Ischemia-Triggered Glutamate Excitotoxicity From the Perspective of Glial Cells

. 2020 ; 14 () : 51. [epub] 20200319

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32265656

A plethora of neurological disorders shares a final common deadly pathway known as excitotoxicity. Among these disorders, ischemic injury is a prominent cause of death and disability worldwide. Brain ischemia stems from cardiac arrest or stroke, both responsible for insufficient blood supply to the brain parenchyma. Glucose and oxygen deficiency disrupts oxidative phosphorylation, which results in energy depletion and ionic imbalance, followed by cell membrane depolarization, calcium (Ca2+) overload, and extracellular accumulation of excitatory amino acid glutamate. If tight physiological regulation fails to clear the surplus of this neurotransmitter, subsequent prolonged activation of glutamate receptors forms a vicious circle between elevated concentrations of intracellular Ca2+ ions and aberrant glutamate release, aggravating the effect of this ischemic pathway. The activation of downstream Ca2+-dependent enzymes has a catastrophic impact on nervous tissue leading to cell death, accompanied by the formation of free radicals, edema, and inflammation. After decades of "neuron-centric" approaches, recent research has also finally shed some light on the role of glial cells in neurological diseases. It is becoming more and more evident that neurons and glia depend on each other. Neuronal cells, astrocytes, microglia, NG2 glia, and oligodendrocytes all have their roles in what is known as glutamate excitotoxicity. However, who is the main contributor to the ischemic pathway, and who is the unsuspecting victim? In this review article, we summarize the so-far-revealed roles of cells in the central nervous system, with particular attention to glial cells in ischemia-induced glutamate excitotoxicity, its origins, and consequences.

Zobrazit více v PubMed

Abdullaev I. F., Rudkouskaya A., Schools G. P., Kimelberg H. K., Mongin A. A. (2006). Pharmacological comparison of swelling-activated excitatory amino acid release and Cl− currents in cultured rat astrocytes. J. Physiol. 572, 677–689. 10.1113/jphysiol.2005.103820 PubMed DOI PMC

Adams K. L., Gallo V. (2018). The diversity and disparity of the glial scar. Nat. Neurosci. 21, 9–15. 10.1038/s41593-017-0033-9 PubMed DOI PMC

Ahrendsen J. T., Grewal H. S., Hickey S. P., Culp C. M., Gould E. A., Shimizu T., et al. . (2016). Juvenile striatal white matter is resistant to ischemia-induced damage. Glia 64, 1972–1986. 10.1002/glia.23036 PubMed DOI PMC

Aizenman E., Sinor J. D., Brimecombe J. C., Herin G. A. (2000). Alterations of N-methyl-D-aspartate receptor properties after chemical ischemia. J. Pharmacol. Exp. Ther. 295, 572–577. PubMed

Akanuma S., Zakoji N., Kubo Y., Hosoya K. (2015). In vitro study of L-glutamate and l-glutamine transport in retinal pericytes: involvement of excitatory amino acid transporter 1 and alanine-serine-cysteine transporter 2. Biol. Pharm. Bull. 38, 901–908. 10.1248/bpb.b15-00133 PubMed DOI

Alberdi E., Sánchez-Gómez M. V., Marino A., Matute C. (2002). Ca2+ influx through AMPA or kainate receptors alone is sufficient to initiate excitotoxicity in cultured oligodendrocytes. Neurobiol. Dis. 9, 234–243. 10.1006/nbdi.2001.0457 PubMed DOI

Allen N. J., Eroglu C. (2017). Cell biology of astrocyte-synapse interactions. Neuron 96, 697–708. 10.1016/j.neuron.2017.09.056 PubMed DOI PMC

Allen N. J., Káradóttir R., Attwell D. (2004). Reversal or reduction of glutamate and GABA transport in CNS pathology and therapy. Pflugers Arch. 449, 132–142. 10.1007/s00424-004-1318-x PubMed DOI

Amani M., Zolghadrnasab M., Salari A. A. (2019). NMDA receptor in the hippocampus alters neurobehavioral phenotypes through inflammatory cytokines in rats with sporadic Alzheimer-like disease. Physiol. Behav. 202, 52–61. 10.1016/j.physbeh.2019.01.005 PubMed DOI

Amantea D., Greco R., Micieli G., Bagetta G. (2018). Paradigm shift to neuroimmunomodulation for translational neuroprotection in stroke. Front. Neurosci. 12:241. 10.3389/fnins.2018.00241 PubMed DOI PMC

Anderova M., Vorisek I., Pivonkova H., Benesova J., Vargova L., Cicanic M., et al. . (2011). Cell death/proliferation and alterations in glial morphology contribute to changes in diffusivity in the rat hippocampus after hypoxia-ischemia. J. Cereb. Blood Flow Metab. 31, 894–907. 10.1038/jcbfm.2010.168 PubMed DOI PMC

Andrade A. L., Rossi D. J. (2010). Simulated ischaemia induces Ca2+-independent glutamatergic vesicle release through actin filament depolymerization in area CA1 of the hippocampus. J. Physiol. 588, 1499–1514. 10.1113/jphysiol.2010.187609 PubMed DOI PMC

Andreeva K., Zhang M., Fan W., Li X., Chen Y., Rebolledo-Mendez J. D., et al. . (2014). Time-dependent gene profiling indicates the presence of different phases for ischemia/reperfusion injury in retina. Ophthalmol. Eye Dis. 6, 43–54. 10.4137/oed.s17671 PubMed DOI PMC

Angulo M. C., Kozlov A. S., Charpak S., Audinat E. (2004). Glutamate released from glial cells synchronizes neuronal activity in the hippocampus. J. Neurosci. 24, 6920–6927. 10.1523/JNEUROSCI.0473-04.2004 PubMed DOI PMC

Araque A., Carmignoto G., Haydon P. G., Oliet S. H., Robitaille R., Volterra A. (2014). Gliotransmitters travel in time and space. Neuron 81, 728–739. 10.1016/j.neuron.2014.02.007 PubMed DOI PMC

Arbeloa J., Pérez-Samartín A., Gottlieb M., Matute C. (2012). P2X7 receptor blockade prevents ATP excitotoxicity in neurons and reduces brain damage after ischemia. Neurobiol. Dis. 45, 954–961. 10.1016/j.nbd.2011.12.014 PubMed DOI

Arranz A. M., Gottlieb M., Pérez-Cerdá F., Matute C. (2010). Increased expression of glutamate transporters in subcortical white matter after transient focal cerebral ischemia. Neurobiol. Dis. 37, 156–165. 10.1016/j.nbd.2009.09.019 PubMed DOI

Astrup J., Symon L., Branston N. M., Lassen N. A. (1977). Cortical evoked potential and extracellular K+ and H+ at critical levels of brain ischemia. Stroke 8, 51–57. 10.1161/01.str.8.1.51 PubMed DOI

Atoji Y., Sarkar S. (2019). Localization of AMPA, kainate, and NMDA receptor mRNAs in the pigeon cerebellum. J. Chem. Neuroanat. 98, 71–79. 10.1016/j.jchemneu.2019.04.004 PubMed DOI

Back S. A., Han B. H., Luo N. L., Chricton C. A., Xanthoudakis S., Tam J., et al. . (2002). Selective vulnerability of late oligodendrocyte progenitors to hypoxia-ischemia. J. Neurosci. 22, 455–463. 10.1523/JNEUROSCI.22-02-00455.2002 PubMed DOI PMC

Baltan S. (2014). Excitotoxicity and mitochondrial dysfunction underlie age-dependent ischemic white matter injury. Adv. Neurobiol. 11, 151–170. 10.1007/978-3-319-08894-5_8 PubMed DOI PMC

Baltan S. (2016). Age-specific localization of NMDA receptors on oligodendrocytes dictates axon function recovery after ischemia. Neuropharmacology 110, 626–632. 10.1016/j.neuropharm.2015.09.015 PubMed DOI PMC

Baltan S., Besancon E. F., Mbow B., Ye Z., Hamner M. A., Ransom B. R. (2008). White matter vulnerability to ischemic injury increases with age because of enhanced excitotoxicity. J. Neurosci. 28, 1479–1489. 10.1523/JNEUROSCI.5137-07.2008 PubMed DOI PMC

Bano D., Young K. W., Guerin C. J., Lefeuvre R., Rothwell N. J., Naldini L., et al. . (2005). Cleavage of the plasma membrane Na+/Ca2+ exchanger in excitotoxicity. Cell 120, 275–285. 10.1016/j.cell.2004.11.049 PubMed DOI

Baron J. C. (2001). Perfusion thresholds in human cerebral ischemia: historical perspective and therapeutic implications. Cerebrovasc. Dis. 11, 2–8. 10.1159/000049119 PubMed DOI

Barres B. A. (2008). The mystery and magic of glia: a perspective on their roles in health and disease. Neuron 60, 430–440. 10.1016/j.neuron.2008.10.013 PubMed DOI

Belayev L., Zhao W., Busto R., Ginsberg M. D. (1997). Transient middle cerebral artery occlusion by intraluminal suture: I. Three-dimensional autoradiographic image-analysis of local cerebral glucose metabolism-blood flow interrelationships during ischemia and early recirculation. J. Cereb. Blood Flow Metab. 17, 1266–1280. 10.1097/00004647-199712000-00002 PubMed DOI

Bell K. F., Al-Mubarak B., Martel M. A., McKay S., Wheelan N., Hasel P., et al. . (2015). Neuronal development is promoted by weakened intrinsic antioxidant defences due to epigenetic repression of Nrf2. Nat. Commun. 6:7066. 10.1038/ncomms8066 PubMed DOI PMC

Bender A. S., Schousboe A., Reichelt W., Norenberg M. D. (1998). Ionic mechanisms in glutamate-induced astrocyte swelling: role of K+ influx. J. Neurosci. Res. 52, 307–321. 10.1002/(sici)1097-4547(19980501)52:3<307::aid-jnr7>3.0.co;2-h PubMed DOI

Berger U. V., Hediger M. A. (2000). Distribution of the glutamate transporters GLAST and GLT-1 in rat circumventricular organs, meninges, and dorsal root ganglia. J. Comp. Neurol. 421, 385–399. 10.1002/(sici)1096-9861(20000605)421:3<385::aid-cne7>3.0.co;2-s PubMed DOI

Bergersen L. H., Morland C., Ormel L., Rinholm J. E., Larsson M., Wold J. F., et al. . (2012). Immunogold detection of L-glutamate and D-serine in small synaptic-like microvesicles in adult hippocampal astrocytes. Cereb. Cortex 22, 1690–1697. 10.1093/cercor/bhr254 PubMed DOI

Beschorner R., Simon P., Schauer N., Mittelbronn M., Schluesener H. J., Trautmann K., et al. . (2007). Reactive astrocytes and activated microglial cells express EAAT1, but not EAAT2, reflecting a neuroprotective potential following ischaemia. Histopathology 50, 897–910. 10.1111/j.1365-2559.2007.02703.x PubMed DOI

Bezzi P., Domercq M., Vesce S., Volterra A. (2001). Neuron-astrocyte cross-talk during synaptic transmission: physiological and neuropathological implications. Prog. Brain Res. 132, 255–265. 10.1016/s0079-6123(01)32081-2 PubMed DOI

Bezzi P., Gundersen V., Galbete J. L., Seifert G., Steinhauser C., Pilati E., et al. . (2004). Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat. Neurosci. 7, 613–620. 10.1038/nn1246 PubMed DOI

Blackshaw L. A., Page A. J., Young R. L. (2011). Metabotropic glutamate receptors as novel therapeutic targets on visceral sensory pathways. Front. Neurosci. 5:40. 10.3389/fnins.2011.00040 PubMed DOI PMC

Bohmbach K., Schwarz M. K., Schoch S., Henneberger C. (2018). The structural and functional evidence for vesicular release from astrocytes in situ. Brain Res. Bull. 136, 65–75. 10.1016/j.brainresbull.2017.01.015 PubMed DOI

Bowens N. H., Dohare P., Kuo Y. H., Mongin A. A. (2013). DCPIB, the proposed selective blocker of volume-regulated anion channels, inhibits several glutamate transport pathways in glial cells. Mol. Pharmacol. 83, 22–32. 10.1124/mol.112.080457 PubMed DOI PMC

Bramlett H. M., Dietrich W. D. (2004). Pathophysiology of cerebral ischemia and brain trauma: similarities and differences. J. Cereb. Blood Flow Metab. 24, 133–150. 10.1097/01.wcb.0000111614.19196.04 PubMed DOI

Brickley S. G., Misra C., Mok M. H., Mishina M., Cull-Candy S. G. (2003). NR2B and NR2D subunits coassemble in cerebellar Golgi cells to form a distinct NMDA receptor subtype restricted to extrasynaptic sites. J. Neurosci. 23, 4958–4966. 10.1523/JNEUROSCI.23-12-04958.2003 PubMed DOI PMC

Bridges R., Lutgen V., Lobner D., Baker D. A. (2012). Thinking outside the cleft to understand synaptic activity: contribution of the cystine-glutamate antiporter (System xc−) to normal and pathological glutamatergic signaling. Pharmacol. Rev. 64, 780–802. 10.1124/pr.110.003889 PubMed DOI PMC

Broughton B. R., Reutens D. C., Sobey C. G. (2009). Apoptotic mechanisms after cerebral ischemia. Stroke 40, e331–e339. 10.1161/strokeaha.108.531632 PubMed DOI

