potential Use in Nanomedicine. Appl. Sci. 2020;10:5194. doi: 10.3390/app10155194. PubMed DOI PMC

Schmidt V., Wittemann J.V., Senz S., Gösele U. Silicon Nanowires: A Review on Aspects of their Growth and their Electrical Properties. Adv. Mater. 2009;21:2681–2702. doi: 10.1002/adma.200803754. PubMed DOI

Hessien M. Recent progress in zinc oxide nanomaterials and nanocomposites: From synthesis to applications. Ceram. Int. 2022;48:22609–22628. doi: 10.1016/j.ceramint.2022.05.082. DOI

Maita F., Maiolo L., Lucarini I., Del Rio De Vicente I., Palmieri E., Fiorentini E., Mussi V. Low-Cost and Label-Free Raman Sensors Based on Ag-Coated ZnO Nanorods for Monitoring Astronaut’s Health; Proceedings of the 2023 IEEE 10th International Workshop on Metrology for Aerospace (MetroAeroSpace); Milan, Italy. 19–21 June 2023; pp. 363–367. DOI

Sudha D., Kumar E.R., Shanjitha S., Munshi A.M., Al-Hazmi G.A.A., El-Metwaly N.M., Kirubavathy S.J. Structural, optical, morphological and electrochemical properties of ZnO and graphene oxide blended ZnO nanocomposites. Ceram. Int. 2023;49:7284–7288. doi: 10.1016/j.ceramint.2022.10.192. DOI

Del Río De Vicente J.I., Lucarini I., Maita F., Salvò D., Marchetti V., Anderova M., Gómez J., Maiolo L. Development of ZnO NRs-rGO Low-Impedance Electrodes for Astrocyte Cell Signal Recording; Proceedings of the 2023 IEEE SENSORS; Vienna, Austria. 29 October–1 November 2023; pp. 1–4. DOI

Wang M., Mi G., Shi D., Bassous N., Hickey D., Webster T.J. Nanotechnology and Nanomaterials for Improving Neural Interfaces. Adv. Funct. Mater. 2018;28:1700905. doi: 10.1002/adfm.201700905. DOI

Rodilla B.L., Arché-Núñez A., Ruiz-Gómez S., Domínguez-Bajo A., Fernández-González C., Guillén-Colomer C., González-Mayorga A., Rodríguez-Díez N., Camarero J., Miranda R., et al. Flexible metallic core–shell nanostructured electrodes for neural interfacing. Sci. Rep. 2024;14:3729. doi: 10.1038/s41598-024-53719-4. PubMed DOI PMC

Saracino E., Maiolo L., Polese D., Semprini M., Borrachero-Conejo A.I., Gasparetto J., Murtagh S., Sola M., Tomasi L., Valle F., et al. A Glial-Silicon Nanowire Electrode Junction Enabling Differentiation and Noninvasive Recording of Slow Oscillations from Primary Astrocytes. Adv. Biosyst. 2020;4:1900264. doi: 10.1002/adbi.201900264. PubMed DOI

Kirdajova D.B., Kriska J., Tureckova J., Anderova M. Ischemia-Triggered Glutamate Excitotoxicity from the Perspective of Glial Cells. Front. Cell. Neurosci. 2020;14:51. doi: 10.3389/fncel.2020.00051. PubMed DOI PMC

Du Y., Wang W., Lutton A.D., Kiyoshi C.M., Ma B., Taylor A.T., Olesik J.W., McTigue D.M., Askwith C.C., Zhou M. Dissipation of transmembrane potassium gradient is the main cause of cerebral ischemia-induced depolarization in astrocytes and neurons. Exp. Neurol. 2018;303:1–11. doi: 10.1016/j.expneurol.2018.01.019. PubMed DOI PMC