Burns K. A., Murphy B., Danzer S. C., Kuan C. Y. (2009). Developmental and post-injury cortical gliogenesis: a genetic fate-mapping study with Nestin-CreER mice. Glia 57, 1115–1129. 10.1002/glia.20835 PubMed DOI PMC

Burnstock G. (2017). Purinergic signalling and neurological diseases: an update. CNS Neurol. Disord. Drug Targets 16, 257–265. 10.2174/1871527315666160922104848 PubMed DOI

Burzomato V., Frugier G., Pérez-Otaño I., Kittler J. T., Attwell D. (2010). The receptor subunits generating NMDA receptor mediated currents in oligodendrocytes. J. Physiol. 588, 3403–3414. 10.1113/jphysiol.2010.195503 PubMed DOI PMC

Buser J. R., Segovia K. N., Dean J. M., Nelson K., Beardsley D., Gong X., et al. . (2010). Timing of appearance of late oligodendrocyte progenitors coincides with enhanced susceptibility of preterm rabbit cerebral white matter to hypoxia-ischemia. J. Cereb. Blood Flow Metab. 30, 1053–1065. 10.1038/jcbfm.2009.286 PubMed DOI PMC

Butenko O., Dzamba D., Benesova J., Honsa P., Benfenati V., Rusnakova V., et al. . (2012). The increased activity of TRPV4 channel in the astrocytes of the adult rat hippocampus after cerebral hypoxia/ischemia. PLoS One 7:e39959. 10.1371/journal.pone.0039959 PubMed DOI PMC

Bylicky M. A., Mueller G. P., Day R. M. (2018). Mechanisms of endogenous neuroprotective effects of astrocytes in brain injury. Oxid. Med. Cell. Longev. 2018:6501031. 10.1155/2018/6501031 PubMed DOI PMC

Cai Q., Ma T., Li C., Tian Y., Li H. (2016). Catalpol protects pre-myelinating oligodendrocytes against ischemia-induced oxidative injury through ERK1/2 signaling pathway. Int. J. Biol. Sci. 12, 1415–1426. 10.7150/ijbs.16823 PubMed DOI PMC

Ceprian M., Fulton D. (2019). Glial cell AMPA receptors in nervous system health, injury and disease. Int. J. Mol. Sci. 20:E2450. 10.3390/ijms20102450 PubMed DOI PMC

Chan P. H. (2001). Reactive oxygen radicals in signaling and damage in the ischemic brain. J. Cereb. Blood Flow Metab. 21, 2–14. 10.1097/00004647-200101000-00002 PubMed DOI

Chan P. H., Chu L. (1990). Mechanisms underlying glutamate-induced swelling of astrocytes in primary culture. Acta Neurochir. Suppl. 51, 7–10. 10.1007/978-3-7091-9115-6_3 PubMed DOI

Chan P. H., Chu L., Chen S. (1990). Effects of MK-801 on glutamate-induced swelling of astrocytes in primary cell culture. J. Neurosci. Res. 25, 87–93. 10.1002/jnr.490250111 PubMed DOI

Chaudhry F. A., Lehre K. P., van Lookeren Campagne M., Ottersen O. P., Danbolt N. C., Storm-Mathisen J. (1995). Glutamate transporters in glial plasma membranes: highly differentiated localizations revealed by quantitative ultrastructural immunocytochemistry. Neuron 15, 711–720. 10.1016/0896-6273(95)90158-2 PubMed DOI

Chen M., Dong Y., Simard J. M. (2003). Functional coupling between sulfonylurea receptor type 1 and a nonselective cation channel in reactive astrocytes from adult rat brain. J. Neurosci. 23, 8568–8577. 10.1523/JNEUROSCI.23-24-08568.2003 PubMed DOI PMC

Chen J. C., Hsu-Chou H., Lu J. L., Chiang Y. C., Huang H. M., Wang H. L., et al. . (2005). Down-regulation of the glial glutamate transporter GLT-1 in rat hippocampus and striatum and its modulation by a group III metabotropic glutamate receptor antagonist following transient global forebrain ischemia. Neuropharmacology 49, 703–714. 10.1016/j.neuropharm.2005.05.002 PubMed DOI

Chen X., Lu M., He X., Ma L., Birnbaumer L., Liao Y. (2017). TRPC3/6/7 knockdown protects the brain from cerebral ischemia injury via astrocyte apoptosis inhibition and effects on NF-κB translocation. Mol. Neurobiol. 54, 7555–7566. 10.1007/s12035-016-0227-2 PubMed DOI

Chen M., Simard J. M. (2001). Cell swelling and a nonselective cation channel regulated by internal Ca2+ and ATP in native reactive astrocytes from adult rat brain. J. Neurosci. 21, 6512–6521. 10.1523/JNEUROSCI.21-17-06512.2001 PubMed DOI PMC

Chen H., Tian M., Jin L., Jia H., Jin Y. (2015). PUMA is invovled in ischemia/reperfusion-induced apoptosis of mouse cerebral astrocytes. Neuroscience 284, 824–832. 10.1016/j.neuroscience.2014.10.059 PubMed DOI

Chisholm N. C., Sohrabji F. (2016). Astrocytic response to cerebral ischemia is influenced by sex differences and impaired by aging. Neurobiol. Dis. 85, 245–253. 10.1016/j.nbd.2015.03.028 PubMed DOI PMC

Colangelo V., Gordon W. C., Mukherjee P. K., Trivedi P., Ottino P. (2004). Downregulation of COX-2 and JNK expression after induction of ischemic tolerance in the gerbil brain. Brain Res. 1016, 195–200. 10.1016/j.brainres.2004.05.017 PubMed DOI

Connor J. R., Menzies S. L. (1996). Relationship of iron to oligodendrocytes and myelination. Glia 17, 83–93. 10.1002/(SICI)1098-1136(199606)17:2<83::AID-GLIA1>3.0.CO;2-7 PubMed DOI

Crespo A. R., Da Rocha A. B., Jotz G. P., Schneider R. F., Grivicich I., Pinheiro K., et al. . (2007). Increased serum sFas and TNFα following isolated severe head injury in males. Brain Inj. 21, 441–447. 10.1080/02699050701311125 PubMed DOI

Cuartero M. I., de la Parra J., Garcia-Culebras A., Ballesteros I., Lizasoain I., Moro M. A. (2016). The kynurenine pathway in the acute and chronic phases of cerebral ischemia. Curr. Pharm. Des. 22, 1060–1073. 10.2174/1381612822666151214125950 PubMed DOI PMC

Dai X., Chen J., Xu F., Zhao J., Cai W., Sun Z., et al. . (2020). TGFα preserves oligodendrocyte lineage cells and improves white matter integrity after cerebral ischemia. J. Cereb. Blood Flow Metab. 40, 639–655. 10.1177/0271678X19830791 PubMed DOI PMC

Dale N., Frenguelli B. G. (2009). Release of adenosine and ATP during ischemia and epilepsy. Curr. Neuropharmacol. 7, 160–179. 10.2174/157015909789152146 PubMed DOI PMC

D’Antoni S., Berretta A., Bonaccorso C. M., Bruno V., Aronica E., Nicoletti F., et al. . (2008). Metabotropic glutamate receptors in glial cells. Neurochem. Res. 33, 2436–2443. 10.1007/s11064-008-9694-9 PubMed DOI

Danysz W., Parsons C. G. (2003). The NMDA receptor antagonist memantine as a symptomatological and neuroprotective treatment for Alzheimer’s disease: preclinical evidence. Int. J. Geriatr. Psychiatry 18, S23–S32. 10.1002/gps.938 PubMed DOI

Davalos D., Grutzendler J., Yang G., Kim J. V., Zuo Y., Jung S., et al. . (2005). ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci. 8, 752–758. 10.1038/nn1472 PubMed DOI

Dave K. R., Lange-Asschenfeldt C., Raval A. P., Prado R., Busto R., Saul I., et al. . (2005). Ischemic preconditioning ameliorates excitotoxicity by shifting glutamate/γ-aminobutyric acid release and biosynthesis. J. Neurosci. Res. 82, 665–673. 10.1002/jnr.20674 PubMed DOI

Davidson J. O., Green C. R., Bennet L., Nicholson L. F., Danesh-Meyer H., O’Carroll S. J., et al. . (2013). A key role for connexin hemichannels in spreading ischemic brain injury. Curr. Drug Targets 14, 36–46. 10.2174/138945013804806479 PubMed DOI

Davis C. H., Kim K. Y., Bushong E. A., Mills E. A., Boassa D., Shih T., et al. . (2014). Transcellular degradation of axonal mitochondria. Proc. Natl. Acad. Sci. U S A 111, 9633–9638. 10.1073/pnas.1404651111 PubMed DOI PMC

Dehnes Y., Chaudhry F. A., Ullensvang K., Lehre K. P., Storm-Mathisen J., Danbolt N. C. (1998). The glutamate transporter EAAT4 in rat cerebellar Purkinje cells: a glutamate-gated chloride channel concentrated near the synapse in parts of the dendritic membrane facing astroglia. J. Neurosci. 18, 3606–3619. 10.1523/JNEUROSCI.18-10-03606.1998 PubMed DOI PMC

Deng W., Neve R. L., Rosenberg P. A., Volpe J. J., Jensen F. E. (2006). α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor subunit composition and cAMP-response element-binding protein regulate oligodendrocyte excitotoxicity. J. Biol. Chem. 281, 36004–36011. 10.1074/jbc.M606459200 PubMed DOI

Deng W., Poretz R. D. (2003). Oligodendroglia in developmental neurotoxicity. Neurotoxicology 24, 161–178. 10.1016/s0161-813x(02)00196-1 PubMed DOI

Deng W., Wang H., Rosenberg P. A., Volpe J. J., Jensen F. E. (2004). Role of metabotropic glutamate receptors in oligodendrocyte excitotoxicity and oxidative stress. Proc. Natl. Acad. Sci. U S A 101, 7751–7756. 10.1073/pnas.0307850101 PubMed DOI PMC

Deng Y., Xie D., Fang M., Zhu G., Chen C., Zeng H., et al. . (2014). Astrocyte-derived proinflammatory cytokines induce hypomyelination in the periventricular white matter in the hypoxic neonatal brain. PLoS One 9:e87420. 10.1371/journal.pone.0087420 PubMed DOI PMC

Desilva T. M., Kinney H. C., Borenstein N. S., Trachtenberg F. L., Irwin N., Volpe J. J., et al. . (2007). The glutamate transporter EAAT2 is transiently expressed in developing human cerebral white matter. J. Comp. Neurol. 501, 879–890. 10.1002/cne.21289 PubMed DOI PMC

Dhodda V. K., Sailor K. A., Bowen K. K., Vemuganti R. (2004). Putative endogenous mediators of preconditioning-induced ischemic tolerance in rat brain identified by genomic and proteomic analysis. J. Neurochem. 89, 73–89. 10.1111/j.1471-4159.2004.02316.x PubMed DOI

Diaz-Ruiz A., Montes S., Salgado-Ceballos H., Maldonado V., Rivera-Espinosa L., Ríos C. (2016). Enzyme activities involved in the glutamate-glutamine cycle are altered to reduce glutamate after spinal cord injury in rats. Neuroreport 27, 1317–1322. 10.1097/wnr.0000000000000700 PubMed DOI

Domercq M., Perez-Samartin A., Aparicio D., Alberdi E., Pampliega O., Matute C. (2010). P2X7 receptors mediate ischemic damage to oligodendrocytes. Glia 58, 730–740. 10.1002/glia.20958 PubMed DOI

Domercq M., Sánchez-Gómez M. V., Areso P., Matute C. (1999). Expression of glutamate transporters in rat optic nerve oligodendrocytes. Eur. J. Neurosci. 11, 2226–2236. 10.1046/j.1460-9568.1999.00639.x PubMed DOI

Domercq M., Sánchez-Gómez M. V., Sherwin C., Etxebarria E., Fern R., Matute C. (2007). System xc- and glutamate transporter inhibition mediates microglial toxicity to oligodendrocytes. J. Immunol. 178, 6549–6556. 10.4049/jimmunol.178.10.6549 PubMed DOI

Doyle S., Hansen D. B., Vella J., Bond P., Harper G., Zammit C., et al. . (2018). Vesicular glutamate release from central axons contributes to myelin damage. Nat. Commun. 9:1032. 10.1038/s41467-018-03427-1 PubMed DOI PMC

Doyle K. P., Simon R. P., Stenzel-Poore M. P. (2008). Mechanisms of ischemic brain damage. Neuropharmacology 55, 310–318. 10.1016/j.neuropharm.2008.01.005 PubMed DOI PMC

Drejer J., Larsson O. M., Schousboe A. (1982). Characterization of L-glutamate uptake into and release from astrocytes and neurons cultured from different brain regions. Exp. Brain Res. 47, 259–269. 10.1007/bf00239385 PubMed DOI

Du C., Hu R., Csernansky C. A., Hsu C. Y., Choi D. W. (1996). Very delayed infarction after mild focal cerebral ischemia: a role for apoptosis? J. Cereb. Blood Flow Metab. 16, 195–201. 10.1097/00004647-199603000-00003 PubMed DOI

Du Y., Wang W., Lutton A. D., Kiyoshi C. M., Ma B., Taylor A. T., et al. . (2018). Dissipation of transmembrane potassium gradient is the main cause of cerebral ischemia-induced depolarization in astrocytes and neurons. Exp. Neurol. 303, 1–11. 10.1016/j.expneurol.2018.01.019 PubMed DOI PMC

Duan S., Anderson C. M., Keung E. C., Chen Y., Swanson R. A. (2003). P2X7 receptor-mediated release of excitatory amino acids from astrocytes. J. Neurosci. 23, 1320–1328. 10.1523/JNEUROSCI.23-04-01320.2003 PubMed DOI PMC

Durán-Laforet V., Fernández-López D., García-Culebras A., González-Hijón J., Moraga A., Palma-Tortosa S., et al. . (2019). Delayed effects of acute reperfusion on vascular remodeling and late-phase functional recovery after stroke. Front. Neurosci. 13:767. 10.3389/fnins.2019.00767 PubMed DOI PMC

Dzamba D., Honsa P., Anderova M. (2013). NMDA receptors in glial cells: pending questions. Curr. Neuropharmacol. 11, 250–262. 10.2174/1570159x11311030002 PubMed DOI PMC

Eliasof S., Arriza J. L., Leighton B. H., Kavanaugh M. P., Amara S. G. (1998). Excitatory amino acid transporters of the salamander retina: identification, localization and function. J. Neurosci. 18, 698–712. 10.1523/JNEUROSCI.18-02-00698.1998 PubMed DOI PMC

Erecińska M., Silver I. A. (2001). Tissue oxygen tension and brain sensitivity to hypoxia. Respir. Physiol. 128, 263–276. 10.1016/s0034-5687(01)00306-1 PubMed DOI

Eyo U. B., Miner S. A., Ahlers K. E., Wu L. J., Dailey M. E. (2013). P2X7 receptor activation regulates microglial cell death during oxygen-glucose deprivation. Neuropharmacology 73, 311–319. 10.1016/j.neuropharm.2013.05.032 PubMed DOI PMC

Fairman W. A., Vandenberg R. J., Arriza J. L., Kavanaugh M. P., Amara S. G. (1995). An excitatory amino-acid transporter with properties of a ligand-gated chloride channel. Nature 375, 599–603. 10.1038/375599a0 PubMed DOI

Falahati S., Breu M., Waickman A. T., Phillips A. W., Arauz E. J., Snyder S., et al. . (2013). Ischemia-induced neuroinflammation is associated with disrupted development of oligodendrocyte progenitors in a model of periventricular leukomalacia. Dev. Neurosci. 35, 182–196. 10.1159/000346682 PubMed DOI PMC

Feng X., Yang F., Rabenstein M., Wang Z., Frech M. J., Wree A., et al. . (2019). Stimulation of mGluR1/5 improves defective internalization of AMPA receptors in NPC1 mutant mouse. Cereb. Cortex [Epub ahead of print]. 10.1093/cercor/bhz179 PubMed DOI

Fern R., Matute C. (2019). Glutamate receptors and white matter stroke. Neurosci. Lett. 694, 86–92. 10.1016/j.neulet.2018.11.031 PubMed DOI

Fern R., Moller T. (2000). Rapid ischemic cell death in immature oligodendrocytes: a fatal glutamate release feedback loop. J. Neurosci. 20, 34–42. 10.1523/JNEUROSCI.20-01-00034.2000 PubMed DOI PMC

Feustel P. J., Jin Y., Kimelberg H. K. (2004). Volume-regulated anion channels are the predominant contributors to release of excitatory amino acids in the ischemic cortical penumbra. Stroke 35, 1164–1168. 10.1161/01.str.0000124127.57946.a1 PubMed DOI

Fiacco T. A., McCarthy K. D. (2018). Multiple lines of evidence indicate that gliotransmission does not occur under physiological conditions. J. Neurosci. 38, 3–13. 10.1523/JNEUROSCI.0016-17.2017 PubMed DOI PMC

French H. M., Reid M., Mamontov P., Simmons R. A., Grinspan J. B. (2009). Oxidative stress disrupts oligodendrocyte maturation. J. Neurosci. Res. 87, 3076–3087. 10.1002/jnr.22139 PubMed DOI PMC

Fricker M., Tolkovsky A. M., Borutaite V., Coleman M., Brown G. C. (2018). Neuronal cell death. Physiol. Rev. 98, 813–880. 10.1152/physrev.00011.2017 PubMed DOI PMC

Fujimoto S., Katsuki H., Kume T., Kaneko S., Akaike A. (2004). Mechanisms of oxygen glucose deprivation-induced glutamate release from cerebrocortical slice cultures. Neurosci. Res. 50, 179–187. 10.1016/j.neures.2004.06.013 PubMed DOI

Fukamachi S., Furuta A., Ikeda T., Ikenoue T., Kaneoka T., Rothstein J. D., et al. . (2001). Altered expressions of glutamate transporter subtypes in rat model of neonatal cerebral hypoxia-ischemia. Dev. Brain Res. 132, 131–139. 10.1016/s0165-3806(01)00303-0 PubMed DOI

Furness D. N., Dehnes Y., Akhtar A. Q., Rossi D. J., Hamann M., Grutle N. J., et al. . (2008). A quantitative assessment of glutamate uptake into hippocampal synaptic terminals and astrocytes: new insights into a neuronal role for excitatory amino acid transporter 2 (EAAT2). Neuroscience 157, 80–94. 10.1016/j.neuroscience.2008.08.043 PubMed DOI PMC

Furuta A., Rothstein J. D., Martin L. J. (1997). Glutamate transporter protein subtypes are expressed differentially during rat CNS development. J. Neurosci. 17, 8363–8375. 10.1523/JNEUROSCI.17-21-08363.1997 PubMed DOI PMC

Gagliardi R. J. (2000). Neuroprotection, excitotoxicity and NMDA antagonists. Arq. Neuropsiquiatr. 58, 583–588. 10.1590/s0004-282x2000000300030 PubMed DOI

Ganel R., Ho T., Maragakis N. J., Jackson M., Steiner J. P., Rothstein J. D. (2006). Selective up-regulation of the glial Na+-dependent glutamate transporter GLT1 by a neuroimmunophilin ligand results in neuroprotection. Neurobiol. Dis. 21, 556–567. 10.1016/j.nbd.2005.08.014 PubMed DOI

Giaume C., Leybaert L., Naus C. C., Sáez J. C. (2013). Connexin and pannexin hemichannels in brain glial cells: properties, pharmacology, and roles. Front. Pharmacol. 4:88. 10.3389/fphar.2013.00088 PubMed DOI PMC

Gidday J. M., Shah A. R., Maceren R. G., Wang Q., Pelligrino D. A., Holtzman D. M., et al. . (1999). Nitric oxide mediates cerebral ischemic tolerance in a neonatal rat model of hypoxic preconditioning. J. Cereb. Blood Flow Metab. 19, 331–340. 10.1097/00004647-199903000-00011 PubMed DOI

Ginsberg M. D. (2003). Adventures in the pathophysiology of brain ischemia: penumbra, gene expression, neuroprotection: the 2002 Thomas Willis Lecture. Stroke 34, 214–223. 10.1161/01.str.0000048846.09677.62 PubMed DOI

Girling K. D., Demers M. J., Laine J., Zhang S., Wang Y. T., Graham R. K. (2018). Activation of caspase-6 and cleavage of caspase-6 substrates is an early event in NMDA receptor-mediated excitotoxicity. J. Neurosci. Res. 96, 391–406. 10.1002/jnr.24153 PubMed DOI

Gong S. J., Chen L. Y., Zhang M., Gong J. X., Ma Y. X., Zhang J. M., et al. . (2012). Intermittent hypobaric hypoxia preconditioning induced brain ischemic tolerance by up-regulating glial glutamate transporter-1 in rats. Neurochem. Res. 37, 527–537. 10.1007/s11064-011-0639-3 PubMed DOI

Gottlieb M., Matute C. (1997). Expression of ionotropic glutamate receptor subunits in glial cells of the hippocampal CA1 area following transient forebrain ischemia. J. Cereb. Blood Flow Metab. 17, 290–300. 10.1097/00004647-199703000-00006 PubMed DOI

Grygorowicz T., Struzyńska L., Sulkowski G., Chalimoniuk M., Sulejczak D. (2010). Temporal expression of P2X7 purinergic receptor during the course of experimental autoimmune encephalomyelitis. Neurochem. Int. 57, 823–829. 10.1016/j.neuint.2010.08.021 PubMed DOI

Gülke E., Gelderblom M., Magnus T. (2018). Danger signals in stroke and their role on microglia activation after ischemia. Ther. Adv. Neurol. Disord. 11:1756286418774254. 10.1177/1756286418774254 PubMed DOI PMC

Gundersen V., Storm-Mathisen J., Bergersen L. H. (2015). Neuroglial transmission. Physiol. Rev. 95, 695–726. 10.1152/physrev.00024.2014 PubMed DOI

Guo C. Y., Xiong T. Q., Tan B. H., Gui Y., Ye N., Li S. L., et al. . (2019). The temporal and spatial changes of actin cytoskeleton in the hippocampal CA1 neurons following transient global ischemia. Brain Res. 1720:146297. 10.1016/j.brainres.2019.06.016 PubMed DOI

Gupta S. (2003). Molecular signaling in death receptor and mitochondrial pathways of apoptosis (Review). Int. J. Oncol. 22, 15–20. 10.3892/ijo.22.1.15 PubMed DOI

Gupta K., Hardingham G. E., Chandran S. (2013). NMDA receptor-dependent glutamate excitotoxicity in human embryonic stem cell-derived neurons. Neurosci. Lett. 543, 95–100. 10.1016/j.neulet.2013.03.010 PubMed DOI PMC

Hamilton N. B., Attwell D. (2010). Do astrocytes really exocytose neurotransmitters? Nat. Rev. Neurosci. 11, 227–238. 10.1038/nrn2803 PubMed DOI

Hamilton N., Vayro S., Kirchhoff F., Verkhratsky A., Robbins J., Gorecki D. C., et al. . (2008). Mechanisms of ATP- and glutamate-mediated calcium signaling in white matter astrocytes. Glia 56, 734–749. 10.1002/glia.20649 PubMed DOI

Hansen A. J., Nedergaard M. (1988). Brain ion homeostasis in cerebral ischemia. Neurochem. Pathol. 9, 195–209. 10.1007/bf03160362 PubMed DOI

Hansen D. B., Ye Z. C., Calloe K., Braunstein T. H., Hofgaard J. P., Ransom B. R., et al. . (2014). Activation, permeability, and inhibition of astrocytic and neuronal large pore (hemi)channels. J. Biol. Chem. 289, 26058–26073. 10.1074/jbc.M114.582155 PubMed DOI PMC

Hansson E. (1994). Metabotropic glutamate receptor activation induces astroglial swelling. J. Biol. Chem. 269, 21955–21961. PubMed

Harrigan T. J., Abdullaev I. F., Jourd’heuil D., Mongin A. A. (2008). Activation of microglia with zymosan promotes excitatory amino acid release via volume-regulated anion channels: the role of NADPH oxidases. J. Neurochem. 106, 2449–2462. 10.1111/j.1471-4159.2008.05553.x PubMed DOI PMC

Hartings J. A., Shuttleworth C. W., Kirov S. A., Ayata C., Hinzman J. M., Foreman B., et al. . (2017). The continuum of spreading depolarizations in acute cortical lesion development: examining Leao’s legacy. J. Cereb. Blood Flow Metab. 37, 1571–1594. 10.1177/0271678X16654495 PubMed DOI PMC

Harukuni I., Bhardwaj A. (2006). Mechanisms of brain injury after global cerebral ischemia. Neurol. Clin. 24, 1–21. 10.1016/j.ncl.2005.10.004 PubMed DOI

Harvey B. K., Airavaara M., Hinzman J., Wires E. M., Chiocco M. J., Howard D. B., et al. . (2011). Targeted over-expression of glutamate transporter 1 (GLT-1) reduces ischemic brain injury in a rat model of stroke. PLoS One 6:e22135. 10.1371/journal.pone.0022135 PubMed DOI PMC

Hawkins R. A., Viña J. R. (2016). How glutamate is managed by the blood-brain barrier. Biology 5:E37. 10.3390/biology5040037 PubMed DOI PMC

Hayakawa K., Esposito E., Wang X., Terasaki Y., Liu Y., Xing C., et al. . (2016). Transfer of mitochondria from astrocytes to neurons after stroke. Nature 535, 551–555. 10.1038/nature18928 PubMed DOI PMC

Haynes R. L., Folkerth R. D., Keefe R. J., Sung I., Swzeda L. I., Rosenberg P. A., et al. . (2003). Nitrosative and oxidative injury to premyelinating oligodendrocytes in periventricular leukomalacia. J. Neuropathol. Exp. Neurol. 62, 441–450. 10.1093/jnen/62.5.441 PubMed DOI

Heiss W. D., Sobesky J., Hesselmann V. (2004). Identifying thresholds for penumbra and irreversible tissue damage. Stroke 35, 2671–2674. 10.1161/01.str.0000143329.81997.8a PubMed DOI

Heurteaux C., Guy N., Laigle C., Blondeau N., Duprat F., Mazzuca M., et al. . (2004). TREK-1, a K+ channel involved in neuroprotection and general anesthesia. EMBO J. 23, 2684–2695. 10.1038/sj.emboj.7600234 PubMed DOI PMC

Hinzman J. M., DiNapoli V. A., Mahoney E. J., Gerhardt G. A., Hartings J. A. (2015). Spreading depolarizations mediate excitotoxicity in the development of acute cortical lesions. Exp. Neurol. 267, 243–253. 10.1016/j.expneurol.2015.03.014 PubMed DOI

Honsa P., Pivonkova H., Dzamba D., Filipova M., Anderova M. (2012). Polydendrocytes display large lineage plasticity following focal cerebral ischemia. PLoS One 7:e36816. 10.1371/journal.pone.0036816 PubMed DOI PMC