Menyhárt Á., Zölei-Szénási D., Puskás T., Makra P., Tóth O.M., Szepes B., Tóth R., Ivánkovits-Kiss O., Obrenovitch T., Bari F., et al. Spreading depolarization remarkably exacerbates ischemia-induced tissue acidosis in the young and aged rat brain. Sci. Rep. 2017;7:1154. doi: 10.1038/s41598-017-01284-4. PubMed DOI PMC

Shen X.-Y., Gao Z.-K., Han Y., Yuan M., Guo Y.-S., Bi X. Activation and Role of Astrocytes in Ischemic Stroke. Front. Cell. Neurosci. 2021;15:755955. doi: 10.3389/fncel.2021.755955. PubMed DOI PMC

Eguchi K., Velicky P., Hollergschwandtner E., Itakura M., Fukazawa Y., Danzl J.G., Shigemoto R. Advantages of Acute Brain Slices Prepared at Physiological Temperature in the Characterization of Synaptic Functions. Front. Cell. Neurosci. 2020;14:63. doi: 10.3389/fncel.2020.00063. PubMed DOI PMC

Buskila Y., Breen P.P., Tapson J., van Schaik A., Barton M., Morley J.W. Extending the viability of acute brain slices. Sci. Rep. 2014;4:5309. doi: 10.1038/srep05309. PubMed DOI PMC

Maiolo L., Guarino V., Saracino E., Convertino A., Melucci M., Muccini M., Ambrosio L., Zamboni R., Benfenati V. Glial Interfaces: Advanced Materials and Devices to Uncover the Role of Astroglial Cells in Brain Function and Dysfunction. Adv. Healthc. Mater. 2021;10:e2001268. doi: 10.1002/adhm.202001268. PubMed DOI

Barbagiovanni E.G., Strano V., Franzò G., Crupi I., Mirabella S. Photoluminescence transient study of surface defects in ZnO nanorods grown by chemical bath deposition. Appl. Phys. Lett. 2015;106:093108. doi: 10.1063/1.4914067. DOI

Strano V., Urso R.G., Scuderi M., Iwu K.O., Simone F., Ciliberto E., Spinella C., Mirabella S. Double Role of HMTA in ZnO Nanorods Grown by Chemical Bath Deposition. J. Phys. Chem. C. 2014;118:28189–28195. doi: 10.1021/jp507496a. DOI

Yi G.-C., Wang C., Park W.I. ZnO nanorods: Synthesis, characterization and applications. Semicond. Sci. Technol. 2005;20:S22–S34. doi: 10.1088/0268-1242/20/4/003. DOI

Pazzini L., Polese D., Weinert J.F., Maiolo L., Maita F., Marrani M., Pecora A., Sanchez-Vives M.V., Fortunato G. An ultra-compact integrated system for brain activity recording and stimulation validated over cortical slow oscillations in vivo and in vitro. Sci. Rep. 2018;8:16717. doi: 10.1038/s41598-018-34560-y. PubMed DOI PMC

Nolte C., Matyash M., Pivneva T., Schipke C.G., Ohlemeyer C., Hanisch U.K., Kirchhoff F., Kettenmann H. GFAP promoter-controlled EGFP-expressing transgenic mice: A tool to visualize astrocytes and astrogliosis in living brain tissue. Glia. 2001;33:72–86. doi: 10.1002/1098-1136(20010101)33:1<72::AID-GLIA1007>3.0.CO;2-A. PubMed DOI

Kristian T., Hu B. Guidelines for using mouse global cerebral ischemia models. Transl. Stroke Res. 2013;4:343–350. doi: 10.1007/s12975-012-0236-z. PubMed DOI

Kriska J., Honsa P., Dzamba D., Butenko O., Kolenicova D., Janeckova L., Nahacka Z., Andera L., Kozmik Z., Taketo M.M., et al. Manipulating Wnt signaling at different subcellular levels affects the fate of neonatal neural stem/progenitor cells. Brain Res. 2016;1651:73–87. doi: 10.1016/j.brainres.2016.09.026. PubMed DOI