Hossmann K. A. (1996). Periinfarct depolarizations. Cerebrovasc. Brain Metab. Rev. 8, 195–208. PubMed

Hu X., Yang J., Sun Y., Gao X., Zhang L., Li Y., et al. . (2018). Lanthanum chloride impairs memory in rats by disturbing the glutamate-glutamine cycle and over-activating NMDA receptors. Food Chem. Toxicol. 113, 1–13. 10.1016/j.fct.2018.01.023 PubMed DOI

Husain J., Juurlink B. H. J. (1995). Oligodendroglial precursor cell susceptibility to hypoxia is related to poor ability to cope with reactive oxygen species. Brain Res. 698, 86–94. 10.1016/0006-8993(95)00832-b PubMed DOI

Iadecola C., Sugimoto K., Niwa K., Kazama K., Ross M. E. (2001). Increased susceptibility to ischemic brain injury in cyclooxygenase-1-deficient mice. J. Cereb. Blood Flow Metab. 21, 1436–1441. 10.1097/00004647-200112000-00008 PubMed DOI

Illarionova N. B., Gunnarson E., Li Y., Brismar H., Bondar A., Zelenin S., et al. . (2010). Functional and molecular interactions between aquaporins and Na,K-ATPase. Neuroscience 168, 915–925. 10.1016/j.neuroscience.2009.11.062 PubMed DOI

Imura Y., Morizawa Y., Komatsu R., Shibata K., Shinozaki Y., Kasai H., et al. . (2013). Microglia release ATP by exocytosis. Glia 61, 1320–1330. 10.1002/glia.22517 PubMed DOI

Inoue H., Okada Y. (2007). Roles of volume-sensitive chloride channel in excitotoxic neuronal injury. J. Neurosci. 27, 1445–1455. 10.1523/jneurosci.4694-06.2007 PubMed DOI PMC

Itoh T., Beesley J., Itoh A., Cohen A. S., Kavanaugh B., Coulter D. A., et al. . (2002). AMPA glutamate receptor-mediated calcium signaling is transiently enhanced during development of oligodendrocytes. J. Neurochem. 81, 390–402. 10.1046/j.1471-4159.2002.00866.x PubMed DOI

Jabaudon D., Scanziani M., Gahwiler B. H., Gerber U. (2000). Acute decrease in net glutamate uptake during energy deprivation. Proc. Natl. Acad. Sci. U S A 97, 5610–5615. 10.1073/pnas.97.10.5610 PubMed DOI PMC

Jayakumar A. R., Taherian M., Panickar K. S., Shamaladevi N., Rodriguez M. E., Price B. G., et al. . (2018). Differential response of neural cells to trauma-induced swelling in vitro. Neurochem. Res. 43, 397–406. 10.1007/s11064-017-2434-2 PubMed DOI

Jha R. M., Kochanek P. M., Simard J. M. (2019). Pathophysiology and treatment of cerebral edema in traumatic brain injury. Neuropharmacology 145, 230–246. 10.1016/j.neuropharm.2018.08.004 PubMed DOI PMC

Jung S., Wiest R., Gralla J., McKinley R., Mattle H., Liebeskind D. (2017). Relevance of the cerebral collateral circulation in ischaemic stroke: time is brain, but collaterals set the pace. Swiss Med. Wkly. 147:w14538. 10.4414/smw.2017.14538 PubMed DOI

Juurlink B. H., Thorburne S. K., Hertz L. (1998). Peroxide-scavenging deficit underlies oligodendrocyte susceptibility to oxidative stress. Glia 22, 371–378. 10.1002/(sici)1098-1136(199804)22:4<371::aid-glia6>3.0.co;2-6 PubMed DOI

Kahles T., Luedike P., Endres M., Galla H. J., Steinmetz H., Busse R., et al. . (2007). NADPH oxidase plays a central role in blood-brain barrier damage in experimental stroke. Stroke 38, 3000–3006. 10.1161/strokeaha.107.489765 PubMed DOI

Kalogeris T., Bao Y., Korthuis R. J. (2014). Mitochondrial reactive oxygen species: a double edged sword in ischemia/reperfusion vs. preconditioning. Redox Biol. 2, 702–714. 10.1016/j.redox.2014.05.006 PubMed DOI PMC

Kanai Y., Hediger M. A. (2004). The glutamate/neutral amino acid transporter family SLC1: molecular, physiological and pharmacological aspects. Pflugers Arch. 447, 469–479. 10.1007/s00424-003-1146-4 PubMed DOI

Kang J., Kang N., Lovatt D., Torres A., Zhao Z., Lin J., et al. . (2008). Connexin 43 hemichannels are permeable to ATP. J. Neurosci. 28, 4702–4711. 10.1523/jneurosci.5048-07.2008 PubMed DOI PMC

Káradóttir R., Attwell D. (2007). Neurotransmitter receptors in the life and death of oligodendrocytes. Neuroscience 145, 1426–1438. 10.1016/j.neuroscience.2006.08.070 PubMed DOI PMC

Káradóttir R., Cavelier P., Bergersen L. H., Attwell D. (2005). NMDA receptors are expressed in oligodendrocytes and activated in ischaemia. Nature 438, 1162–1166. 10.1038/nature04302 PubMed DOI PMC

Karikó K., Weissman D., Welsh F. A. (2004). Inhibition of toll-like receptor and cytokine signaling—a unifying theme in ischemic tolerance. J. Cereb. Blood Flow Metab. 24, 1288–1304. 10.1097/01.wcb.0000145666.68576.71 PubMed DOI

Katayama Y., Kawamata T., Tamura T., Hovda D. A., Becker D. P., Tsubokawa T. (1991). Calcium-dependent glutamate release concomitant with massive potassium flux during cerebral ischemia in vivo. Brain Res. 558, 136–140. 10.1016/0006-8993(91)90730-j PubMed DOI

Kauppinen T. M., Swanson R. A. (2007). The role of poly(ADP-ribose) polymerase-1 in CNS disease. Neuroscience 145, 1267–1272. 10.1016/j.neuroscience.2006.09.034 PubMed DOI

Kawahara K., Kosugi T., Tanaka M., Nakajima T., Yamada T. (2005). Reversed operation of glutamate transporter GLT-1 is crucial to the development of preconditioning-induced ischemic tolerance of neurons in neuron/astrocyte co-cultures. Glia 49, 349–359. 10.1002/glia.20114 PubMed DOI

Ketheeswaranathan P., Turner N. A., Spary E. J., Batten T. F., McColl B. W., Saha S. (2011). Changes in glutamate transporter expression in mouse forebrain areas following focal ischemia. Brain Res. 1418, 93–103. 10.1016/j.brainres.2011.08.029 PubMed DOI

Kim H. J., Chuang D. M. (2014). HDAC inhibitors mitigate ischemia-induced oligodendrocyte damage: potential roles of oligodendrogenesis, VEGF, and anti-inflammation. Am. J. Transl. Res. 6, 206–223. PubMed PMC

Kim Y., Davidson J. O., Green C. R., Nicholson L. F. B., O’Carroll S. J., Zhang J. (2018). Connexins and pannexins in cerebral ischemia. Biochim. Biophys. Acta Biomembr. 1860, 224–236. 10.1016/j.bbamem.2017.03.018 PubMed DOI

Kim T. K., Park D., Ban Y. H., Cha Y., An E. S., Choi J., et al. . (2018). Improvement by human oligodendrocyte progenitor cells of neurobehavioral disorders in an experimental model of neonatal periventricular leukomalacia. Cell Transplant 27, 1168–1177. 10.1177/0963689718781330 PubMed DOI PMC

Kimelberg H. K. (2005). Astrocytic swelling in cerebral ischemia as a possible cause of injury and target for therapy. Glia 50, 389–397. 10.1002/glia.20174 PubMed DOI

Kimelberg H. K., Goderie S. K., Higman S., Pang S., Waniewski R. A. (1990). Swelling-induced release of glutamate, aspartate, and taurine from astrocyte cultures. J. Neurosci. 10, 1583–1591. 10.1523/jneurosci.10-05-01583.1990 PubMed DOI PMC

Kirino T., Sano K. (1984). Selective vulnerability in the gerbil hippocampus following transient ischemia. Acta Neuropathol. 62, 201–208. 10.1007/bf00691853 PubMed DOI

Kitagawa K., Matsumoto M., Kuwabara K., Tagaya M., Ohtsuki T., Hata R., et al. . (1991). ‘Ischemic tolerance’ phenomenon detected in various brain regions. Brain Res. 561, 203–211. 10.1016/0006-8993(91)91596-s PubMed DOI

Kitagawa K., Matsumoto M., Tagaya M., Hata R., Ueda H., Niinobe M., et al. . (1990). ‘Ischemic tolerance’ phenomenon found in the brain. Brain Res. 528, 21–24. 10.1016/0006-8993(90)90189-i PubMed DOI

Krebs C., Fernandes H. B., Sheldon C., Raymond L. A., Baimbridge K. G. (2003). Functional NMDA receptor subtype 2B is expressed in astrocytes after ischemia in vivo and anoxia in vitro. J. Neurosci. 23, 3364–3372. 10.1523/jneurosci.23-08-03364.2003 PubMed DOI PMC

Krzyżanowska W., Pomierny B., Filip M., Pera J. (2014). Glutamate transporters in brain ischemia: to modulate or not? Acta Pharmacol. Sin. 35, 444–462. 10.1038/aps.2014.1 PubMed DOI PMC

Kudin A. P., Augustynek B., Lehmann A. K., Kovacs R., Kunz W. S. (2012). The contribution of thioredoxin-2 reductase and glutathione peroxidase to H2O2 detoxification of rat brain mitochondria. Biochim. Biophys. Acta 1817, 1901–1906. 10.1016/j.bbabio.2012.02.023 PubMed DOI

Kugler P., Schleyer V. (2004). Developmental expression of glutamate transporters and glutamate dehydrogenase in astrocytes of the postnatal rat hippocampus. Hippocampus 14, 975–985. 10.1002/hipo.20015 PubMed DOI

Kumagai A., Sasaki T., Matsuoka K., Abe M., Tabata T., Itoh Y., et al. . (2019). Monitoring of glutamate-induced excitotoxicity by mitochondrial oxygen consumption. Synapse 73:e22067. 10.1002/syn.22067 PubMed DOI

Lai T. W., Zhang S., Wang Y. T. (2014). Excitotoxicity and stroke: identifying novel targets for neuroprotection. Prog. Neurobiol. 115, 157–188. 10.1016/j.pneurobio.2013.11.006 PubMed DOI

Lalo U., Palygin O., Verkhratsky A., Grant S. G., Pankratov Y. (2016). ATP from synaptic terminals and astrocytes regulates NMDA receptors and synaptic plasticity through PSD-95 multi-protein complex. Sci. Rep. 6:33609. 10.1038/srep33609 PubMed DOI PMC

Lalo U., Pankratov Y., Kirchhoff F., North R. A., Verkhratsky A. (2006). NMDA receptors mediate neuron-to-glia signaling in mouse cortical astrocytes. J. Neurosci. 26, 2673–2683. 10.1523/jneurosci.4689-05.2006 PubMed DOI PMC

Lazarou M., Sliter D. A., Kane L. A., Sarraf S. A., Wang C., Burman J. L., et al. . (2015). The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524, 309–314. 10.1038/nature14893 PubMed DOI PMC

Lee J. M., Calkins M. J., Chan K., Kan Y. W., Johnson J. A. (2003). Identification of the NF-E2-related factor-2-dependent genes conferring protection against oxidative stress in primary cortical astrocytes using oligonucleotide microarray analysis. J. Biol. Chem. 278, 12029–12038. 10.1074/jbc.m211558200 PubMed DOI

Lee S. Y., Kim J. H. (2015). Mechanisms underlying presynaptic Ca2+ transient and vesicular glutamate release at a CNS nerve terminal during in vitro ischaemia. J. Physiol. 593, 2793–2806. 10.1113/jp270060 PubMed DOI PMC

Lehre K. P., Danbolt N. C. (1998). The number of glutamate transporter subtype molecules at glutamatergic synapses: chemical and stereological quantification in young adult rat brain. J. Neurosci. 18, 8751–8757. 10.1523/jneurosci.18-21-08751.1998 PubMed DOI PMC

Lehre K. P., Davanger S., Danbolt N. C. (1997). Localization of the glutamate transporter protein GLAST in rat retina. Brain Res. 744, 129–137. 10.1016/s0006-8993(96)01022-0 PubMed DOI

Lewis D. K., Thomas K. T., Selvamani A., Sohrabji F. (2012). Age-related severity of focal ischemia in female rats is associated with impaired astrocyte function. Neurobiol. Aging 33, 1123.e1–1123.e16. 10.1016/j.neurobiolaging.2011.11.007 PubMed DOI PMC

Li C., Guan T., Chen X., Li W., Cai Q., Niu J., et al. . (2013). BNIP3 mediates pre-myelinating oligodendrocyte cell death in hypoxia and ischemia. J. Neurochem. 127, 426–433. 10.1111/jnc.12314 PubMed DOI

Li S., Mealing G. A., Morley P., Stys P. K. (1999). Novel injury mechanism in anoxia and trauma of spinal cord white matter: glutamate release via reverse Na+-dependent glutamate transport. J. Neurosci. 19:RC16. 10.1523/jneurosci.19-14-j0002.1999 PubMed DOI PMC

Li S., Stys P. K. (2000). Mechanisms of ionotropic glutamate receptor-mediated excitotoxicity in isolated spinal cord white matter. J. Neurosci. 20, 1190–1198. 10.1523/jneurosci.20-03-01190.2000 PubMed DOI PMC

Li X., Zhang W., Xiao M., Wang F., Zhou P., Yang J., et al. . (2019). MicroRNA-146b-5p protects oligodendrocyte precursor cells from oxygen/glucose deprivation-induced injury through regulating Keap1/Nrf2 signaling via targeting bromodomain-containing protein 4. Biochem. Biophys. Res. Commun. 513, 875–882. 10.1016/j.bbrc.2019.04.045 PubMed DOI

Li K., Zhou H., Zhan L., Shi Z., Sun W., Liu D., et al. . (2018). Hypoxic preconditioning maintains GLT-1 against transient global cerebral ischemia through upregulating Cx43 and inhibiting c-src. Front. Mol. Neurosci. 11:344. 10.3389/fnmol.2018.00344 PubMed DOI PMC

Lin C. H., Chen P. S., Gean P. W. (2008). Glutamate preconditioning prevents neuronal death induced by combined oxygen-glucose deprivation in cultured cortical neurons. Eur. J. Pharmacol. 589, 85–93. 10.1016/j.ejphar.2008.05.047 PubMed DOI

Linying Z., Wei W., Minxia W., Wenmin Z., Liangcheng Z. (2014). Neuroprotective effects of neuregulin-1 β on oligodendrocyte type 2 astrocyte progenitors following oxygen and glucose deprivation. Pediatr. Neurol. 50, 357–362. 10.1016/j.pediatrneurol.2013.12.007 PubMed DOI

Lipton S. A., Rosenberg P. A. (1994). Excitatory amino acids as a final common pathway for neurologic disorders. N. Engl. J. Med. 330, 613–622. 10.1056/nejm199403033300907 PubMed DOI

Liu F., Lu J., Manaenko A., Tang J., Hu Q. (2018). Mitochondria in ischemic stroke: new insight and implications. Aging Dis. 9, 924–937. 10.14336/ad.2017.1126 PubMed DOI PMC

Liu X. B., Shen Y., Plane J. M., Deng W. (2013). Vulnerability of premyelinating oligodendrocytes to white-matter damage in neonatal brain injury. Neurosci. Bull. 29, 229–238. 10.1007/s12264-013-1311-5 PubMed DOI PMC

Liu H. T., Tashmukhamedov B. A., Inoue H., Okada Y., Sabirov R. Z. (2006). Roles of two types of anion channels in glutamate release from mouse astrocytes under ischemic or osmotic stress. Cryobiology 54, 343–357. 10.1002/glia.20400 PubMed DOI

López-Redondo F., Nakajima K., Honda S., Kohsaka S. (2000). Glutamate transporter GLT-1 is highly expressed in activated microglia following facial nerve axotomy. Mol. Brain Res. 76, 429–435. 10.1016/s0169-328x(00)00022-x PubMed DOI

Luoma J. I., Kelley B. G., Mermelstein P. G. (2011). Progesterone inhibition of voltage-gated calcium channels is a potential neuroprotective mechanism against excitotoxicity. Steroids 76, 845–855. 10.1016/j.steroids.2011.02.013 PubMed DOI PMC

Lyons S. A., Kettenmann H. (1998). Oligodendrocytes and microglia are selectively vulnerable to combined hypoxia and hypoglycemia injury in vitro. J. Cereb. Blood Flow Metab. 18, 521–530. 10.1097/00004647-199805000-00007 PubMed DOI

Ma D., Feng L., Cheng Y., Xin M., You J., Yin X., et al. . (2018). Astrocytic gap junction inhibition by carbenoxolone enhances the protective effects of ischemic preconditioning following cerebral ischemia. J. Neuroinflammation 15:198. 10.1186/s12974-018-1230-5 PubMed DOI PMC

MacAulay N., Gether U., Klaerke D. A., Zeuthen T. (2001). Water transport by the human Na+-coupled glutamate cotransporter expressed in Xenopus oocytes. J. Physiol. 530, 367–378. 10.1111/j.1469-7793.2001.0367k.x PubMed DOI PMC

Manley G. T., Fujimura M., Ma T., Noshita N., Filiz F., Bollen A. W., et al. . (2000). Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat. Med. 6, 159–163. 10.1038/72256 PubMed DOI

Marini C., Totaro R., Carolei A. (1999). Long-term prognosis of cerebral ischemia in young adults. National Research Council Study Group on Stroke in the Young. Stroke 30, 2320–2325. 10.1161/01.str.30.11.2320 PubMed DOI

Mark L. P., Prost R. W., Ulmer J. L., Smith M. M., Daniels D. L., Strottmann J. M., et al. . (2001). Pictorial review of glutamate excitotoxicity: fundamental concepts for neuroimaging. AJNR Am. J. Neuroradiol. 22, 1813–1824. PubMed PMC

Marmiroli P., Cavaletti G. (2012). The glutamatergic neurotransmission in the central nervous system. Curr. Med. Chem. 19, 1269–1276. 10.2174/092986712799462711 PubMed DOI

Massie A., Cnops L., Smolders I., McCullumsmith R., Kooijman R., Kwak S., et al. . (2008). High-affinity Na+/K+-dependent glutamate transporter EAAT4 is expressed throughout the rat fore- and midbrain. J. Comp. Neurol. 511, 155–172. 10.1002/cne.21823 PubMed DOI

Matsumoto M., Hatakeyama T., Morimoto K., Yanagihara T. (1990). Cerebral blood flow and neuronal damage during progressive cerebral ischemia in gerbils. Stroke 21, 1470–1477. 10.1161/01.str.21.10.1470 PubMed DOI

Matthias K., Kirchhoff F., Seifert G., Huttmann K., Matyash M., Kettenmann H., et al. . (2003). Segregated expression of AMPA-type glutamate receptors and glutamate transporters defines distinct astrocyte populations in the mouse hippocampus. J. Neurosci. 23, 1750–1758. 10.1523/jneurosci.23-05-01750.2003 PubMed DOI PMC

Matute C. (2008). P2X7 receptors in oligodendrocytes: a novel target for neuroprotection. Mol. Neurobiol. 38, 123–128. 10.1007/s12035-008-8028-x PubMed DOI

Matute C. (2011). Glutamate and ATP signalling in white matter pathology. J. Anat. 219, 53–64. 10.1111/j.1469-7580.2010.01339.x PubMed DOI PMC

Matute C., Alberdi E., Ibarretxe G., Sánchez-Gómez M. V. (2002). Excitotoxicity in glial cells. Eur. J. Pharmacol. 447, 239–246. 10.1016/s0014-2999(02)01847-2 PubMed DOI

Matute C., Domercq M., Sanchez-Gomez M. V. (2006). Glutamate-mediated glial injury: mechanisms and clinical importance. Glia 53, 212–224. 10.1002/glia.20275 PubMed DOI

Matute C., Ransom B. R. (2012). Roles of white matter in central nervous system pathophysiologies. ASN Neuro 4:e00079. 10.1042/an20110060 PubMed DOI PMC

Matute C., Torre I., Perez-Cerda F., Perez-Samartin A., Alberdi E., Etxebarria E., et al. . (2007). P2X(7) receptor blockade prevents ATP excitotoxicity in oligodendrocytes and ameliorates experimental autoimmune encephalomyelitis. J. Neurosci. 27, 9525–9533. 10.1523/jneurosci.0579-07.2007 PubMed DOI PMC

McDonald J. W., Althomsons S. P., Hyrc K. L., Choi D. W., Goldberg M. P. (1998). Oligodendrocytes from forebrain are highly vulnerable to AMPA/kainate receptor-mediated excitotoxicity. Nat. Med. 4, 291–297. 10.1038/nm0398-291 PubMed DOI

Miao B., Yin X. H., Pei D. S., Zhang Q. G., Zhang G. Y. (2005). Neuroprotective effects of preconditioning ischemia on ischemic brain injury through down-regulating activation of JNK1/2 via N-methyl-D-aspartate receptor-mediated Akt1 activation. J. Biol. Chem. 280, 21693–21699. 10.1074/jbc.m500003200 PubMed DOI

Micu I., Jiang Q., Coderre E., Ridsdale A., Zhang L., Woulfe J., et al. . (2006). NMDA receptors mediate calcium accumulation in myelin during chemical ischaemia. Nature 439, 988–992. 10.1038/nature04474 PubMed DOI

Micu I., Ridsdale A., Zhang L., Woulfe J., McClintock J., Brantner C. A., et al. . (2007). Real-time measurement of free Ca2+ changes in CNS myelin by two-photon microscopy. Nat. Med. 13, 874–879. 10.1038/nm1568 PubMed DOI

Mifsud G., Zammit C., Muscat R., Di Giovanni G., Valentino M. (2014). Oligodendrocyte pathophysiology and treatment strategies in cerebral ischemia. CNS Neurosci. Ther. 20, 603–612. 10.1111/cns.12263 PubMed DOI PMC

Milewski K., Bogacinska-Karas M., Hilgier W., Albrecht J., Zielinska M. (2019). TNFα increases STAT3-mediated expression of glutaminase isoform KGA in cultured rat astrocytes. Cytokine 123:154774. 10.1016/j.cyto.2019.154774 PubMed DOI

Min K. J., Yang M. S., Kim S. U., Jou I., Joe E. H. (2006). Astrocytes induce hemeoxygenase-1 expression in microglia: a feasible mechanism for preventing excessive brain inflammation. J. Neurosci. 26, 1880–1887. 10.1523/jneurosci.3696-05.2006 PubMed DOI PMC

Mölders A., Koch A., Menke R., Klocker N. (2018). Heterogeneity of the astrocytic AMPA-receptor transcriptome. Glia 66, 2604–2616. 10.1002/glia.23514 PubMed DOI

Mongin A. A. (2016). Volume-regulated anion channel—a frenemy within the brain. Pflugers Arch. 468, 421–441. 10.1007/s00424-015-1765-6 PubMed DOI PMC

Montana V., Ni Y., Sunjara V., Hua X., Parpura V. (2004). Vesicular glutamate transporter-dependent glutamate release from astrocytes. J. Neurosci. 24, 2633–2642. 10.1523/jneurosci.3770-03.2004 PubMed DOI PMC

Montero T. D., Orellana J. A. (2015). Hemichannels: new pathways for gliotransmitter release. Neuroscience 286, 45–59. 10.1016/j.neuroscience.2014.11.048 PubMed DOI

Moretto M. B., Arteni N. S., Lavinsky D., Netto C. A., Rocha J. B., Souza D. O., et al. . (2005). Hypoxic-ischemic insult decreases glutamate uptake by hippocampal slices from neonatal rats: prevention by guanosine. Exp. Neurol. 195, 400–406. 10.1016/j.expneurol.2005.06.005 PubMed DOI

Mori T., Tateishi N., Kagamiishi Y., Shimoda T., Satoh S., Ono S., et al. . (2004). Attenuation of a delayed increase in the extracellular glutamate level in the peri-infarct area following focal cerebral ischemia by a novel agent ONO-2506. Neurochem. Int. 45, 381–387. 10.1016/j.neuint.2003.06.001 PubMed DOI

Morioka N., Abdin M. J., Kitayama T., Morita K., Nakata Y., Dohi T. (2008). P2X(7) receptor stimulation in primary cultures of rat spinal microglia induces downregulation of the activity for glutamate transport. Glia 56, 528–538. 10.1002/glia.20634 PubMed DOI

Morita M., Saruta C., Kozuka N., Okubo Y., Itakura M., Takahashi M., et al. . (2007). Dual regulation of astrocyte gap junction hemichannels by growth factors and a pro-inflammatory cytokine via the mitogen-activated protein kinase cascade. Glia 55, 508–515. 10.1002/glia.20471 PubMed DOI

Murugan M., Sivakumar V., Lu J., Ling E. A., Kaur C. (2011). Expression of N-methyl D-aspartate receptor subunits in amoeboid microglia mediates production of nitric oxide via NF-κB signaling pathway and oligodendrocyte cell death in hypoxic postnatal rats. Glia 59, 521–539. 10.1002/glia.21121 PubMed DOI

Nadarajan V., Perry R. J., Johnson J., Werring D. J. (2014). Transient ischaemic attacks: mimics and chameleons. Pract. Neurol. 14, 23–31. 10.1136/practneurol-2013-000782 PubMed DOI PMC

Nedergaard M., Takano T., Hansen A. J. (2002). Beyond the role of glutamate as a neurotransmitter. Nat. Rev. Neurosci. 3, 748–755. 10.1038/nrn916 PubMed DOI

Ni Y., Parpura V. (2009). Dual regulation of Ca2+-dependent glutamate release from astrocytes: vesicular glutamate transporters and cytosolic glutamate levels. Glia 57, 1296–1305. 10.1002/glia.20849 PubMed DOI PMC

Niizuma K., Yoshioka H., Chen H., Kim G. S., Jung J. E., Katsu M., et al. . (2010). Mitochondrial and apoptotic neuronal death signaling pathways in cerebral ischemia. Biochim. Biophys. Acta 1802, 92–99. 10.1016/j.bbadis.2009.09.002 PubMed DOI PMC

Noda M., Nakanishi H., Akaike N. (1999). Glutamate release from microglia via glutamate transporter is enhanced by amyloid-β peptide. Neuroscience 92, 1465–1474. 10.1016/s0306-4522(99)00036-6 PubMed DOI