Corish P., Tyler-Smith C. Attenuation of green fluorescent protein half-life in mammalian cells. Protein Eng. 1999;12:1035–1040. doi: 10.1093/protein/12.12.1035. PubMed DOI

Janssen P.M., Biesiadecki B.J., Ziolo M.T., Davis J.P. The Need for Speed; Mice, Men, and Myocardial Kinetic Reserve. Circ. Res. 2016;119:418–421. doi: 10.1161/CIRCRESAHA.116.309126. PubMed DOI PMC

Lucarini I., Maita F., Conte G., Saracino E., Formaggio F., Palmieri E., Fabbri R., Konstantoulaki A., Lazzarini C., Caprini M., et al. Silicon Nanowire Mats Enable Advanced Bioelectrical Recordings in Primary DRG Cell Cultures. Adv. Healthc. Mater. 2025;14:e2500379. doi: 10.1002/adhm.202500379. PubMed DOI PMC

Vonk W.I.M., Rainbolt T.K., Dolan P.T., Webb A.E., Brunet A., Frydman J. Differentiation Drives Widespread Rewiring of the Neural Stem Cell Chaperone Network. Mol. Cell. 2020;78:329–345.e9. doi: 10.1016/j.molcel.2020.03.009. PubMed DOI PMC

Benincasa J.C., Madias M.I., Kandell R.M., Delgado-Garcia L.M., Engler A.J., Kwon E.J., Porcionatto M.A. Mechanobiological Modulation of In Vitro Astrocyte Reactivity Using Variable Gel Stiffness. ACS Biomater. Sci. Eng. 2024;10:4279–4296. doi: 10.1021/acsbiomaterials.4c00229. PubMed DOI PMC

Yamashita T., Ninomiya M., Acosta P.H., García-Verdugo J.M., Sunabori T., Sakaguchi M., Adachi K., Kojima T., Hirota Y., Kawase T., et al. Subventricular zone-derived neuroblasts migrate and differentiate into mature neurons in the post-stroke adult striatum. J. Neurosci. 2006;26:6627–6636. doi: 10.1523/JNEUROSCI.0149-06.2006. PubMed DOI PMC

Doetsch F., Caillé I., Lim D.A., García-Verdugo J.M., Alvarez-Buylla A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell. 1999;97:703–716. doi: 10.1016/S0092-8674(00)80783-7. PubMed DOI

Joshi I., Andrew R.D. Imaging anoxic depolarization during ischemia-like conditions in the mouse hemi-brain slice. J. Neurophysiol. 2001;85:414–424. doi: 10.1152/jn.2001.85.1.414. PubMed DOI

Taylor C.P., Weber M.L., Gaughan C.L., Lehning E.J., LoPachin R.M. Oxygen/glucose deprivation in hippocampal slices: Altered intraneuronal elemental composition predicts structural and functional damage. J. Neurosci. Off. J. Soc. Neurosci. 1999;19:619–629. doi: 10.1523/JNEUROSCI.19-02-00619.1999. PubMed DOI PMC

Reappraisal of Anoxic Spreading Depolarization as a Terminal Event During Oxygen–Glucose Deprivation in Brain Slices In Vitro Scientific Reports. [(accessed on 17 April 2025)]. Available online: https://www.nature.com/articles/s41598-020-75975-w. PubMed PMC

Antunes A.P., Schiefecker A.J., Beer R., Pfausler B., Sohm F., Fischer M., Dietmann A., Lackner P., Hackl W.O., Ndayisaba J.-P., et al. Higher brain extracellular potassium is associated with brain metabolic distress and poor outcome after aneurysmal subarachnoid hemorrhage. Crit. Care. 2014;18:R119. doi: 10.1186/cc13916. PubMed DOI PMC

Hansen A.J. The extracellular potassium concentration in brain cortex following ischemia in hypo- and hyperglycemic rats. Acta Physiol. Scand. 1978;102:324–329. doi: 10.1111/j.1748-1716.1978.tb06079.x. PubMed DOI

Somjen G.G. Extracellular potassium in the mammalian central nervous system. Annu. Rev. Physiol. 1979;41:159–177. doi: 10.1146/annurev.ph.41.030179.001111. PubMed DOI

Cho S., Wood A., Bowlby M.R. Brain slices as models for neurodegenerative disease and screening platforms to identify novel therapeutics. Curr. Neuropharmacol. 2007;5:19–33. doi: 10.2174/157015907780077105. PubMed DOI PMC

Humpel C. Organotypic brain slice cultures: A review. Neuroscience. 2015;305:86–98. doi: 10.1016/j.neuroscience.2015.07.086. PubMed DOI PMC

Blaeser A.S., Connors B.W., Nurmikko A.V. Spontaneous dynamics of neural networks in deep layers of prefrontal cortex. J. Neurophysiol. 2017;117:1581–1594. doi: 10.1152/jn.00295.2016. PubMed DOI PMC

Schmidt S.L., Chew E.Y., Bennett D.V., Hammad M.A., Fröhlich F. Differential effects of cholinergic and noradrenergic neuromodulation on spontaneous cortical network dynamics. Neuropharmacology. 2013;72:259–273. doi: 10.1016/j.neuropharm.2013.04.045. PubMed DOI

Ting J.T., Daigle T.L., Chen Q., Feng G. Acute brain slice methods for adult and aging animals: Application of targeted patch clamp analysis and optogenetics. Methods Mol. Biol. 2014;1183:221–242. doi: 10.1007/978-1-4939-1096-0_14. PubMed DOI PMC

Walch E., Murphy T.R., Cuvelier N., Aldoghmi M., Morozova C., Donohue J., Young G., Samant A., Garcia S., Alvarez C., et al. Astrocyte-Selective Volume Increase in Elevated Extracellular Potassium Conditions Is Mediated by the Na+/K+ ATPase and Occurs Independently of Aquaporin 4. ASN Neuro. 2020;12:1759091420967152. doi: 10.1177/1759091420967152. PubMed DOI PMC

Ding F., Sun Q., Long C., Rasmussen R.N., Peng S., Xu Q., Kang N., Song W., Weikop P., Goldman S.A., et al. Dysregulation of extracellular potassium distinguishes healthy ageing from neurodegeneration. Brain J. Neurol. 2024;147:1726–1739. doi: 10.1093/brain/awae075. PubMed DOI PMC

Xie M., Wang W., Kimelberg H.K., Zhou M. Oxygen and glucose deprivation-induced changes in astrocyte membrane potential and their underlying mechanisms in acute rat hippocampal slices. J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 2007;28:456–467. doi: 10.1038/sj.jcbfm.9600545. PubMed DOI

Buzsáki G., Anastassiou C.A., Koch C. The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci. 2012;13:407–420. doi: 10.1038/nrn3241. PubMed DOI PMC

Henze D.A., Borhegyi Z., Csicsvari J., Mamiya A., Harris K.D., Buzsáki G. Intracellular features predicted by extracellular recordings in the hippocampus in vivo. J. Neurophysiol. 2000;84:390–400. doi: 10.1152/jn.2000.84.1.390. PubMed DOI

Mestre A.L.G., Inácio P.M.C., Elamine Y., Asgarifar S., Lourenço A.S., Cristiano M.L.S., Aguiar P., Medeiros M.C.R., Araújo I.M., Ventura J., et al. Extracellular Electrophysiological Measurements of Cooperative Signals in Astrocytes Populations. Front. Neural Circuits. 2017;11:80. doi: 10.3389/fncir.2017.00080. PubMed DOI PMC

Chiang C.-C., Durand D.M. Subthreshold Oscillating Waves in Neural Tissue Propagate by Volume Conduction and Generate Interference. Brain Sci. 2022;13:74. doi: 10.3390/brainsci13010074. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...