Noda M., Nakanishi H., Nabekura J., Akaike N. (2000). AMPA-kainate subtypes of glutamate receptor in rat cerebral microglia. J. Neurosci. 20, 251–258. 10.1523/jneurosci.20-01-00251.2000 PubMed DOI PMC

North R. A. (2002). Molecular physiology of P2X receptors. Physiol. Rev. 82, 1013–1067. 10.1152/physrev.00015.2002 PubMed DOI

O’Kane R. L., Martinez-Lopez I., DeJoseph M. R., Vina J. R., Hawkins R. A. (1999). Na+-dependent glutamate transporters (EAAT1, EAAT2 and EAAT3) of the blood-brain barrier. A mechanism for glutamate removal. J. Biol. Chem. 274, 31891–31895. 10.1074/jbc.274.45.31891 PubMed DOI

Oliveira-Ferreira A. I., Major S., Przesdzing I., Kang E. J., Dreier J. P. (2019). Spreading depolarizations in the rat endothelin-1 model of focal cerebellar ischemia. J. Cereb. Blood Flow Metab. [Epub ahead of print]. 10.1177/0271678x19861604 PubMed DOI PMC

Olney J. W. (1971). Glutamate-induced neuronal necrosis in the infant mouse hypothalamus. An electron microscopic study. J. Neuropathol. Exp. Neurol. 30, 75–90. 10.1097/00005072-197101000-00008 PubMed DOI

Onténiente B., Couriaud C., Braudeau J., Benchoua A., Guégan C. (2003). The mechanisms of cell death in focal cerebral ischemia highlight neuroprotective perspectives by anti-caspase therapy. Biochem. Pharmacol. 66, 1643–1649. 10.1016/s0006-2952(03)00538-0 PubMed DOI

Orlando M., Lignani G., Maragliano L., Fassio A., Onofri F., Baldelli P., et al. . (2014). Functional role of ATP binding to synapsin I in synaptic vesicle trafficking and release dynamics. J. Neurosci. 34, 14752–14768. 10.1523/jneurosci.1093-14.2014 PubMed DOI PMC

Orrenius S., Zhivotovsky B., Nicotera P. (2003). Regulation of cell death: the calcium-apoptosis link. Nat. Rev. Mol. Cell Biol. 4, 552–565. 10.1038/nrm1150 PubMed DOI

Osei-Owusu J., Yang J., Vitery M. D. C., Qiu Z. (2018). Molecular biology and physiology of volume-regulated anion channel (VRAC). Curr. Top. Membr. 81, 177–203. 10.1016/bs.ctm.2018.07.005 PubMed DOI PMC

Ouyang Y. B., Xu L., Lu Y., Sun X., Yue S., Xiong X. X., et al. . (2013). Astrocyte-enriched miR-29a targets PUMA and reduces neuronal vulnerability to forebrain ischemia. Glia 61, 1784–1794. 10.1002/glia.22556 PubMed DOI PMC

Pachernegg S., Strutz-Seebohm N., Hollmann M. (2012). GluN3 subunit-containing NMDA receptors: not just one-trick ponies. Trends Neurosci. 35, 240–249. 10.1016/j.tins.2011.11.010 PubMed DOI

Page K. J., Everitt B. J. (1995). The distribution of neurons coexpressing immunoreactivity to AMPA-sensitive glutamate receptor subtypes (GluR1–4) and nerve growth factor receptor in the rat basal forebrain. Eur. J. Neurosci. 7, 1022–1033. 10.1111/j.1460-9568.1995.tb01090.x PubMed DOI

Pajarillo E., Rizor A., Lee J., Aschner M., Lee E. (2019). The role of astrocytic glutamate transporters GLT-1 and GLAST in neurological disorders: potential targets for neurotherapeutics. Neuropharmacology 161:107559. 10.1016/j.neuropharm.2019.03.002 PubMed DOI PMC

Palygin O., Lalo U., Pankratov Y. (2011). Distinct pharmacological and functional properties of NMDA receptors in mouse cortical astrocytes. Br. J. Pharmacol. 163, 1755–1766. 10.1111/j.1476-5381.2011.01374.x PubMed DOI PMC

Pang Y., Campbell L., Zheng B., Fan L., Cai Z., Rhodes P. (2010). Lipopolysaccharide-activated microglia induce death of oligodendrocyte progenitor cells and impede their development. Neuroscience 166, 464–475. 10.1016/j.neuroscience.2009.12.040 PubMed DOI

Panickar K. S., Qin B., Anderson R. A. (2015). Ischemia-induced endothelial cell swelling and mitochondrial dysfunction are attenuated by cinnamtannin D1, green tea extract and resveratrol in vitro. Nutr. Neurosci. 18, 297–306. 10.1179/1476830514y.0000000127 PubMed DOI

Papazian I., Kyrargyri V., Evangelidou M., Voulgari-Kokota A., Probert L. (2018). Mesenchymal stem cell protection of neurons against glutamate excitotoxicity involves reduction of NMDA-triggered calcium responses and surface glur1 and is partly mediated by TNF. Int. J. Mol. Sci. 19:E651. 10.3390/ijms19030651 PubMed DOI PMC

Park E., Bell J. D., Baker A. J. (2008). Traumatic brain injury: can the consequences be stopped? CMAJ 178, 1163–1170. 10.1503/cmaj.080282 PubMed DOI PMC

Pasantes-Morales H., Vázquez-Juarez E. (2012). Transporters and channels in cytotoxic astrocyte swelling. Neurochem. Res. 37, 2379–2387. 10.1007/s11064-012-0777-2 PubMed DOI

Pedata F., Dettori I., Coppi E., Melani A., Fusco I., Corradetti R., et al. . (2016). Purinergic signalling in brain ischemia. Neuropharmacology 104, 105–130. 10.1016/j.neuropharm.2015.11.007 PubMed DOI

Persson M., Rönnbäck L. (2012). Microglial self-defence mediated through GLT-1 and glutathione. Amino Acids 42, 207–219. 10.1007/s00726-011-0865-7 PubMed DOI

Petr G. T., Sun Y., Frederick N. M., Zhou Y., Dhamne S. C., Hameed M. Q., et al. . (2015). Conditional deletion of the glutamate transporter GLT-1 reveals that astrocytic GLT-1 protects against fatal epilepsy while neuronal GLT-1 contributes significantly to glutamate uptake into synaptosomes. J. Neurosci. 35, 5187–5201. 10.1523/jneurosci.4255-14.2015 PubMed DOI PMC

Pforte C., Henrich-Noack P., Baldauf K., Reymann K. G. (2005). Increase in proliferation and gliogenesis but decrease of early neurogenesis in the rat forebrain shortly after transient global ischemia. Neuroscience 136, 1133–1146. 10.1016/j.neuroscience.2005.08.043 PubMed DOI

Piccolini V. M., Bottone M. G., Bottiroli G., De Pascali S. A., Fanizzi F. P., Bernocchi G. (2013). Platinum drugs and neurotoxicity: effects on intracellular calcium homeostasis. Cell Biol. Toxicol. 29, 339–353. 10.1007/s10565-013-9252-3 PubMed DOI

Pignataro G., Gala R., Cuomo O., Tortiglione A., Giaccio L., Castaldo P., et al. . (2004). Two sodium/calcium exchanger gene products, NCX1 and NCX3, play a major role in the development of permanent focal cerebral ischemia. Stroke 35, 2566–2570. 10.1161/01.str.0000143730.29964.93 PubMed DOI

Pin J. P., Duvoisin R. (1995). The metabotropic glutamate receptors: structure and functions. Neuropharmacology 34, 1–26. 10.1016/0028-3908(94)00129-g PubMed DOI

Pinky N. F., Wilkie C. M., Barnes J. R., Parsons M. P. (2018). Region- and activity-dependent regulation of extracellular glutamate. J. Neurosci. 38, 5351–5366. 10.1523/JNEUROSCI.3213-17.2018 PubMed DOI PMC

Pivonkova H., Anderova M. (2017). Altered homeostatic functions in reactive astrocytes and their potential as a therapeutic target after brain ischemic injury. Curr. Pharm. Des. 23, 5056–5074. 10.2174/1381612823666170710161858 PubMed DOI

Pivonkova H., Benesova J., Butenko O., Chvatal A., Anderova M. (2010). Impact of global cerebral ischemia on K+ channel expression and membrane properties of glial cells in the rat hippocampus. Neurochem. Int. 57, 783–794. 10.1016/j.neuint.2010.08.016 PubMed DOI

Pivovarova N. B., Nguyen H. V., Winters C. A., Brantner C. A., Smith C. L., Andrews S. B. (2004). Excitotoxic calcium overload in a subpopulation of mitochondria triggers delayed death in hippocampal neurons. J. Neurosci. 24, 5611–5622. 10.1523/jneurosci.0531-04.2004 PubMed DOI PMC

Pocock J. M., Kettenmann H. (2007). Neurotransmitter receptors on microglia. Trends Neurosci. 30, 527–535. 10.1016/j.tins.2007.07.007 PubMed DOI

Pregnolato S., Chakkarapani E., Isles A. R., Luyt K. (2019). Glutamate transport and preterm brain injury. Front. Physiol. 10:417. 10.3389/fphys.2019.00417 PubMed DOI PMC

Price C. J., Karayannis T., Pal B. Z., Capogna M. (2005). Group II and III mGluRs-mediated presynaptic inhibition of EPSCs recorded from hippocampal interneurons of CA1 stratum lacunosum moleculare. Neuropharmacology 49, 45–56. 10.1016/j.neuropharm.2005.05.009 PubMed DOI

Puig B., Brenna S., Magnus T. (2018). Molecular communication of a dying neuron in stroke. Int. J. Mol. Sci. 19:E2834. 10.3390/ijms19092834 PubMed DOI PMC

Radak D., Katsiki N., Resanovic I., Jovanovic A., Sudar-Milovanovic E., Zafirovic S., et al. . (2017). Apoptosis and acute brain ischemia in ischemic stroke. Curr. Vasc. Pharmacol. 15, 115–122. 10.2174/1570161115666161104095522 PubMed DOI

Rakers C., Petzold G. C. (2017). Astrocytic calcium release mediates peri-infarct depolarizations in a rodent stroke model. J. Clin. Invest. 127, 511–516. 10.1172/jci89354 PubMed DOI PMC

Rama R., García J. C. (2016). “Excitotoxicity and oxidative stress in acute stroke,” in Ischemic Stroke—Updates, ed. Schaller B. (London: InTech; ), 17–42.

Ransom B. R., Baltan S. B. (2009). Axons get excited to death. Ann. Neurol. 65, 120–121. 10.1002/ana.21659 PubMed DOI PMC

Rao V. L., Bowen K. K., Dempsey R. J. (2001). Transient focal cerebral ischemia down-regulates glutamate transporters GLT-1 and EAAC1 expression in rat brain. Neurochem. Res. 26, 497–502. 10.1023/a:1010956711295 PubMed DOI

Rauen T., Rothstein J. D., Wässle H. (1996). Differential expression of three glutamate transporter subtypes in the rat retina. Cell Tissue Res. 286, 325–336. 10.1007/s004410050702 PubMed DOI

Rebai O., Amri M. (2018). Chlorogenic acid prevents AMPA-mediated excitotoxicity in optic nerve oligodendrocytes through a PKC and caspase-dependent pathways. Neurotox. Res. 34, 559–573. 10.1007/s12640-018-9911-5 PubMed DOI

Ribeiro F. M., Paquet M., Cregan S. P., Ferguson S. S. (2010). Group I metabotropic glutamate receptor signalling and its implication in neurological disease. CNS Neurol. Disord. Drug Targets 9, 574–595. 10.2174/187152710793361612 PubMed DOI

Riddle A., Luo N. L., Manese M., Beardsley D. J., Green L., Rorvik D. A., et al. . (2006). Spatial heterogeneity in oligodendrocyte lineage maturation and not cerebral blood flow predicts fetal ovine periventricular white matter injury. J. Neurosci. 26, 3045–3055. 10.1523/jneurosci.5200-05.2006 PubMed DOI PMC

Romera C., Hurtado O., Mallolas J., Pereira M. P., Morales J. R., Romera A., et al. . (2007). Ischemic preconditioning reveals that GLT1/EAAT2 glutamate transporter is a novel PPARγ target gene involved in neuroprotection. J. Cereb. Blood Flow Metab. 27, 1327–1338. 10.1038/sj.jcbfm.9600438 PubMed DOI

Rossi D. J., Brady J. D., Mohr C. (2007). Astrocyte metabolism and signaling during brain ischemia. Nat. Neurosci. 10, 1377–1386. 10.1038/nn2004 PubMed DOI PMC

Rossi D. J., Oshima T., Attwell D. (2000). Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature 403, 316–321. 10.1038/35002090 PubMed DOI

Rothman S. (1984). Synaptic release of excitatory amino acid neurotransmitter mediates anoxic neuronal death. J. Neurosci. 4, 1884–1891. 10.1523/jneurosci.04-07-01884.1984 PubMed DOI PMC

Rowley N. M., Madsen K. K., Schousboe A., Steve White H. (2012). Glutamate and GABA synthesis, release, transport and metabolism as targets for seizure control. Neurochem. Int. 61, 546–558. 10.1016/j.neuint.2012.02.013 PubMed DOI

Ryoo K., Park J. Y. (2016). Two-pore domain potassium channels in astrocytes. Exp. Neurobiol. 25, 222–232. 10.5607/en.2016.25.5.222 PubMed DOI PMC

Sakoh M., Ostergaard L., Rohl L., Smith D. F., Simonsen C. Z., Sorensen J. C., et al. . (2000). Relationship between residual cerebral blood flow and oxygen metabolism as predictive of ischemic tissue viability: sequential multitracer positron emission tomography scanning of middle cerebral artery occlusion during the critical first 6 hours after stroke in pigs. J. Neurosurg. 93, 647–657. 10.3171/jns.2000.93.4.0647 PubMed DOI

Salter M. G., Fern R. (2005). NMDA receptors are expressed in developing oligodendrocyte processes and mediate injury. Nature 438, 1167–1171. 10.1038/nature04301 PubMed DOI

Sánchez-Gómez M. V., Alberdi E., Pèrez-Navarro E., Alberch J., Matute C. (2011). Bax and calpain mediate excitotoxic oligodendrocyte death induced by activation of both AMPA and kainate receptors. J. Neurosci. 31, 2996–3006. 10.1523/jneurosci.5578-10.2011 PubMed DOI PMC

Sanchez-Olea R., Moran J., Martinez A., Pasantes-Morales H. (1993a). Volume-activated Rb+ transport in astrocytes in culture. Am. J. Physiol. 264, C836–C842. 10.1152/ajpcell.1993.264.4.c836 PubMed DOI

Sanchez-Olea R., Pena C., Moran J., Pasantes-Morales H. (1993b). Inhibition of volume regulation and efflux of osmoregulatory amino acids by blockers of Cl- transport in cultured astrocytes. Neurosci. Lett. 156, 141–144. 10.1016/0304-3940(93)90458-w PubMed DOI

Sanganalmath S. K., Gopal P., Parker J. R., Downs R. K., Parker J. C., Jr., Dawn B. (2017). Global cerebral ischemia due to circulatory arrest: insights into cellular pathophysiology and diagnostic modalities. Mol. Cell. Biochem. 426, 111–127. 10.1007/s11010-016-2885-9 PubMed DOI

Sattler R., Xiong Z., Lu W. Y., Hafner M., MacDonald J. F., Tymianski M. (1999). Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein. Science 284, 1845–1848. 10.1126/science.284.5421.1845 PubMed DOI

Savtchouk I., Volterra A. (2018). Gliotransmission: beyond black-and-white. J. Neurosci. 38, 14–25. 10.1523/jneurosci.0017-17.2017 PubMed DOI PMC

Schneider G. H., Baethmann A., Kempski O. (1992). Mechanisms of glial swelling induced by glutamate. Can. J. Physiol. Pharmacol. 70, S334–S343. 10.1139/y92-280 PubMed DOI

Schober A. L., Wilson C. S., Mongin A. A. (2017). Molecular composition and heterogeneity of the LRRC8-containing swelling-activated osmolyte channels in primary rat astrocytes. J. Physiol. 595, 6939–6951. 10.1113/jp275053 PubMed DOI PMC

Schwarz Y., Zhao N., Kirchhoff F., Bruns D. (2017). Astrocytes control synaptic strength by two distinct v-SNARE-dependent release pathways. Nat. Neurosci. 20, 1529–1539. 10.1038/nn.4647 PubMed DOI

Segovia K. N., McClure M., Moravec M., Luo N. L., Wan Y., Gong X., et al. . (2008). Arrested oligodendrocyte lineage maturation in chronic perinatal white matter injury. Ann. Neurol. 63, 520–530. 10.1002/ana.21359 PubMed DOI PMC

Serrano A., Robitaille R., Lacaille J. C. (2008). Differential NMDA-dependent activation of glial cells in mouse hippocampus. Glia 56, 1648–1663. 10.1002/glia.20717 PubMed DOI

Seshadri S., Beiser A., Kelly-Hayes M., Kase C. S., Au R., Kannel W. B., et al. . (2006). The lifetime risk of stroke: estimates from the Framingham Study. Stroke 37, 345–350. 10.1161/01.str.0000199613.38911.b2 PubMed DOI

Seyama T., Kamei Y., Iriyama T., Imada S., Ichinose M., Toshimitsu M., et al. . (2018). Pretreatment with magnesium sulfate attenuates white matter damage by preventing cell death of developing oligodendrocytes. J. Obstet. Gynaecol. Res. 44, 601–607. 10.1111/jog.13568 PubMed DOI

Shashidharan P., Huntley G. W., Murray J. M., Buku A., Moran T., Walsh M. J., et al. . (1997). Immunohistochemical localization of the neuron-specific glutamate transporter EAAC1 (EAAT3) in rat brain and spinal cord revealed by a novel monoclonal antibody. Brain Res. 773, 139–148. 10.1016/s0006-8993(97)00921-9 PubMed DOI

Sheldon A. L., Robinson M. B. (2007). The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention. Neurochem. Int. 51, 333–355. 10.1016/j.neuint.2007.03.012 PubMed DOI PMC

Shelton M. K., McCarthy K. D. (1999). Mature hippocampal astrocytes exhibit functional metabotropic and ionotropic glutamate receptors in situ. Glia 26, 1–11. 10.1002/(sici)1098-1136(199903)26:1<1::aid-glia1>3.0.co;2-z PubMed DOI

Shibata M., Hisahara S., Hara H., Yamawaki T., Fukuuchi Y., Yuan J., et al. . (2000). Caspases determine the vulnerability of oligodendrocytes in the ischemic brain. J. Clin. Invest. 106, 643–653. 10.1172/jci10203 PubMed DOI PMC

Shibata T., Yamada K., Watanabe M., Ikenaka K., Wada K., Tanaka K., et al. . (1997). Glutamate transporter GLAST is expressed in the radial glia-astrocyte lineage of developing mouse spinal cord. J. Neurosci. 17, 9212–9219. 10.1523/jneurosci.17-23-09212.1997 PubMed DOI PMC

Shih A. Y., Johnson D. A., Wong G., Kraft A. D., Jiang L., Erb H., et al. . (2003). Coordinate regulation of glutathione biosynthesis and release by Nrf2-expressing glia potently protects neurons from oxidative stress. J. Neurosci. 23, 3394–3406. 10.1523/jneurosci.23-08-03394.2003 PubMed DOI PMC

Simard J. M., Chen M., Tarasov K. V., Bhatta S., Ivanova S., Melnitchenko L., et al. . (2006). Newly expressed SUR1-regulated NC(Ca-ATP) channel mediates cerebral edema after ischemic stroke. Nat. Med. 12, 433–440. 10.1038/nm1390 PubMed DOI PMC

Simões A. P., Silva C. G., Marques J. M., Pochmann D., Porciuncula L. O., Ferreira S., et al. . (2018). Glutamate-induced and NMDA receptor-mediated neurodegeneration entails P2Y1 receptor activation. Cell Death Dis. 9:297. 10.1038/s41419-018-0351-1 PubMed DOI PMC

Sivakumar V., Ling E. A., Lu J., Kaur C. (2010). Role of glutamate and its receptors and insulin-like growth factors in hypoxia induced periventricular white matter injury. Glia 58, 507–523. 10.1002/glia.20940 PubMed DOI

Socodato R., Portugal C. C., Rodrigues A., Henriques J., Rodrigues C., Figueira C., et al. . (2018). Redox tuning of Ca2+ signaling in microglia drives glutamate release during hypoxia. Free Radic. Biol. Med. 118, 137–149. 10.1016/j.freeradbiomed.2018.02.036 PubMed DOI

Somjen G. G. (2001). Mechanisms of spreading depression and hypoxic spreading depression-like depolarization. Physiol. Rev. 81, 1065–1096. 10.1152/physrev.2001.81.3.1065 PubMed DOI

Song Y., Li Z., He T., Qu M., Jiang L., Li W., et al. . (2019). M2 microglia-derived exosomes protect the mouse brain from ischemia-reperfusion injury via exosomal miR-124. Theranostics 9, 2910–2923. 10.7150/thno.30879 PubMed DOI PMC

Soria F. N., Pèrez-Samartin A., Martin A., Gona K. B., Llop J., Szczupak B., et al. . (2014). Extrasynaptic glutamate release through cystine/glutamate antiporter contributes to ischemic damage. J. Clin. Invest. 124, 3645–3655. 10.1172/jci71886 PubMed DOI PMC

Soriano F. X., Papadia S., Hofmann F., Hardingham N. R., Bading H., Hardingham G. E. (2006). Preconditioning doses of NMDA promote neuroprotection by enhancing neuronal excitability. J. Neurosci. 26, 4509–4518. 10.1523/JNEUROSCI.0455-06.2006 PubMed DOI PMC

Stellwagen D., Beattie E. C., Seo J. Y., Malenka R. C. (2005). Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-α. J. Neurosci. 25, 3219–3228. 10.1523/jneurosci.4486-04.2005 PubMed DOI PMC

Stokum J. A., Kurland D. B., Gerzanich V., Simard J. M. (2015). Mechanisms of astrocyte-mediated cerebral edema. Neurochem. Res. 40, 317–328. 10.1007/s11064-014-1374-3 PubMed DOI PMC

Stokum J. A., Kwon M. S., Woo S. K., Tsymbalyuk O., Vennekens R., Gerzanich V., et al. . (2018). SUR1-TRPM4 and AQP4 form a heteromultimeric complex that amplifies ion/water osmotic coupling and drives astrocyte swelling. Glia 66, 108–125. 10.1002/glia.23231 PubMed DOI PMC

Strong A. J., Anderson P. J., Watts H. R., Virley D. J., Lloyd A., Irving E. A., et al. . (2007). Peri-infarct depolarizations lead to loss of perfusion in ischaemic gyrencephalic cerebral cortex. Brain 130, 995–1008. 10.1093/brain/awl392 PubMed DOI

Su G., Kintner D. B., Flagella M., Shull G. E., Sun D. (2002a). Astrocytes from Na+-K+-Cl− cotransporter-null mice exhibit absence of swelling and decrease in EAA release. Am. J. Physiol. Cell Physiol. 282, C1147–C1160. 10.1152/ajpcell.00538.2001 PubMed DOI

Su G., Kintner D. B., Sun D. (2002b). Contribution of Na+-K+-Cl− cotransporter to high-[K+]o- induced swelling and EAA release in astrocytes. Am. J. Physiol. Cell Physiol. 282, C1136–C1146. 10.1152/ajpcell.00478.2001 PubMed DOI

Sugawara T., Noshita N., Lewen A., Gasche Y., Ferrand-Drake M., Fujimura M., et al. . (2002). Overexpression of copper/zinc superoxide dismutase in transgenic rats protects vulnerable neurons against ischemic damage by blocking the mitochondrial pathway of caspase activation. J. Neurosci. 22, 209–217. 10.1523/jneurosci.22-01-00209.2002 PubMed DOI PMC

Sun X., Shih A. Y., Johannssen H. C., Erb H., Li P., Murphy T. H. (2006). Two-photon imaging of glutathione levels in intact brain indicates enhanced redox buffering in developing neurons and cells at the cerebrospinal fluid and blood-brain interface. J. Biol. Chem. 281, 17420–17431. 10.1074/jbc.m601567200 PubMed DOI

Takano T., Oberheim N., Cotrina M. L., Nedergaard M. (2009). Astrocytes and ischemic injury. Stroke 40, S8–S12. 10.1161/STROKEAHA.108.533166 PubMed DOI PMC

Takeuchi H., Jin S., Wang J., Zhang G., Kawanokuchi J., Kuno R., et al. . (2006). Tumor necrosis factor-α induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner. J. Biol. Chem. 281, 21362–21368. 10.1074/jbc.m600504200 PubMed DOI

Takumi Y., Matsubara A., Danbolt N. C., Laake J. H., Storm-Mathisen J., Usami S., et al. . (1997). Discrete cellular and subcellular localization of glutamine synthetase and the glutamate transporter GLAST in the rat vestibular end organ. Neuroscience 79, 1137–1144. 10.1016/s0306-4522(97)00025-0 PubMed DOI

Talos D. M., Fishman R. E., Park H., Folkerth R. D., Follett P. L., Volpe J. J., et al. . (2006). Developmental regulation of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor subunit expression in forebrain and relationship to regional susceptibility to hypoxic/ischemic injury: I. Rodent cerebral white matter and cortex. J. Comp. Neurol. 497, 42–60. 10.1002/cne.20972 PubMed DOI PMC

Tanaka H., Calderone A., Jover T., Grooms S. Y., Yokota H., Zukin R. S., et al. . (2002). Ischemic preconditioning acts upstream of GluR2 down-regulation to afford neuroprotection in the hippocampal CA1. Proc. Natl. Acad. Sci. U S A 99, 2362–2367. 10.1073/pnas.261713299 PubMed DOI PMC

Tannenberg R. K., Scott H. L., Westphalen R. I., Dodd P. R. (2004). The identification and characterization of excitotoxic nerve-endings in Alzheimer disease. Curr. Alzheimer Res. 1, 11–25. 10.2174/1567205043480591 PubMed DOI

Thompson B. J., Ronaldson P. T. (2014). Drug delivery to the ischemic brain. Adv. Pharmacol. 71, 165–202. 10.1016/bs.apha.2014.06.013 PubMed DOI PMC

Thrane A. S., Rangroo Thrane V., Nedergaard M. (2014). Drowning stars: reassessing the role of astrocytes in brain edema. Trends Neurosci. 37, 620–628. 10.1016/j.tins.2014.08.010 PubMed DOI PMC

Thushara Vijayakumar N., Sangwan A., Sharma B., Majid A., Rajanikant G. K. (2016). Cerebral ischemic preconditioning: the road so far. Mol. Neurobiol. 53, 2579–2593. 10.1007/s12035-015-9278-z PubMed DOI

Torp R., Hoover F., Danbolt N. C., Storm-Mathisen J., Ottersen O. P. (1997). Differential distribution of the glutamate transporters GLT1 and rEAAC1 in rat cerebral cortex and thalamus: an in situ hybridization analysis. Anat. Embryol. 195, 317–326. 10.1007/s004290050051 PubMed DOI

Torralba D., Baixauli F., Sánchez-Madrid F. (2016). Mitochondria know no boundaries: mechanisms and functions of intercellular mitochondrial transfer. Front. Cell Dev. Biol. 4:107. 10.3389/fcell.2016.00107 PubMed DOI PMC

Trendelenburg G., Prass K., Priller J., Kapinya K., Polley A., Muselmann C., et al. . (2002). Serial analysis of gene expression identifies metallothionein-II as major neuroprotective gene in mouse focal cerebral ischemia. J. Neurosci. 22, 5879–5888. 10.1523/jneurosci.22-14-05879.2002 PubMed DOI PMC

Tretter L., Adam-Vizi V. (2002). Glutamate release by an Na+ load and oxidative stress in nerve terminals: relevance to ischemia/reperfusion. J. Neurochem. 83, 855–862. 10.1046/j.1471-4159.2002.01191.x PubMed DOI

Umebayashi D., Natsume A., Takeuchi H., Hara M., Nishimura Y., Fukuyama R., et al. . (2014). Blockade of gap junction hemichannel protects secondary spinal cord injury from activated microglia-mediated glutamate exitoneurotoxicity. J. Neurotrauma 31, 1967–1974. 10.1089/neu.2013.3223 PubMed DOI PMC

Unal-Cevik I., Kilinc M., Can A., Gursoy-Ozdemir Y., Dalkara T. (2004). Apoptotic and necrotic death mechanisms are concomitantly activated in the same cell after cerebral ischemia. Stroke 35, 2189–2194. 10.1161/01.str.0000136149.81831.c5 PubMed DOI

Uzdensky A. B. (2019). Apoptosis regulation in the penumbra after ischemic stroke: expression of pro- and antiapoptotic proteins. Apoptosis 24, 687–702. 10.1007/s10495-019-01556-6 PubMed DOI

Van Damme P., Bogaert E., Dewil M., Hersmus N., Kiraly D., Scheveneels W., et al. . (2007). Astrocytes regulate GluR2 expression in motor neurons and their vulnerability to excitotoxicity. Proc. Natl. Acad. Sci. U S A 104, 14825–14830. 10.1073/pnas.0705046104 PubMed DOI PMC

VanGilder R. L., Huber J. D., Rosen C. L., Barr T. L. (2012). The transcriptome of cerebral ischemia. Brain Res. Bull. 88, 313–319. 10.1016/j.brainresbull.2012.02.002 PubMed DOI PMC

Verma M., Wills Z., Chu C. T. (2018). Excitatory dendritic mitochondrial calcium toxicity: implications for Parkinson’s and other neurodegenerative diseases. Front. Neurosci. 12:523. 10.3389/fnins.2018.00523 PubMed DOI PMC

Vitarella D., DiRisio D. J., Kimelberg H. K., Aschner M. (1994). Potassium and taurine release are highly correlated with regulatory volume decrease in neonatal primary rat astrocyte cultures. J. Neurochem. 63, 1143–1149. 10.1046/j.1471-4159.1994.63031143.x PubMed DOI

Volpe J. J., Kinney H. C., Jensen F. E., Rosenberg P. A. (2011). The developing oligodendrocyte: key cellular target in brain injury in the premature infant. Int. J. Dev. Neurosci. 29, 423–440. 10.1016/j.ijdevneu.2011.02.012 PubMed DOI PMC

Volterra A., Trotti D., Racagni G. (1994). Glutamate uptake is inhibited by arachidonic acid and oxygen radicals via two distinct and additive mechanisms. Mol. Pharmacol. 46, 986–992. PubMed

Voss F. K., Ullrich F., Munch J., Lazarow K., Lutter D., Mah N., et al. . (2014). Identification of LRRC8 heteromers as an essential component of the volume-regulated anion channel VRAC. Science 344, 634–638. 10.1126/science.1252826 PubMed DOI

Wadiche J. I., Amara S. G., Kavanaugh M. P. (1995). Ion fluxes associated with excitatory amino acid transport. Neuron 15, 721–728. 10.1016/0896-6273(95)90159-0 PubMed DOI

Waller R., Murphy M., Garwood C. J., Jennings L., Heath P. R., Chambers A., et al. . (2018). Metallothionein-I/II expression associates with the astrocyte DNA damage response and not Alzheimer-type pathology in the aging brain. Glia 66, 2316–2323. 10.1002/glia.23465 PubMed DOI

Wang M., Song J., Xiao W., Yang L., Yuan J., Wang W., et al. . (2012). Changes in lipid-sensitive two-pore domain potassium channel TREK-1 expression and its involvement in astrogliosis following cerebral ischemia in rats. J. Mol. Neurosci. 46, 384–392. 10.1007/s12031-011-9598-z PubMed DOI

Warby S. C., Doty C. N., Graham R. K., Carroll J. B., Yang Y. Z., Singaraja R. R., et al. . (2008). Activated caspase-6 and caspase-6-cleaved fragments of huntingtin specifically colocalize in the nucleus. Hum. Mol. Genet. 17, 2390–2404. 10.1093/hmg/ddn139 PubMed DOI

Weller M. L., Stone I. M., Goss A., Rau T., Rova C., Poulsen D. J. (2008). Selective overexpression of excitatory amino acid transporter 2 (EAAT2) in astrocytes enhances neuroprotection from moderate but not severe hypoxia-ischemia. Neuroscience 155, 1204–1211. 10.1016/j.neuroscience.2008.05.059 PubMed DOI PMC

Wetterling F., Chatzikonstantinou E., Tritschler L., Meairs S., Fatar M., Schad L. R., et al. . (2016). Investigating potentially salvageable penumbra tissue in an in vivo model of transient ischemic stroke using sodium, diffusion, and perfusion magnetic resonance imaging. BMC Neurosci. 17:82. 10.1186/s12868-016-0316-1 PubMed DOI PMC

Wilson C. S., Mongin A. A. (2018). Cell volume control in healthy brain and neuropathologies. Curr. Top. Membr. 81, 385–455. 10.1016/bs.ctm.2018.07.006 PubMed DOI PMC

Wilson-Costello D., Friedman H., Minich N., Siner B., Taylor G., Schluchter M., et al. . (2007). Improved neurodevelopmental outcomes for extremely low birth weight infants in 2000–2002. Pediatrics 119, 37–45. 10.1542/peds.2006-1416 PubMed DOI

Winkler E. A., Minter D., Yue J. K., Manley G. T. (2016). Cerebral edema in traumatic brain injury: pathophysiology and prospective therapeutic targets. Neurosurg. Clin. N. Am. 27, 473–488. 10.1016/j.nec.2016.05.008 PubMed DOI

Woo D. H., Han K. S., Shim J. W., Yoon B. E., Kim E., Bae J. Y., et al. . (2012). TREK-1 and Best1 channels mediate fast and slow glutamate release in astrocytes upon GPCR activation. Cell 151, 25–40. 10.1016/j.cell.2012.09.005 PubMed DOI

Wu X., Liu Y., Chen X., Sun Q., Tang R., Wang W., et al. . (2013). Involvement of TREK-1 activity in astrocyte function and neuroprotection under simulated ischemia conditions. J. Mol. Neurosci. 49, 499–506. 10.1007/s12031-012-9875-5 PubMed DOI

Wu X. M., Liu Y., Qian Z. M., Luo Q. Q., Ke Y. (2016). CX3CL1/CX3CR1 axis plays a key role in ischemia-induced oligodendrocyte injury via p38MAPK signaling pathway. Mol. Neurobiol. 53, 4010–4018. 10.1007/s12035-015-9339-3 PubMed DOI

Xiao Y., Geng F., Wang G., Li X., Zhu J., Zhu W. (2018). Bone marrow-derived mesenchymal stem cells-derived exosomes prevent oligodendrocyte apoptosis through exosomal miR-134 by targeting caspase-8. J. Cell. Biochem. [Epub ahead of print]. 10.1002/jcb.27519 PubMed DOI

Xin W. J., Weng H. R., Dougherty P. M. (2009). Plasticity in expression of the glutamate transporters GLT-1 and GLAST in spinal dorsal horn glial cells following partial sciatic nerve ligation. Mol. Pain 5:15. 10.1186/1744-8069-5-15 PubMed DOI PMC

Yan Z., Khadra A., Li S., Tomic M., Sherman A., Stojilkovic S. S. (2010). Experimental characterization and mathematical modeling of P2X7 receptor channel gating. J. Neurosci. 30, 14213–14224. 10.1523/jneurosci.2390-10.2010 PubMed DOI PMC

Yang J.-L., Mukda S., Chen S.-D. (2018). Diverse roles of mitochondria in ischemic stroke. Redox Biol. 16, 263–275. 10.1016/j.redox.2018.03.002 PubMed DOI PMC

Yang J., Vitery M. D. C., Chen J., Osei-Owusu J., Chu J., Qiu Z. (2019). Glutamate-releasing SWELL1 channel in astrocytes modulates synaptic transmission and promotes brain damage in stroke. Neuron 102, 813.e6–827.e6. 10.1016/j.neuron.2019.03.029 PubMed DOI PMC

Yao G. Y., Zhu Q., Xia J., Chen F. J., Huang M., Liu J., et al. . (2018). Ischemic postconditioning confers cerebroprotection by stabilizing VDACs after brain ischemia. Cell Death Dis. 9:1033. 10.1038/s41419-018-1089-5 PubMed DOI PMC

Yuan F., Wang T. (1996). Glutamate-induced swelling of cultured astrocytes is mediated by metabotropic glutamate receptor. Sci. China C Life Sci. 39, 517–522. PubMed

Yung L. M., Wei Y., Qin T., Wang Y., Smith C. D., Waeber C. (2012). Sphingosine kinase 2 mediates cerebral preconditioning and protects the mouse brain against ischemic injury. Stroke 43, 199–204. 10.1161/strokeaha.111.626911 PubMed DOI PMC

Zeng W., Tong Y., Li H., Luo R., Mao M. (2012). P2X7 receptor modulation of the viability of radial glial clone L2.3 cells during hypoxic-ischemic brain injury. Mol. Med. Rep. 5, 1357–1361. 10.3892/mmr.2012.816 PubMed DOI

Zhang H., Cao H. J., Kimelberg H. K., Zhou M. (2011). Volume regulated anion channel currents of rat hippocampal neurons and their contribution to oxygen-and-glucose deprivation induced neuronal death. PLoS One 6:e16803. 10.1371/journal.pone.0016803 PubMed DOI PMC

Zhang L., Dong L. Y., Li Y. J., Hong Z., Wei W. S. (2012). miR-21 represses FasL in microglia and protects against microglia-mediated neuronal cell death following hypoxia/ischemia. Glia 60, 1888–1895. 10.1002/glia.22404 PubMed DOI

Zhang M., Gong J. X., Wang J. L., Jiang M. Y., Li L., Hu Y. Y., et al. . (2017). p38 MAPK participates in the mediation of GLT-1 up-regulation during the induction of brain ischemic tolerance by cerebral ischemic preconditioning. Mol. Neurobiol. 54, 58–71. 10.1007/s12035-015-9652-x PubMed DOI

Zhang L. N., Hao L., Guo Y. S., Wang H. Y., Li L. L., Liu L. Z., et al. . (2019). Are glutamate transporters neuroprotective or neurodegenerative during cerebral ischemia? J. Mol. Med. 97, 281–289. 10.1007/s00109-019-01745-5 PubMed DOI

Zhang M., Li W. B., Geng J. X., Li Q. J., Sun X. C., Xian X. H., et al. . (2007). The upregulation of glial glutamate transporter-1 participates in the induction of brain ischemic tolerance in rats. J. Cereb. Blood Flow Metab. 27, 1352–1368. 10.1038/sj.jcbfm.9600441 PubMed DOI

Zhang J. M., Wang H. K., Ye C. Q., Ge W., Chen Y., Jiang Z. L., et al. . (2003). ATP released by astrocytes mediates glutamatergic activity-dependent heterosynaptic suppression. Neuron 40, 971–982. 10.1016/s0896-6273(03)00717-7 PubMed DOI

Zhang J., Zhang Y., Xing S., Liang Z., Zeng J. (2012). Secondary neurodegeneration in remote regions after focal cerebral infarction: a new target for stroke management? Stroke 43, 1700–1705. 10.1161/STROKEAHA.111.632448 PubMed DOI

Zhao W., Belayev L., Ginsberg M. D. (1997). Transient middle cerebral artery occlusion by intraluminal suture: II. Neurological deficits and pixel-based correlation of histopathology with local blood flow and glucose utilization. J. Cereb. Blood Flow Metab. 17, 1281–1290. 10.1097/00004647-199712000-00003 PubMed DOI

Zhao S. C., Ma L. S., Chu Z. H., Xu H., Wu W. Q., Liu F. (2017). Regulation of microglial activation in stroke. Acta Pharmacol. Sin. 38, 445–458. 10.1038/aps.2016.162 PubMed DOI PMC

Zhao F., Qu Y., Wang H., Huang L., Zhu J., Li S., et al. . (2017). The effect of miR-30d on apoptosis and autophagy in cultured astrocytes under oxygen-glucose deprivation. Brain Res. 1671, 67–76. 10.1016/j.brainres.2017.06.011 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace