Ischemia-Triggered Glutamate Excitotoxicity From the Perspective of Glial Cells
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32265656
PubMed Central
PMC7098326
DOI
10.3389/fncel.2020.00051
Knihovny.cz E-zdroje
- Klíčová slova
- NG2 glia, astrocytes, cell death, glutamate excitotoxicity, glutamate receptors and transporters, glutamate uptake/release, ischemic pathway, oligodendrocytes,
- Publikační typ
- časopisecké články MeSH
A plethora of neurological disorders shares a final common deadly pathway known as excitotoxicity. Among these disorders, ischemic injury is a prominent cause of death and disability worldwide. Brain ischemia stems from cardiac arrest or stroke, both responsible for insufficient blood supply to the brain parenchyma. Glucose and oxygen deficiency disrupts oxidative phosphorylation, which results in energy depletion and ionic imbalance, followed by cell membrane depolarization, calcium (Ca2+) overload, and extracellular accumulation of excitatory amino acid glutamate. If tight physiological regulation fails to clear the surplus of this neurotransmitter, subsequent prolonged activation of glutamate receptors forms a vicious circle between elevated concentrations of intracellular Ca2+ ions and aberrant glutamate release, aggravating the effect of this ischemic pathway. The activation of downstream Ca2+-dependent enzymes has a catastrophic impact on nervous tissue leading to cell death, accompanied by the formation of free radicals, edema, and inflammation. After decades of "neuron-centric" approaches, recent research has also finally shed some light on the role of glial cells in neurological diseases. It is becoming more and more evident that neurons and glia depend on each other. Neuronal cells, astrocytes, microglia, NG2 glia, and oligodendrocytes all have their roles in what is known as glutamate excitotoxicity. However, who is the main contributor to the ischemic pathway, and who is the unsuspecting victim? In this review article, we summarize the so-far-revealed roles of cells in the central nervous system, with particular attention to glial cells in ischemia-induced glutamate excitotoxicity, its origins, and consequences.
Zobrazit více v PubMed
Abdullaev I. F., Rudkouskaya A., Schools G. P., Kimelberg H. K., Mongin A. A. (2006). Pharmacological comparison of swelling-activated excitatory amino acid release and Cl− currents in cultured rat astrocytes. J. Physiol. 572, 677–689. 10.1113/jphysiol.2005.103820 PubMed DOI PMC
Adams K. L., Gallo V. (2018). The diversity and disparity of the glial scar. Nat. Neurosci. 21, 9–15. 10.1038/s41593-017-0033-9 PubMed DOI PMC
Ahrendsen J. T., Grewal H. S., Hickey S. P., Culp C. M., Gould E. A., Shimizu T., et al. . (2016). Juvenile striatal white matter is resistant to ischemia-induced damage. Glia 64, 1972–1986. 10.1002/glia.23036 PubMed DOI PMC
Aizenman E., Sinor J. D., Brimecombe J. C., Herin G. A. (2000). Alterations of N-methyl-D-aspartate receptor properties after chemical ischemia. J. Pharmacol. Exp. Ther. 295, 572–577. PubMed
Akanuma S., Zakoji N., Kubo Y., Hosoya K. (2015). In vitro study of L-glutamate and l-glutamine transport in retinal pericytes: involvement of excitatory amino acid transporter 1 and alanine-serine-cysteine transporter 2. Biol. Pharm. Bull. 38, 901–908. 10.1248/bpb.b15-00133 PubMed DOI
Alberdi E., Sánchez-Gómez M. V., Marino A., Matute C. (2002). Ca2+ influx through AMPA or kainate receptors alone is sufficient to initiate excitotoxicity in cultured oligodendrocytes. Neurobiol. Dis. 9, 234–243. 10.1006/nbdi.2001.0457 PubMed DOI
Allen N. J., Eroglu C. (2017). Cell biology of astrocyte-synapse interactions. Neuron 96, 697–708. 10.1016/j.neuron.2017.09.056 PubMed DOI PMC
Allen N. J., Káradóttir R., Attwell D. (2004). Reversal or reduction of glutamate and GABA transport in CNS pathology and therapy. Pflugers Arch. 449, 132–142. 10.1007/s00424-004-1318-x PubMed DOI
Amani M., Zolghadrnasab M., Salari A. A. (2019). NMDA receptor in the hippocampus alters neurobehavioral phenotypes through inflammatory cytokines in rats with sporadic Alzheimer-like disease. Physiol. Behav. 202, 52–61. 10.1016/j.physbeh.2019.01.005 PubMed DOI
Amantea D., Greco R., Micieli G., Bagetta G. (2018). Paradigm shift to neuroimmunomodulation for translational neuroprotection in stroke. Front. Neurosci. 12:241. 10.3389/fnins.2018.00241 PubMed DOI PMC
Anderova M., Vorisek I., Pivonkova H., Benesova J., Vargova L., Cicanic M., et al. . (2011). Cell death/proliferation and alterations in glial morphology contribute to changes in diffusivity in the rat hippocampus after hypoxia-ischemia. J. Cereb. Blood Flow Metab. 31, 894–907. 10.1038/jcbfm.2010.168 PubMed DOI PMC
Andrade A. L., Rossi D. J. (2010). Simulated ischaemia induces Ca2+-independent glutamatergic vesicle release through actin filament depolymerization in area CA1 of the hippocampus. J. Physiol. 588, 1499–1514. 10.1113/jphysiol.2010.187609 PubMed DOI PMC
Andreeva K., Zhang M., Fan W., Li X., Chen Y., Rebolledo-Mendez J. D., et al. . (2014). Time-dependent gene profiling indicates the presence of different phases for ischemia/reperfusion injury in retina. Ophthalmol. Eye Dis. 6, 43–54. 10.4137/oed.s17671 PubMed DOI PMC
Angulo M. C., Kozlov A. S., Charpak S., Audinat E. (2004). Glutamate released from glial cells synchronizes neuronal activity in the hippocampus. J. Neurosci. 24, 6920–6927. 10.1523/JNEUROSCI.0473-04.2004 PubMed DOI PMC
Araque A., Carmignoto G., Haydon P. G., Oliet S. H., Robitaille R., Volterra A. (2014). Gliotransmitters travel in time and space. Neuron 81, 728–739. 10.1016/j.neuron.2014.02.007 PubMed DOI PMC
Arbeloa J., Pérez-Samartín A., Gottlieb M., Matute C. (2012). P2X7 receptor blockade prevents ATP excitotoxicity in neurons and reduces brain damage after ischemia. Neurobiol. Dis. 45, 954–961. 10.1016/j.nbd.2011.12.014 PubMed DOI
Arranz A. M., Gottlieb M., Pérez-Cerdá F., Matute C. (2010). Increased expression of glutamate transporters in subcortical white matter after transient focal cerebral ischemia. Neurobiol. Dis. 37, 156–165. 10.1016/j.nbd.2009.09.019 PubMed DOI
Astrup J., Symon L., Branston N. M., Lassen N. A. (1977). Cortical evoked potential and extracellular K+ and H+ at critical levels of brain ischemia. Stroke 8, 51–57. 10.1161/01.str.8.1.51 PubMed DOI
Atoji Y., Sarkar S. (2019). Localization of AMPA, kainate, and NMDA receptor mRNAs in the pigeon cerebellum. J. Chem. Neuroanat. 98, 71–79. 10.1016/j.jchemneu.2019.04.004 PubMed DOI
Back S. A., Han B. H., Luo N. L., Chricton C. A., Xanthoudakis S., Tam J., et al. . (2002). Selective vulnerability of late oligodendrocyte progenitors to hypoxia-ischemia. J. Neurosci. 22, 455–463. 10.1523/JNEUROSCI.22-02-00455.2002 PubMed DOI PMC
Baltan S. (2014). Excitotoxicity and mitochondrial dysfunction underlie age-dependent ischemic white matter injury. Adv. Neurobiol. 11, 151–170. 10.1007/978-3-319-08894-5_8 PubMed DOI PMC
Baltan S. (2016). Age-specific localization of NMDA receptors on oligodendrocytes dictates axon function recovery after ischemia. Neuropharmacology 110, 626–632. 10.1016/j.neuropharm.2015.09.015 PubMed DOI PMC
Baltan S., Besancon E. F., Mbow B., Ye Z., Hamner M. A., Ransom B. R. (2008). White matter vulnerability to ischemic injury increases with age because of enhanced excitotoxicity. J. Neurosci. 28, 1479–1489. 10.1523/JNEUROSCI.5137-07.2008 PubMed DOI PMC
Bano D., Young K. W., Guerin C. J., Lefeuvre R., Rothwell N. J., Naldini L., et al. . (2005). Cleavage of the plasma membrane Na+/Ca2+ exchanger in excitotoxicity. Cell 120, 275–285. 10.1016/j.cell.2004.11.049 PubMed DOI
Baron J. C. (2001). Perfusion thresholds in human cerebral ischemia: historical perspective and therapeutic implications. Cerebrovasc. Dis. 11, 2–8. 10.1159/000049119 PubMed DOI
Barres B. A. (2008). The mystery and magic of glia: a perspective on their roles in health and disease. Neuron 60, 430–440. 10.1016/j.neuron.2008.10.013 PubMed DOI
Belayev L., Zhao W., Busto R., Ginsberg M. D. (1997). Transient middle cerebral artery occlusion by intraluminal suture: I. Three-dimensional autoradiographic image-analysis of local cerebral glucose metabolism-blood flow interrelationships during ischemia and early recirculation. J. Cereb. Blood Flow Metab. 17, 1266–1280. 10.1097/00004647-199712000-00002 PubMed DOI
Bell K. F., Al-Mubarak B., Martel M. A., McKay S., Wheelan N., Hasel P., et al. . (2015). Neuronal development is promoted by weakened intrinsic antioxidant defences due to epigenetic repression of Nrf2. Nat. Commun. 6:7066. 10.1038/ncomms8066 PubMed DOI PMC
Bender A. S., Schousboe A., Reichelt W., Norenberg M. D. (1998). Ionic mechanisms in glutamate-induced astrocyte swelling: role of K+ influx. J. Neurosci. Res. 52, 307–321. 10.1002/(sici)1097-4547(19980501)52:3<307::aid-jnr7>3.0.co;2-h PubMed DOI
Berger U. V., Hediger M. A. (2000). Distribution of the glutamate transporters GLAST and GLT-1 in rat circumventricular organs, meninges, and dorsal root ganglia. J. Comp. Neurol. 421, 385–399. 10.1002/(sici)1096-9861(20000605)421:3<385::aid-cne7>3.0.co;2-s PubMed DOI
Bergersen L. H., Morland C., Ormel L., Rinholm J. E., Larsson M., Wold J. F., et al. . (2012). Immunogold detection of L-glutamate and D-serine in small synaptic-like microvesicles in adult hippocampal astrocytes. Cereb. Cortex 22, 1690–1697. 10.1093/cercor/bhr254 PubMed DOI
Beschorner R., Simon P., Schauer N., Mittelbronn M., Schluesener H. J., Trautmann K., et al. . (2007). Reactive astrocytes and activated microglial cells express EAAT1, but not EAAT2, reflecting a neuroprotective potential following ischaemia. Histopathology 50, 897–910. 10.1111/j.1365-2559.2007.02703.x PubMed DOI
Bezzi P., Domercq M., Vesce S., Volterra A. (2001). Neuron-astrocyte cross-talk during synaptic transmission: physiological and neuropathological implications. Prog. Brain Res. 132, 255–265. 10.1016/s0079-6123(01)32081-2 PubMed DOI
Bezzi P., Gundersen V., Galbete J. L., Seifert G., Steinhauser C., Pilati E., et al. . (2004). Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat. Neurosci. 7, 613–620. 10.1038/nn1246 PubMed DOI
Blackshaw L. A., Page A. J., Young R. L. (2011). Metabotropic glutamate receptors as novel therapeutic targets on visceral sensory pathways. Front. Neurosci. 5:40. 10.3389/fnins.2011.00040 PubMed DOI PMC
Bohmbach K., Schwarz M. K., Schoch S., Henneberger C. (2018). The structural and functional evidence for vesicular release from astrocytes in situ. Brain Res. Bull. 136, 65–75. 10.1016/j.brainresbull.2017.01.015 PubMed DOI
Bowens N. H., Dohare P., Kuo Y. H., Mongin A. A. (2013). DCPIB, the proposed selective blocker of volume-regulated anion channels, inhibits several glutamate transport pathways in glial cells. Mol. Pharmacol. 83, 22–32. 10.1124/mol.112.080457 PubMed DOI PMC
Bramlett H. M., Dietrich W. D. (2004). Pathophysiology of cerebral ischemia and brain trauma: similarities and differences. J. Cereb. Blood Flow Metab. 24, 133–150. 10.1097/01.wcb.0000111614.19196.04 PubMed DOI
Brickley S. G., Misra C., Mok M. H., Mishina M., Cull-Candy S. G. (2003). NR2B and NR2D subunits coassemble in cerebellar Golgi cells to form a distinct NMDA receptor subtype restricted to extrasynaptic sites. J. Neurosci. 23, 4958–4966. 10.1523/JNEUROSCI.23-12-04958.2003 PubMed DOI PMC
Bridges R., Lutgen V., Lobner D., Baker D. A. (2012). Thinking outside the cleft to understand synaptic activity: contribution of the cystine-glutamate antiporter (System xc−) to normal and pathological glutamatergic signaling. Pharmacol. Rev. 64, 780–802. 10.1124/pr.110.003889 PubMed DOI PMC
Broughton B. R., Reutens D. C., Sobey C. G. (2009). Apoptotic mechanisms after cerebral ischemia. Stroke 40, e331–e339. 10.1161/strokeaha.108.531632 PubMed DOI
Burns K. A., Murphy B., Danzer S. C., Kuan C. Y. (2009). Developmental and post-injury cortical gliogenesis: a genetic fate-mapping study with Nestin-CreER mice. Glia 57, 1115–1129. 10.1002/glia.20835 PubMed DOI PMC
Burnstock G. (2017). Purinergic signalling and neurological diseases: an update. CNS Neurol. Disord. Drug Targets 16, 257–265. 10.2174/1871527315666160922104848 PubMed DOI
Burzomato V., Frugier G., Pérez-Otaño I., Kittler J. T., Attwell D. (2010). The receptor subunits generating NMDA receptor mediated currents in oligodendrocytes. J. Physiol. 588, 3403–3414. 10.1113/jphysiol.2010.195503 PubMed DOI PMC
Buser J. R., Segovia K. N., Dean J. M., Nelson K., Beardsley D., Gong X., et al. . (2010). Timing of appearance of late oligodendrocyte progenitors coincides with enhanced susceptibility of preterm rabbit cerebral white matter to hypoxia-ischemia. J. Cereb. Blood Flow Metab. 30, 1053–1065. 10.1038/jcbfm.2009.286 PubMed DOI PMC
Butenko O., Dzamba D., Benesova J., Honsa P., Benfenati V., Rusnakova V., et al. . (2012). The increased activity of TRPV4 channel in the astrocytes of the adult rat hippocampus after cerebral hypoxia/ischemia. PLoS One 7:e39959. 10.1371/journal.pone.0039959 PubMed DOI PMC
Bylicky M. A., Mueller G. P., Day R. M. (2018). Mechanisms of endogenous neuroprotective effects of astrocytes in brain injury. Oxid. Med. Cell. Longev. 2018:6501031. 10.1155/2018/6501031 PubMed DOI PMC
Cai Q., Ma T., Li C., Tian Y., Li H. (2016). Catalpol protects pre-myelinating oligodendrocytes against ischemia-induced oxidative injury through ERK1/2 signaling pathway. Int. J. Biol. Sci. 12, 1415–1426. 10.7150/ijbs.16823 PubMed DOI PMC
Ceprian M., Fulton D. (2019). Glial cell AMPA receptors in nervous system health, injury and disease. Int. J. Mol. Sci. 20:E2450. 10.3390/ijms20102450 PubMed DOI PMC
Chan P. H. (2001). Reactive oxygen radicals in signaling and damage in the ischemic brain. J. Cereb. Blood Flow Metab. 21, 2–14. 10.1097/00004647-200101000-00002 PubMed DOI
Chan P. H., Chu L. (1990). Mechanisms underlying glutamate-induced swelling of astrocytes in primary culture. Acta Neurochir. Suppl. 51, 7–10. 10.1007/978-3-7091-9115-6_3 PubMed DOI
Chan P. H., Chu L., Chen S. (1990). Effects of MK-801 on glutamate-induced swelling of astrocytes in primary cell culture. J. Neurosci. Res. 25, 87–93. 10.1002/jnr.490250111 PubMed DOI
Chaudhry F. A., Lehre K. P., van Lookeren Campagne M., Ottersen O. P., Danbolt N. C., Storm-Mathisen J. (1995). Glutamate transporters in glial plasma membranes: highly differentiated localizations revealed by quantitative ultrastructural immunocytochemistry. Neuron 15, 711–720. 10.1016/0896-6273(95)90158-2 PubMed DOI
Chen M., Dong Y., Simard J. M. (2003). Functional coupling between sulfonylurea receptor type 1 and a nonselective cation channel in reactive astrocytes from adult rat brain. J. Neurosci. 23, 8568–8577. 10.1523/JNEUROSCI.23-24-08568.2003 PubMed DOI PMC
Chen J. C., Hsu-Chou H., Lu J. L., Chiang Y. C., Huang H. M., Wang H. L., et al. . (2005). Down-regulation of the glial glutamate transporter GLT-1 in rat hippocampus and striatum and its modulation by a group III metabotropic glutamate receptor antagonist following transient global forebrain ischemia. Neuropharmacology 49, 703–714. 10.1016/j.neuropharm.2005.05.002 PubMed DOI
Chen X., Lu M., He X., Ma L., Birnbaumer L., Liao Y. (2017). TRPC3/6/7 knockdown protects the brain from cerebral ischemia injury via astrocyte apoptosis inhibition and effects on NF-κB translocation. Mol. Neurobiol. 54, 7555–7566. 10.1007/s12035-016-0227-2 PubMed DOI
Chen M., Simard J. M. (2001). Cell swelling and a nonselective cation channel regulated by internal Ca2+ and ATP in native reactive astrocytes from adult rat brain. J. Neurosci. 21, 6512–6521. 10.1523/JNEUROSCI.21-17-06512.2001 PubMed DOI PMC
Chen H., Tian M., Jin L., Jia H., Jin Y. (2015). PUMA is invovled in ischemia/reperfusion-induced apoptosis of mouse cerebral astrocytes. Neuroscience 284, 824–832. 10.1016/j.neuroscience.2014.10.059 PubMed DOI
Chisholm N. C., Sohrabji F. (2016). Astrocytic response to cerebral ischemia is influenced by sex differences and impaired by aging. Neurobiol. Dis. 85, 245–253. 10.1016/j.nbd.2015.03.028 PubMed DOI PMC
Colangelo V., Gordon W. C., Mukherjee P. K., Trivedi P., Ottino P. (2004). Downregulation of COX-2 and JNK expression after induction of ischemic tolerance in the gerbil brain. Brain Res. 1016, 195–200. 10.1016/j.brainres.2004.05.017 PubMed DOI
Connor J. R., Menzies S. L. (1996). Relationship of iron to oligodendrocytes and myelination. Glia 17, 83–93. 10.1002/(SICI)1098-1136(199606)17:2<83::AID-GLIA1>3.0.CO;2-7 PubMed DOI
Crespo A. R., Da Rocha A. B., Jotz G. P., Schneider R. F., Grivicich I., Pinheiro K., et al. . (2007). Increased serum sFas and TNFα following isolated severe head injury in males. Brain Inj. 21, 441–447. 10.1080/02699050701311125 PubMed DOI
Cuartero M. I., de la Parra J., Garcia-Culebras A., Ballesteros I., Lizasoain I., Moro M. A. (2016). The kynurenine pathway in the acute and chronic phases of cerebral ischemia. Curr. Pharm. Des. 22, 1060–1073. 10.2174/1381612822666151214125950 PubMed DOI PMC
Dai X., Chen J., Xu F., Zhao J., Cai W., Sun Z., et al. . (2020). TGFα preserves oligodendrocyte lineage cells and improves white matter integrity after cerebral ischemia. J. Cereb. Blood Flow Metab. 40, 639–655. 10.1177/0271678X19830791 PubMed DOI PMC
Dale N., Frenguelli B. G. (2009). Release of adenosine and ATP during ischemia and epilepsy. Curr. Neuropharmacol. 7, 160–179. 10.2174/157015909789152146 PubMed DOI PMC
D’Antoni S., Berretta A., Bonaccorso C. M., Bruno V., Aronica E., Nicoletti F., et al. . (2008). Metabotropic glutamate receptors in glial cells. Neurochem. Res. 33, 2436–2443. 10.1007/s11064-008-9694-9 PubMed DOI
Danysz W., Parsons C. G. (2003). The NMDA receptor antagonist memantine as a symptomatological and neuroprotective treatment for Alzheimer’s disease: preclinical evidence. Int. J. Geriatr. Psychiatry 18, S23–S32. 10.1002/gps.938 PubMed DOI
Davalos D., Grutzendler J., Yang G., Kim J. V., Zuo Y., Jung S., et al. . (2005). ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci. 8, 752–758. 10.1038/nn1472 PubMed DOI
Dave K. R., Lange-Asschenfeldt C., Raval A. P., Prado R., Busto R., Saul I., et al. . (2005). Ischemic preconditioning ameliorates excitotoxicity by shifting glutamate/γ-aminobutyric acid release and biosynthesis. J. Neurosci. Res. 82, 665–673. 10.1002/jnr.20674 PubMed DOI
Davidson J. O., Green C. R., Bennet L., Nicholson L. F., Danesh-Meyer H., O’Carroll S. J., et al. . (2013). A key role for connexin hemichannels in spreading ischemic brain injury. Curr. Drug Targets 14, 36–46. 10.2174/138945013804806479 PubMed DOI
Davis C. H., Kim K. Y., Bushong E. A., Mills E. A., Boassa D., Shih T., et al. . (2014). Transcellular degradation of axonal mitochondria. Proc. Natl. Acad. Sci. U S A 111, 9633–9638. 10.1073/pnas.1404651111 PubMed DOI PMC
Dehnes Y., Chaudhry F. A., Ullensvang K., Lehre K. P., Storm-Mathisen J., Danbolt N. C. (1998). The glutamate transporter EAAT4 in rat cerebellar Purkinje cells: a glutamate-gated chloride channel concentrated near the synapse in parts of the dendritic membrane facing astroglia. J. Neurosci. 18, 3606–3619. 10.1523/JNEUROSCI.18-10-03606.1998 PubMed DOI PMC
Deng W., Neve R. L., Rosenberg P. A., Volpe J. J., Jensen F. E. (2006). α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor subunit composition and cAMP-response element-binding protein regulate oligodendrocyte excitotoxicity. J. Biol. Chem. 281, 36004–36011. 10.1074/jbc.M606459200 PubMed DOI
Deng W., Poretz R. D. (2003). Oligodendroglia in developmental neurotoxicity. Neurotoxicology 24, 161–178. 10.1016/s0161-813x(02)00196-1 PubMed DOI
Deng W., Wang H., Rosenberg P. A., Volpe J. J., Jensen F. E. (2004). Role of metabotropic glutamate receptors in oligodendrocyte excitotoxicity and oxidative stress. Proc. Natl. Acad. Sci. U S A 101, 7751–7756. 10.1073/pnas.0307850101 PubMed DOI PMC
Deng Y., Xie D., Fang M., Zhu G., Chen C., Zeng H., et al. . (2014). Astrocyte-derived proinflammatory cytokines induce hypomyelination in the periventricular white matter in the hypoxic neonatal brain. PLoS One 9:e87420. 10.1371/journal.pone.0087420 PubMed DOI PMC
Desilva T. M., Kinney H. C., Borenstein N. S., Trachtenberg F. L., Irwin N., Volpe J. J., et al. . (2007). The glutamate transporter EAAT2 is transiently expressed in developing human cerebral white matter. J. Comp. Neurol. 501, 879–890. 10.1002/cne.21289 PubMed DOI PMC
Dhodda V. K., Sailor K. A., Bowen K. K., Vemuganti R. (2004). Putative endogenous mediators of preconditioning-induced ischemic tolerance in rat brain identified by genomic and proteomic analysis. J. Neurochem. 89, 73–89. 10.1111/j.1471-4159.2004.02316.x PubMed DOI
Diaz-Ruiz A., Montes S., Salgado-Ceballos H., Maldonado V., Rivera-Espinosa L., Ríos C. (2016). Enzyme activities involved in the glutamate-glutamine cycle are altered to reduce glutamate after spinal cord injury in rats. Neuroreport 27, 1317–1322. 10.1097/wnr.0000000000000700 PubMed DOI
Domercq M., Perez-Samartin A., Aparicio D., Alberdi E., Pampliega O., Matute C. (2010). P2X7 receptors mediate ischemic damage to oligodendrocytes. Glia 58, 730–740. 10.1002/glia.20958 PubMed DOI
Domercq M., Sánchez-Gómez M. V., Areso P., Matute C. (1999). Expression of glutamate transporters in rat optic nerve oligodendrocytes. Eur. J. Neurosci. 11, 2226–2236. 10.1046/j.1460-9568.1999.00639.x PubMed DOI
Domercq M., Sánchez-Gómez M. V., Sherwin C., Etxebarria E., Fern R., Matute C. (2007). System xc- and glutamate transporter inhibition mediates microglial toxicity to oligodendrocytes. J. Immunol. 178, 6549–6556. 10.4049/jimmunol.178.10.6549 PubMed DOI
Doyle S., Hansen D. B., Vella J., Bond P., Harper G., Zammit C., et al. . (2018). Vesicular glutamate release from central axons contributes to myelin damage. Nat. Commun. 9:1032. 10.1038/s41467-018-03427-1 PubMed DOI PMC
Doyle K. P., Simon R. P., Stenzel-Poore M. P. (2008). Mechanisms of ischemic brain damage. Neuropharmacology 55, 310–318. 10.1016/j.neuropharm.2008.01.005 PubMed DOI PMC
Drejer J., Larsson O. M., Schousboe A. (1982). Characterization of L-glutamate uptake into and release from astrocytes and neurons cultured from different brain regions. Exp. Brain Res. 47, 259–269. 10.1007/bf00239385 PubMed DOI
Du C., Hu R., Csernansky C. A., Hsu C. Y., Choi D. W. (1996). Very delayed infarction after mild focal cerebral ischemia: a role for apoptosis? J. Cereb. Blood Flow Metab. 16, 195–201. 10.1097/00004647-199603000-00003 PubMed DOI
Du Y., Wang W., Lutton A. D., Kiyoshi C. M., Ma B., Taylor A. T., et al. . (2018). Dissipation of transmembrane potassium gradient is the main cause of cerebral ischemia-induced depolarization in astrocytes and neurons. Exp. Neurol. 303, 1–11. 10.1016/j.expneurol.2018.01.019 PubMed DOI PMC
Duan S., Anderson C. M., Keung E. C., Chen Y., Swanson R. A. (2003). P2X7 receptor-mediated release of excitatory amino acids from astrocytes. J. Neurosci. 23, 1320–1328. 10.1523/JNEUROSCI.23-04-01320.2003 PubMed DOI PMC
Durán-Laforet V., Fernández-López D., García-Culebras A., González-Hijón J., Moraga A., Palma-Tortosa S., et al. . (2019). Delayed effects of acute reperfusion on vascular remodeling and late-phase functional recovery after stroke. Front. Neurosci. 13:767. 10.3389/fnins.2019.00767 PubMed DOI PMC
Dzamba D., Honsa P., Anderova M. (2013). NMDA receptors in glial cells: pending questions. Curr. Neuropharmacol. 11, 250–262. 10.2174/1570159x11311030002 PubMed DOI PMC
Eliasof S., Arriza J. L., Leighton B. H., Kavanaugh M. P., Amara S. G. (1998). Excitatory amino acid transporters of the salamander retina: identification, localization and function. J. Neurosci. 18, 698–712. 10.1523/JNEUROSCI.18-02-00698.1998 PubMed DOI PMC
Erecińska M., Silver I. A. (2001). Tissue oxygen tension and brain sensitivity to hypoxia. Respir. Physiol. 128, 263–276. 10.1016/s0034-5687(01)00306-1 PubMed DOI
Eyo U. B., Miner S. A., Ahlers K. E., Wu L. J., Dailey M. E. (2013). P2X7 receptor activation regulates microglial cell death during oxygen-glucose deprivation. Neuropharmacology 73, 311–319. 10.1016/j.neuropharm.2013.05.032 PubMed DOI PMC
Fairman W. A., Vandenberg R. J., Arriza J. L., Kavanaugh M. P., Amara S. G. (1995). An excitatory amino-acid transporter with properties of a ligand-gated chloride channel. Nature 375, 599–603. 10.1038/375599a0 PubMed DOI
Falahati S., Breu M., Waickman A. T., Phillips A. W., Arauz E. J., Snyder S., et al. . (2013). Ischemia-induced neuroinflammation is associated with disrupted development of oligodendrocyte progenitors in a model of periventricular leukomalacia. Dev. Neurosci. 35, 182–196. 10.1159/000346682 PubMed DOI PMC
Feng X., Yang F., Rabenstein M., Wang Z., Frech M. J., Wree A., et al. . (2019). Stimulation of mGluR1/5 improves defective internalization of AMPA receptors in NPC1 mutant mouse. Cereb. Cortex [Epub ahead of print]. 10.1093/cercor/bhz179 PubMed DOI
Fern R., Matute C. (2019). Glutamate receptors and white matter stroke. Neurosci. Lett. 694, 86–92. 10.1016/j.neulet.2018.11.031 PubMed DOI
Fern R., Moller T. (2000). Rapid ischemic cell death in immature oligodendrocytes: a fatal glutamate release feedback loop. J. Neurosci. 20, 34–42. 10.1523/JNEUROSCI.20-01-00034.2000 PubMed DOI PMC
Feustel P. J., Jin Y., Kimelberg H. K. (2004). Volume-regulated anion channels are the predominant contributors to release of excitatory amino acids in the ischemic cortical penumbra. Stroke 35, 1164–1168. 10.1161/01.str.0000124127.57946.a1 PubMed DOI
Fiacco T. A., McCarthy K. D. (2018). Multiple lines of evidence indicate that gliotransmission does not occur under physiological conditions. J. Neurosci. 38, 3–13. 10.1523/JNEUROSCI.0016-17.2017 PubMed DOI PMC
French H. M., Reid M., Mamontov P., Simmons R. A., Grinspan J. B. (2009). Oxidative stress disrupts oligodendrocyte maturation. J. Neurosci. Res. 87, 3076–3087. 10.1002/jnr.22139 PubMed DOI PMC
Fricker M., Tolkovsky A. M., Borutaite V., Coleman M., Brown G. C. (2018). Neuronal cell death. Physiol. Rev. 98, 813–880. 10.1152/physrev.00011.2017 PubMed DOI PMC
Fujimoto S., Katsuki H., Kume T., Kaneko S., Akaike A. (2004). Mechanisms of oxygen glucose deprivation-induced glutamate release from cerebrocortical slice cultures. Neurosci. Res. 50, 179–187. 10.1016/j.neures.2004.06.013 PubMed DOI
Fukamachi S., Furuta A., Ikeda T., Ikenoue T., Kaneoka T., Rothstein J. D., et al. . (2001). Altered expressions of glutamate transporter subtypes in rat model of neonatal cerebral hypoxia-ischemia. Dev. Brain Res. 132, 131–139. 10.1016/s0165-3806(01)00303-0 PubMed DOI
Furness D. N., Dehnes Y., Akhtar A. Q., Rossi D. J., Hamann M., Grutle N. J., et al. . (2008). A quantitative assessment of glutamate uptake into hippocampal synaptic terminals and astrocytes: new insights into a neuronal role for excitatory amino acid transporter 2 (EAAT2). Neuroscience 157, 80–94. 10.1016/j.neuroscience.2008.08.043 PubMed DOI PMC
Furuta A., Rothstein J. D., Martin L. J. (1997). Glutamate transporter protein subtypes are expressed differentially during rat CNS development. J. Neurosci. 17, 8363–8375. 10.1523/JNEUROSCI.17-21-08363.1997 PubMed DOI PMC
Gagliardi R. J. (2000). Neuroprotection, excitotoxicity and NMDA antagonists. Arq. Neuropsiquiatr. 58, 583–588. 10.1590/s0004-282x2000000300030 PubMed DOI
Ganel R., Ho T., Maragakis N. J., Jackson M., Steiner J. P., Rothstein J. D. (2006). Selective up-regulation of the glial Na+-dependent glutamate transporter GLT1 by a neuroimmunophilin ligand results in neuroprotection. Neurobiol. Dis. 21, 556–567. 10.1016/j.nbd.2005.08.014 PubMed DOI
Giaume C., Leybaert L., Naus C. C., Sáez J. C. (2013). Connexin and pannexin hemichannels in brain glial cells: properties, pharmacology, and roles. Front. Pharmacol. 4:88. 10.3389/fphar.2013.00088 PubMed DOI PMC
Gidday J. M., Shah A. R., Maceren R. G., Wang Q., Pelligrino D. A., Holtzman D. M., et al. . (1999). Nitric oxide mediates cerebral ischemic tolerance in a neonatal rat model of hypoxic preconditioning. J. Cereb. Blood Flow Metab. 19, 331–340. 10.1097/00004647-199903000-00011 PubMed DOI
Ginsberg M. D. (2003). Adventures in the pathophysiology of brain ischemia: penumbra, gene expression, neuroprotection: the 2002 Thomas Willis Lecture. Stroke 34, 214–223. 10.1161/01.str.0000048846.09677.62 PubMed DOI
Girling K. D., Demers M. J., Laine J., Zhang S., Wang Y. T., Graham R. K. (2018). Activation of caspase-6 and cleavage of caspase-6 substrates is an early event in NMDA receptor-mediated excitotoxicity. J. Neurosci. Res. 96, 391–406. 10.1002/jnr.24153 PubMed DOI
Gong S. J., Chen L. Y., Zhang M., Gong J. X., Ma Y. X., Zhang J. M., et al. . (2012). Intermittent hypobaric hypoxia preconditioning induced brain ischemic tolerance by up-regulating glial glutamate transporter-1 in rats. Neurochem. Res. 37, 527–537. 10.1007/s11064-011-0639-3 PubMed DOI
Gottlieb M., Matute C. (1997). Expression of ionotropic glutamate receptor subunits in glial cells of the hippocampal CA1 area following transient forebrain ischemia. J. Cereb. Blood Flow Metab. 17, 290–300. 10.1097/00004647-199703000-00006 PubMed DOI
Grygorowicz T., Struzyńska L., Sulkowski G., Chalimoniuk M., Sulejczak D. (2010). Temporal expression of P2X7 purinergic receptor during the course of experimental autoimmune encephalomyelitis. Neurochem. Int. 57, 823–829. 10.1016/j.neuint.2010.08.021 PubMed DOI
Gülke E., Gelderblom M., Magnus T. (2018). Danger signals in stroke and their role on microglia activation after ischemia. Ther. Adv. Neurol. Disord. 11:1756286418774254. 10.1177/1756286418774254 PubMed DOI PMC
Gundersen V., Storm-Mathisen J., Bergersen L. H. (2015). Neuroglial transmission. Physiol. Rev. 95, 695–726. 10.1152/physrev.00024.2014 PubMed DOI
Guo C. Y., Xiong T. Q., Tan B. H., Gui Y., Ye N., Li S. L., et al. . (2019). The temporal and spatial changes of actin cytoskeleton in the hippocampal CA1 neurons following transient global ischemia. Brain Res. 1720:146297. 10.1016/j.brainres.2019.06.016 PubMed DOI
Gupta S. (2003). Molecular signaling in death receptor and mitochondrial pathways of apoptosis (Review). Int. J. Oncol. 22, 15–20. 10.3892/ijo.22.1.15 PubMed DOI
Gupta K., Hardingham G. E., Chandran S. (2013). NMDA receptor-dependent glutamate excitotoxicity in human embryonic stem cell-derived neurons. Neurosci. Lett. 543, 95–100. 10.1016/j.neulet.2013.03.010 PubMed DOI PMC
Hamilton N. B., Attwell D. (2010). Do astrocytes really exocytose neurotransmitters? Nat. Rev. Neurosci. 11, 227–238. 10.1038/nrn2803 PubMed DOI
Hamilton N., Vayro S., Kirchhoff F., Verkhratsky A., Robbins J., Gorecki D. C., et al. . (2008). Mechanisms of ATP- and glutamate-mediated calcium signaling in white matter astrocytes. Glia 56, 734–749. 10.1002/glia.20649 PubMed DOI
Hansen A. J., Nedergaard M. (1988). Brain ion homeostasis in cerebral ischemia. Neurochem. Pathol. 9, 195–209. 10.1007/bf03160362 PubMed DOI
Hansen D. B., Ye Z. C., Calloe K., Braunstein T. H., Hofgaard J. P., Ransom B. R., et al. . (2014). Activation, permeability, and inhibition of astrocytic and neuronal large pore (hemi)channels. J. Biol. Chem. 289, 26058–26073. 10.1074/jbc.M114.582155 PubMed DOI PMC
Hansson E. (1994). Metabotropic glutamate receptor activation induces astroglial swelling. J. Biol. Chem. 269, 21955–21961. PubMed
Harrigan T. J., Abdullaev I. F., Jourd’heuil D., Mongin A. A. (2008). Activation of microglia with zymosan promotes excitatory amino acid release via volume-regulated anion channels: the role of NADPH oxidases. J. Neurochem. 106, 2449–2462. 10.1111/j.1471-4159.2008.05553.x PubMed DOI PMC
Hartings J. A., Shuttleworth C. W., Kirov S. A., Ayata C., Hinzman J. M., Foreman B., et al. . (2017). The continuum of spreading depolarizations in acute cortical lesion development: examining Leao’s legacy. J. Cereb. Blood Flow Metab. 37, 1571–1594. 10.1177/0271678X16654495 PubMed DOI PMC
Harukuni I., Bhardwaj A. (2006). Mechanisms of brain injury after global cerebral ischemia. Neurol. Clin. 24, 1–21. 10.1016/j.ncl.2005.10.004 PubMed DOI
Harvey B. K., Airavaara M., Hinzman J., Wires E. M., Chiocco M. J., Howard D. B., et al. . (2011). Targeted over-expression of glutamate transporter 1 (GLT-1) reduces ischemic brain injury in a rat model of stroke. PLoS One 6:e22135. 10.1371/journal.pone.0022135 PubMed DOI PMC
Hawkins R. A., Viña J. R. (2016). How glutamate is managed by the blood-brain barrier. Biology 5:E37. 10.3390/biology5040037 PubMed DOI PMC
Hayakawa K., Esposito E., Wang X., Terasaki Y., Liu Y., Xing C., et al. . (2016). Transfer of mitochondria from astrocytes to neurons after stroke. Nature 535, 551–555. 10.1038/nature18928 PubMed DOI PMC
Haynes R. L., Folkerth R. D., Keefe R. J., Sung I., Swzeda L. I., Rosenberg P. A., et al. . (2003). Nitrosative and oxidative injury to premyelinating oligodendrocytes in periventricular leukomalacia. J. Neuropathol. Exp. Neurol. 62, 441–450. 10.1093/jnen/62.5.441 PubMed DOI
Heiss W. D., Sobesky J., Hesselmann V. (2004). Identifying thresholds for penumbra and irreversible tissue damage. Stroke 35, 2671–2674. 10.1161/01.str.0000143329.81997.8a PubMed DOI
Heurteaux C., Guy N., Laigle C., Blondeau N., Duprat F., Mazzuca M., et al. . (2004). TREK-1, a K+ channel involved in neuroprotection and general anesthesia. EMBO J. 23, 2684–2695. 10.1038/sj.emboj.7600234 PubMed DOI PMC
Hinzman J. M., DiNapoli V. A., Mahoney E. J., Gerhardt G. A., Hartings J. A. (2015). Spreading depolarizations mediate excitotoxicity in the development of acute cortical lesions. Exp. Neurol. 267, 243–253. 10.1016/j.expneurol.2015.03.014 PubMed DOI
Honsa P., Pivonkova H., Dzamba D., Filipova M., Anderova M. (2012). Polydendrocytes display large lineage plasticity following focal cerebral ischemia. PLoS One 7:e36816. 10.1371/journal.pone.0036816 PubMed DOI PMC
Hossmann K. A. (1996). Periinfarct depolarizations. Cerebrovasc. Brain Metab. Rev. 8, 195–208. PubMed
Hu X., Yang J., Sun Y., Gao X., Zhang L., Li Y., et al. . (2018). Lanthanum chloride impairs memory in rats by disturbing the glutamate-glutamine cycle and over-activating NMDA receptors. Food Chem. Toxicol. 113, 1–13. 10.1016/j.fct.2018.01.023 PubMed DOI
Husain J., Juurlink B. H. J. (1995). Oligodendroglial precursor cell susceptibility to hypoxia is related to poor ability to cope with reactive oxygen species. Brain Res. 698, 86–94. 10.1016/0006-8993(95)00832-b PubMed DOI
Iadecola C., Sugimoto K., Niwa K., Kazama K., Ross M. E. (2001). Increased susceptibility to ischemic brain injury in cyclooxygenase-1-deficient mice. J. Cereb. Blood Flow Metab. 21, 1436–1441. 10.1097/00004647-200112000-00008 PubMed DOI
Illarionova N. B., Gunnarson E., Li Y., Brismar H., Bondar A., Zelenin S., et al. . (2010). Functional and molecular interactions between aquaporins and Na,K-ATPase. Neuroscience 168, 915–925. 10.1016/j.neuroscience.2009.11.062 PubMed DOI
Imura Y., Morizawa Y., Komatsu R., Shibata K., Shinozaki Y., Kasai H., et al. . (2013). Microglia release ATP by exocytosis. Glia 61, 1320–1330. 10.1002/glia.22517 PubMed DOI
Inoue H., Okada Y. (2007). Roles of volume-sensitive chloride channel in excitotoxic neuronal injury. J. Neurosci. 27, 1445–1455. 10.1523/jneurosci.4694-06.2007 PubMed DOI PMC
Itoh T., Beesley J., Itoh A., Cohen A. S., Kavanaugh B., Coulter D. A., et al. . (2002). AMPA glutamate receptor-mediated calcium signaling is transiently enhanced during development of oligodendrocytes. J. Neurochem. 81, 390–402. 10.1046/j.1471-4159.2002.00866.x PubMed DOI
Jabaudon D., Scanziani M., Gahwiler B. H., Gerber U. (2000). Acute decrease in net glutamate uptake during energy deprivation. Proc. Natl. Acad. Sci. U S A 97, 5610–5615. 10.1073/pnas.97.10.5610 PubMed DOI PMC
Jayakumar A. R., Taherian M., Panickar K. S., Shamaladevi N., Rodriguez M. E., Price B. G., et al. . (2018). Differential response of neural cells to trauma-induced swelling in vitro. Neurochem. Res. 43, 397–406. 10.1007/s11064-017-2434-2 PubMed DOI
Jha R. M., Kochanek P. M., Simard J. M. (2019). Pathophysiology and treatment of cerebral edema in traumatic brain injury. Neuropharmacology 145, 230–246. 10.1016/j.neuropharm.2018.08.004 PubMed DOI PMC
Jung S., Wiest R., Gralla J., McKinley R., Mattle H., Liebeskind D. (2017). Relevance of the cerebral collateral circulation in ischaemic stroke: time is brain, but collaterals set the pace. Swiss Med. Wkly. 147:w14538. 10.4414/smw.2017.14538 PubMed DOI
Juurlink B. H., Thorburne S. K., Hertz L. (1998). Peroxide-scavenging deficit underlies oligodendrocyte susceptibility to oxidative stress. Glia 22, 371–378. 10.1002/(sici)1098-1136(199804)22:4<371::aid-glia6>3.0.co;2-6 PubMed DOI
Kahles T., Luedike P., Endres M., Galla H. J., Steinmetz H., Busse R., et al. . (2007). NADPH oxidase plays a central role in blood-brain barrier damage in experimental stroke. Stroke 38, 3000–3006. 10.1161/strokeaha.107.489765 PubMed DOI
Kalogeris T., Bao Y., Korthuis R. J. (2014). Mitochondrial reactive oxygen species: a double edged sword in ischemia/reperfusion vs. preconditioning. Redox Biol. 2, 702–714. 10.1016/j.redox.2014.05.006 PubMed DOI PMC
Kanai Y., Hediger M. A. (2004). The glutamate/neutral amino acid transporter family SLC1: molecular, physiological and pharmacological aspects. Pflugers Arch. 447, 469–479. 10.1007/s00424-003-1146-4 PubMed DOI
Kang J., Kang N., Lovatt D., Torres A., Zhao Z., Lin J., et al. . (2008). Connexin 43 hemichannels are permeable to ATP. J. Neurosci. 28, 4702–4711. 10.1523/jneurosci.5048-07.2008 PubMed DOI PMC
Káradóttir R., Attwell D. (2007). Neurotransmitter receptors in the life and death of oligodendrocytes. Neuroscience 145, 1426–1438. 10.1016/j.neuroscience.2006.08.070 PubMed DOI PMC
Káradóttir R., Cavelier P., Bergersen L. H., Attwell D. (2005). NMDA receptors are expressed in oligodendrocytes and activated in ischaemia. Nature 438, 1162–1166. 10.1038/nature04302 PubMed DOI PMC
Karikó K., Weissman D., Welsh F. A. (2004). Inhibition of toll-like receptor and cytokine signaling—a unifying theme in ischemic tolerance. J. Cereb. Blood Flow Metab. 24, 1288–1304. 10.1097/01.wcb.0000145666.68576.71 PubMed DOI
Katayama Y., Kawamata T., Tamura T., Hovda D. A., Becker D. P., Tsubokawa T. (1991). Calcium-dependent glutamate release concomitant with massive potassium flux during cerebral ischemia in vivo. Brain Res. 558, 136–140. 10.1016/0006-8993(91)90730-j PubMed DOI
Kauppinen T. M., Swanson R. A. (2007). The role of poly(ADP-ribose) polymerase-1 in CNS disease. Neuroscience 145, 1267–1272. 10.1016/j.neuroscience.2006.09.034 PubMed DOI
Kawahara K., Kosugi T., Tanaka M., Nakajima T., Yamada T. (2005). Reversed operation of glutamate transporter GLT-1 is crucial to the development of preconditioning-induced ischemic tolerance of neurons in neuron/astrocyte co-cultures. Glia 49, 349–359. 10.1002/glia.20114 PubMed DOI
Ketheeswaranathan P., Turner N. A., Spary E. J., Batten T. F., McColl B. W., Saha S. (2011). Changes in glutamate transporter expression in mouse forebrain areas following focal ischemia. Brain Res. 1418, 93–103. 10.1016/j.brainres.2011.08.029 PubMed DOI
Kim H. J., Chuang D. M. (2014). HDAC inhibitors mitigate ischemia-induced oligodendrocyte damage: potential roles of oligodendrogenesis, VEGF, and anti-inflammation. Am. J. Transl. Res. 6, 206–223. PubMed PMC
Kim Y., Davidson J. O., Green C. R., Nicholson L. F. B., O’Carroll S. J., Zhang J. (2018). Connexins and pannexins in cerebral ischemia. Biochim. Biophys. Acta Biomembr. 1860, 224–236. 10.1016/j.bbamem.2017.03.018 PubMed DOI
Kim T. K., Park D., Ban Y. H., Cha Y., An E. S., Choi J., et al. . (2018). Improvement by human oligodendrocyte progenitor cells of neurobehavioral disorders in an experimental model of neonatal periventricular leukomalacia. Cell Transplant 27, 1168–1177. 10.1177/0963689718781330 PubMed DOI PMC
Kimelberg H. K. (2005). Astrocytic swelling in cerebral ischemia as a possible cause of injury and target for therapy. Glia 50, 389–397. 10.1002/glia.20174 PubMed DOI
Kimelberg H. K., Goderie S. K., Higman S., Pang S., Waniewski R. A. (1990). Swelling-induced release of glutamate, aspartate, and taurine from astrocyte cultures. J. Neurosci. 10, 1583–1591. 10.1523/jneurosci.10-05-01583.1990 PubMed DOI PMC
Kirino T., Sano K. (1984). Selective vulnerability in the gerbil hippocampus following transient ischemia. Acta Neuropathol. 62, 201–208. 10.1007/bf00691853 PubMed DOI
Kitagawa K., Matsumoto M., Kuwabara K., Tagaya M., Ohtsuki T., Hata R., et al. . (1991). ‘Ischemic tolerance’ phenomenon detected in various brain regions. Brain Res. 561, 203–211. 10.1016/0006-8993(91)91596-s PubMed DOI
Kitagawa K., Matsumoto M., Tagaya M., Hata R., Ueda H., Niinobe M., et al. . (1990). ‘Ischemic tolerance’ phenomenon found in the brain. Brain Res. 528, 21–24. 10.1016/0006-8993(90)90189-i PubMed DOI
Krebs C., Fernandes H. B., Sheldon C., Raymond L. A., Baimbridge K. G. (2003). Functional NMDA receptor subtype 2B is expressed in astrocytes after ischemia in vivo and anoxia in vitro. J. Neurosci. 23, 3364–3372. 10.1523/jneurosci.23-08-03364.2003 PubMed DOI PMC
Krzyżanowska W., Pomierny B., Filip M., Pera J. (2014). Glutamate transporters in brain ischemia: to modulate or not? Acta Pharmacol. Sin. 35, 444–462. 10.1038/aps.2014.1 PubMed DOI PMC
Kudin A. P., Augustynek B., Lehmann A. K., Kovacs R., Kunz W. S. (2012). The contribution of thioredoxin-2 reductase and glutathione peroxidase to H2O2 detoxification of rat brain mitochondria. Biochim. Biophys. Acta 1817, 1901–1906. 10.1016/j.bbabio.2012.02.023 PubMed DOI
Kugler P., Schleyer V. (2004). Developmental expression of glutamate transporters and glutamate dehydrogenase in astrocytes of the postnatal rat hippocampus. Hippocampus 14, 975–985. 10.1002/hipo.20015 PubMed DOI
Kumagai A., Sasaki T., Matsuoka K., Abe M., Tabata T., Itoh Y., et al. . (2019). Monitoring of glutamate-induced excitotoxicity by mitochondrial oxygen consumption. Synapse 73:e22067. 10.1002/syn.22067 PubMed DOI
Lai T. W., Zhang S., Wang Y. T. (2014). Excitotoxicity and stroke: identifying novel targets for neuroprotection. Prog. Neurobiol. 115, 157–188. 10.1016/j.pneurobio.2013.11.006 PubMed DOI
Lalo U., Palygin O., Verkhratsky A., Grant S. G., Pankratov Y. (2016). ATP from synaptic terminals and astrocytes regulates NMDA receptors and synaptic plasticity through PSD-95 multi-protein complex. Sci. Rep. 6:33609. 10.1038/srep33609 PubMed DOI PMC
Lalo U., Pankratov Y., Kirchhoff F., North R. A., Verkhratsky A. (2006). NMDA receptors mediate neuron-to-glia signaling in mouse cortical astrocytes. J. Neurosci. 26, 2673–2683. 10.1523/jneurosci.4689-05.2006 PubMed DOI PMC
Lazarou M., Sliter D. A., Kane L. A., Sarraf S. A., Wang C., Burman J. L., et al. . (2015). The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524, 309–314. 10.1038/nature14893 PubMed DOI PMC
Lee J. M., Calkins M. J., Chan K., Kan Y. W., Johnson J. A. (2003). Identification of the NF-E2-related factor-2-dependent genes conferring protection against oxidative stress in primary cortical astrocytes using oligonucleotide microarray analysis. J. Biol. Chem. 278, 12029–12038. 10.1074/jbc.m211558200 PubMed DOI
Lee S. Y., Kim J. H. (2015). Mechanisms underlying presynaptic Ca2+ transient and vesicular glutamate release at a CNS nerve terminal during in vitro ischaemia. J. Physiol. 593, 2793–2806. 10.1113/jp270060 PubMed DOI PMC
Lehre K. P., Danbolt N. C. (1998). The number of glutamate transporter subtype molecules at glutamatergic synapses: chemical and stereological quantification in young adult rat brain. J. Neurosci. 18, 8751–8757. 10.1523/jneurosci.18-21-08751.1998 PubMed DOI PMC
Lehre K. P., Davanger S., Danbolt N. C. (1997). Localization of the glutamate transporter protein GLAST in rat retina. Brain Res. 744, 129–137. 10.1016/s0006-8993(96)01022-0 PubMed DOI
Lewis D. K., Thomas K. T., Selvamani A., Sohrabji F. (2012). Age-related severity of focal ischemia in female rats is associated with impaired astrocyte function. Neurobiol. Aging 33, 1123.e1–1123.e16. 10.1016/j.neurobiolaging.2011.11.007 PubMed DOI PMC
Li C., Guan T., Chen X., Li W., Cai Q., Niu J., et al. . (2013). BNIP3 mediates pre-myelinating oligodendrocyte cell death in hypoxia and ischemia. J. Neurochem. 127, 426–433. 10.1111/jnc.12314 PubMed DOI
Li S., Mealing G. A., Morley P., Stys P. K. (1999). Novel injury mechanism in anoxia and trauma of spinal cord white matter: glutamate release via reverse Na+-dependent glutamate transport. J. Neurosci. 19:RC16. 10.1523/jneurosci.19-14-j0002.1999 PubMed DOI PMC
Li S., Stys P. K. (2000). Mechanisms of ionotropic glutamate receptor-mediated excitotoxicity in isolated spinal cord white matter. J. Neurosci. 20, 1190–1198. 10.1523/jneurosci.20-03-01190.2000 PubMed DOI PMC
Li X., Zhang W., Xiao M., Wang F., Zhou P., Yang J., et al. . (2019). MicroRNA-146b-5p protects oligodendrocyte precursor cells from oxygen/glucose deprivation-induced injury through regulating Keap1/Nrf2 signaling via targeting bromodomain-containing protein 4. Biochem. Biophys. Res. Commun. 513, 875–882. 10.1016/j.bbrc.2019.04.045 PubMed DOI
Li K., Zhou H., Zhan L., Shi Z., Sun W., Liu D., et al. . (2018). Hypoxic preconditioning maintains GLT-1 against transient global cerebral ischemia through upregulating Cx43 and inhibiting c-src. Front. Mol. Neurosci. 11:344. 10.3389/fnmol.2018.00344 PubMed DOI PMC
Lin C. H., Chen P. S., Gean P. W. (2008). Glutamate preconditioning prevents neuronal death induced by combined oxygen-glucose deprivation in cultured cortical neurons. Eur. J. Pharmacol. 589, 85–93. 10.1016/j.ejphar.2008.05.047 PubMed DOI
Linying Z., Wei W., Minxia W., Wenmin Z., Liangcheng Z. (2014). Neuroprotective effects of neuregulin-1 β on oligodendrocyte type 2 astrocyte progenitors following oxygen and glucose deprivation. Pediatr. Neurol. 50, 357–362. 10.1016/j.pediatrneurol.2013.12.007 PubMed DOI
Lipton S. A., Rosenberg P. A. (1994). Excitatory amino acids as a final common pathway for neurologic disorders. N. Engl. J. Med. 330, 613–622. 10.1056/nejm199403033300907 PubMed DOI
Liu F., Lu J., Manaenko A., Tang J., Hu Q. (2018). Mitochondria in ischemic stroke: new insight and implications. Aging Dis. 9, 924–937. 10.14336/ad.2017.1126 PubMed DOI PMC
Liu X. B., Shen Y., Plane J. M., Deng W. (2013). Vulnerability of premyelinating oligodendrocytes to white-matter damage in neonatal brain injury. Neurosci. Bull. 29, 229–238. 10.1007/s12264-013-1311-5 PubMed DOI PMC
Liu H. T., Tashmukhamedov B. A., Inoue H., Okada Y., Sabirov R. Z. (2006). Roles of two types of anion channels in glutamate release from mouse astrocytes under ischemic or osmotic stress. Cryobiology 54, 343–357. 10.1002/glia.20400 PubMed DOI
López-Redondo F., Nakajima K., Honda S., Kohsaka S. (2000). Glutamate transporter GLT-1 is highly expressed in activated microglia following facial nerve axotomy. Mol. Brain Res. 76, 429–435. 10.1016/s0169-328x(00)00022-x PubMed DOI
Luoma J. I., Kelley B. G., Mermelstein P. G. (2011). Progesterone inhibition of voltage-gated calcium channels is a potential neuroprotective mechanism against excitotoxicity. Steroids 76, 845–855. 10.1016/j.steroids.2011.02.013 PubMed DOI PMC
Lyons S. A., Kettenmann H. (1998). Oligodendrocytes and microglia are selectively vulnerable to combined hypoxia and hypoglycemia injury in vitro. J. Cereb. Blood Flow Metab. 18, 521–530. 10.1097/00004647-199805000-00007 PubMed DOI
Ma D., Feng L., Cheng Y., Xin M., You J., Yin X., et al. . (2018). Astrocytic gap junction inhibition by carbenoxolone enhances the protective effects of ischemic preconditioning following cerebral ischemia. J. Neuroinflammation 15:198. 10.1186/s12974-018-1230-5 PubMed DOI PMC
MacAulay N., Gether U., Klaerke D. A., Zeuthen T. (2001). Water transport by the human Na+-coupled glutamate cotransporter expressed in Xenopus oocytes. J. Physiol. 530, 367–378. 10.1111/j.1469-7793.2001.0367k.x PubMed DOI PMC
Manley G. T., Fujimura M., Ma T., Noshita N., Filiz F., Bollen A. W., et al. . (2000). Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat. Med. 6, 159–163. 10.1038/72256 PubMed DOI
Marini C., Totaro R., Carolei A. (1999). Long-term prognosis of cerebral ischemia in young adults. National Research Council Study Group on Stroke in the Young. Stroke 30, 2320–2325. 10.1161/01.str.30.11.2320 PubMed DOI
Mark L. P., Prost R. W., Ulmer J. L., Smith M. M., Daniels D. L., Strottmann J. M., et al. . (2001). Pictorial review of glutamate excitotoxicity: fundamental concepts for neuroimaging. AJNR Am. J. Neuroradiol. 22, 1813–1824. PubMed PMC
Marmiroli P., Cavaletti G. (2012). The glutamatergic neurotransmission in the central nervous system. Curr. Med. Chem. 19, 1269–1276. 10.2174/092986712799462711 PubMed DOI
Massie A., Cnops L., Smolders I., McCullumsmith R., Kooijman R., Kwak S., et al. . (2008). High-affinity Na+/K+-dependent glutamate transporter EAAT4 is expressed throughout the rat fore- and midbrain. J. Comp. Neurol. 511, 155–172. 10.1002/cne.21823 PubMed DOI
Matsumoto M., Hatakeyama T., Morimoto K., Yanagihara T. (1990). Cerebral blood flow and neuronal damage during progressive cerebral ischemia in gerbils. Stroke 21, 1470–1477. 10.1161/01.str.21.10.1470 PubMed DOI
Matthias K., Kirchhoff F., Seifert G., Huttmann K., Matyash M., Kettenmann H., et al. . (2003). Segregated expression of AMPA-type glutamate receptors and glutamate transporters defines distinct astrocyte populations in the mouse hippocampus. J. Neurosci. 23, 1750–1758. 10.1523/jneurosci.23-05-01750.2003 PubMed DOI PMC
Matute C. (2008). P2X7 receptors in oligodendrocytes: a novel target for neuroprotection. Mol. Neurobiol. 38, 123–128. 10.1007/s12035-008-8028-x PubMed DOI
Matute C. (2011). Glutamate and ATP signalling in white matter pathology. J. Anat. 219, 53–64. 10.1111/j.1469-7580.2010.01339.x PubMed DOI PMC
Matute C., Alberdi E., Ibarretxe G., Sánchez-Gómez M. V. (2002). Excitotoxicity in glial cells. Eur. J. Pharmacol. 447, 239–246. 10.1016/s0014-2999(02)01847-2 PubMed DOI
Matute C., Domercq M., Sanchez-Gomez M. V. (2006). Glutamate-mediated glial injury: mechanisms and clinical importance. Glia 53, 212–224. 10.1002/glia.20275 PubMed DOI
Matute C., Ransom B. R. (2012). Roles of white matter in central nervous system pathophysiologies. ASN Neuro 4:e00079. 10.1042/an20110060 PubMed DOI PMC
Matute C., Torre I., Perez-Cerda F., Perez-Samartin A., Alberdi E., Etxebarria E., et al. . (2007). P2X(7) receptor blockade prevents ATP excitotoxicity in oligodendrocytes and ameliorates experimental autoimmune encephalomyelitis. J. Neurosci. 27, 9525–9533. 10.1523/jneurosci.0579-07.2007 PubMed DOI PMC
McDonald J. W., Althomsons S. P., Hyrc K. L., Choi D. W., Goldberg M. P. (1998). Oligodendrocytes from forebrain are highly vulnerable to AMPA/kainate receptor-mediated excitotoxicity. Nat. Med. 4, 291–297. 10.1038/nm0398-291 PubMed DOI
Miao B., Yin X. H., Pei D. S., Zhang Q. G., Zhang G. Y. (2005). Neuroprotective effects of preconditioning ischemia on ischemic brain injury through down-regulating activation of JNK1/2 via N-methyl-D-aspartate receptor-mediated Akt1 activation. J. Biol. Chem. 280, 21693–21699. 10.1074/jbc.m500003200 PubMed DOI
Micu I., Jiang Q., Coderre E., Ridsdale A., Zhang L., Woulfe J., et al. . (2006). NMDA receptors mediate calcium accumulation in myelin during chemical ischaemia. Nature 439, 988–992. 10.1038/nature04474 PubMed DOI
Micu I., Ridsdale A., Zhang L., Woulfe J., McClintock J., Brantner C. A., et al. . (2007). Real-time measurement of free Ca2+ changes in CNS myelin by two-photon microscopy. Nat. Med. 13, 874–879. 10.1038/nm1568 PubMed DOI
Mifsud G., Zammit C., Muscat R., Di Giovanni G., Valentino M. (2014). Oligodendrocyte pathophysiology and treatment strategies in cerebral ischemia. CNS Neurosci. Ther. 20, 603–612. 10.1111/cns.12263 PubMed DOI PMC
Milewski K., Bogacinska-Karas M., Hilgier W., Albrecht J., Zielinska M. (2019). TNFα increases STAT3-mediated expression of glutaminase isoform KGA in cultured rat astrocytes. Cytokine 123:154774. 10.1016/j.cyto.2019.154774 PubMed DOI
Min K. J., Yang M. S., Kim S. U., Jou I., Joe E. H. (2006). Astrocytes induce hemeoxygenase-1 expression in microglia: a feasible mechanism for preventing excessive brain inflammation. J. Neurosci. 26, 1880–1887. 10.1523/jneurosci.3696-05.2006 PubMed DOI PMC
Mölders A., Koch A., Menke R., Klocker N. (2018). Heterogeneity of the astrocytic AMPA-receptor transcriptome. Glia 66, 2604–2616. 10.1002/glia.23514 PubMed DOI
Mongin A. A. (2016). Volume-regulated anion channel—a frenemy within the brain. Pflugers Arch. 468, 421–441. 10.1007/s00424-015-1765-6 PubMed DOI PMC
Montana V., Ni Y., Sunjara V., Hua X., Parpura V. (2004). Vesicular glutamate transporter-dependent glutamate release from astrocytes. J. Neurosci. 24, 2633–2642. 10.1523/jneurosci.3770-03.2004 PubMed DOI PMC
Montero T. D., Orellana J. A. (2015). Hemichannels: new pathways for gliotransmitter release. Neuroscience 286, 45–59. 10.1016/j.neuroscience.2014.11.048 PubMed DOI
Moretto M. B., Arteni N. S., Lavinsky D., Netto C. A., Rocha J. B., Souza D. O., et al. . (2005). Hypoxic-ischemic insult decreases glutamate uptake by hippocampal slices from neonatal rats: prevention by guanosine. Exp. Neurol. 195, 400–406. 10.1016/j.expneurol.2005.06.005 PubMed DOI
Mori T., Tateishi N., Kagamiishi Y., Shimoda T., Satoh S., Ono S., et al. . (2004). Attenuation of a delayed increase in the extracellular glutamate level in the peri-infarct area following focal cerebral ischemia by a novel agent ONO-2506. Neurochem. Int. 45, 381–387. 10.1016/j.neuint.2003.06.001 PubMed DOI
Morioka N., Abdin M. J., Kitayama T., Morita K., Nakata Y., Dohi T. (2008). P2X(7) receptor stimulation in primary cultures of rat spinal microglia induces downregulation of the activity for glutamate transport. Glia 56, 528–538. 10.1002/glia.20634 PubMed DOI
Morita M., Saruta C., Kozuka N., Okubo Y., Itakura M., Takahashi M., et al. . (2007). Dual regulation of astrocyte gap junction hemichannels by growth factors and a pro-inflammatory cytokine via the mitogen-activated protein kinase cascade. Glia 55, 508–515. 10.1002/glia.20471 PubMed DOI
Murugan M., Sivakumar V., Lu J., Ling E. A., Kaur C. (2011). Expression of N-methyl D-aspartate receptor subunits in amoeboid microglia mediates production of nitric oxide via NF-κB signaling pathway and oligodendrocyte cell death in hypoxic postnatal rats. Glia 59, 521–539. 10.1002/glia.21121 PubMed DOI
Nadarajan V., Perry R. J., Johnson J., Werring D. J. (2014). Transient ischaemic attacks: mimics and chameleons. Pract. Neurol. 14, 23–31. 10.1136/practneurol-2013-000782 PubMed DOI PMC
Nedergaard M., Takano T., Hansen A. J. (2002). Beyond the role of glutamate as a neurotransmitter. Nat. Rev. Neurosci. 3, 748–755. 10.1038/nrn916 PubMed DOI
Ni Y., Parpura V. (2009). Dual regulation of Ca2+-dependent glutamate release from astrocytes: vesicular glutamate transporters and cytosolic glutamate levels. Glia 57, 1296–1305. 10.1002/glia.20849 PubMed DOI PMC
Niizuma K., Yoshioka H., Chen H., Kim G. S., Jung J. E., Katsu M., et al. . (2010). Mitochondrial and apoptotic neuronal death signaling pathways in cerebral ischemia. Biochim. Biophys. Acta 1802, 92–99. 10.1016/j.bbadis.2009.09.002 PubMed DOI PMC
Noda M., Nakanishi H., Akaike N. (1999). Glutamate release from microglia via glutamate transporter is enhanced by amyloid-β peptide. Neuroscience 92, 1465–1474. 10.1016/s0306-4522(99)00036-6 PubMed DOI
Noda M., Nakanishi H., Nabekura J., Akaike N. (2000). AMPA-kainate subtypes of glutamate receptor in rat cerebral microglia. J. Neurosci. 20, 251–258. 10.1523/jneurosci.20-01-00251.2000 PubMed DOI PMC
North R. A. (2002). Molecular physiology of P2X receptors. Physiol. Rev. 82, 1013–1067. 10.1152/physrev.00015.2002 PubMed DOI
O’Kane R. L., Martinez-Lopez I., DeJoseph M. R., Vina J. R., Hawkins R. A. (1999). Na+-dependent glutamate transporters (EAAT1, EAAT2 and EAAT3) of the blood-brain barrier. A mechanism for glutamate removal. J. Biol. Chem. 274, 31891–31895. 10.1074/jbc.274.45.31891 PubMed DOI
Oliveira-Ferreira A. I., Major S., Przesdzing I., Kang E. J., Dreier J. P. (2019). Spreading depolarizations in the rat endothelin-1 model of focal cerebellar ischemia. J. Cereb. Blood Flow Metab. [Epub ahead of print]. 10.1177/0271678x19861604 PubMed DOI PMC
Olney J. W. (1971). Glutamate-induced neuronal necrosis in the infant mouse hypothalamus. An electron microscopic study. J. Neuropathol. Exp. Neurol. 30, 75–90. 10.1097/00005072-197101000-00008 PubMed DOI
Onténiente B., Couriaud C., Braudeau J., Benchoua A., Guégan C. (2003). The mechanisms of cell death in focal cerebral ischemia highlight neuroprotective perspectives by anti-caspase therapy. Biochem. Pharmacol. 66, 1643–1649. 10.1016/s0006-2952(03)00538-0 PubMed DOI
Orlando M., Lignani G., Maragliano L., Fassio A., Onofri F., Baldelli P., et al. . (2014). Functional role of ATP binding to synapsin I in synaptic vesicle trafficking and release dynamics. J. Neurosci. 34, 14752–14768. 10.1523/jneurosci.1093-14.2014 PubMed DOI PMC
Orrenius S., Zhivotovsky B., Nicotera P. (2003). Regulation of cell death: the calcium-apoptosis link. Nat. Rev. Mol. Cell Biol. 4, 552–565. 10.1038/nrm1150 PubMed DOI
Osei-Owusu J., Yang J., Vitery M. D. C., Qiu Z. (2018). Molecular biology and physiology of volume-regulated anion channel (VRAC). Curr. Top. Membr. 81, 177–203. 10.1016/bs.ctm.2018.07.005 PubMed DOI PMC
Ouyang Y. B., Xu L., Lu Y., Sun X., Yue S., Xiong X. X., et al. . (2013). Astrocyte-enriched miR-29a targets PUMA and reduces neuronal vulnerability to forebrain ischemia. Glia 61, 1784–1794. 10.1002/glia.22556 PubMed DOI PMC
Pachernegg S., Strutz-Seebohm N., Hollmann M. (2012). GluN3 subunit-containing NMDA receptors: not just one-trick ponies. Trends Neurosci. 35, 240–249. 10.1016/j.tins.2011.11.010 PubMed DOI
Page K. J., Everitt B. J. (1995). The distribution of neurons coexpressing immunoreactivity to AMPA-sensitive glutamate receptor subtypes (GluR1–4) and nerve growth factor receptor in the rat basal forebrain. Eur. J. Neurosci. 7, 1022–1033. 10.1111/j.1460-9568.1995.tb01090.x PubMed DOI
Pajarillo E., Rizor A., Lee J., Aschner M., Lee E. (2019). The role of astrocytic glutamate transporters GLT-1 and GLAST in neurological disorders: potential targets for neurotherapeutics. Neuropharmacology 161:107559. 10.1016/j.neuropharm.2019.03.002 PubMed DOI PMC
Palygin O., Lalo U., Pankratov Y. (2011). Distinct pharmacological and functional properties of NMDA receptors in mouse cortical astrocytes. Br. J. Pharmacol. 163, 1755–1766. 10.1111/j.1476-5381.2011.01374.x PubMed DOI PMC
Pang Y., Campbell L., Zheng B., Fan L., Cai Z., Rhodes P. (2010). Lipopolysaccharide-activated microglia induce death of oligodendrocyte progenitor cells and impede their development. Neuroscience 166, 464–475. 10.1016/j.neuroscience.2009.12.040 PubMed DOI
Panickar K. S., Qin B., Anderson R. A. (2015). Ischemia-induced endothelial cell swelling and mitochondrial dysfunction are attenuated by cinnamtannin D1, green tea extract and resveratrol in vitro. Nutr. Neurosci. 18, 297–306. 10.1179/1476830514y.0000000127 PubMed DOI
Papazian I., Kyrargyri V., Evangelidou M., Voulgari-Kokota A., Probert L. (2018). Mesenchymal stem cell protection of neurons against glutamate excitotoxicity involves reduction of NMDA-triggered calcium responses and surface glur1 and is partly mediated by TNF. Int. J. Mol. Sci. 19:E651. 10.3390/ijms19030651 PubMed DOI PMC
Park E., Bell J. D., Baker A. J. (2008). Traumatic brain injury: can the consequences be stopped? CMAJ 178, 1163–1170. 10.1503/cmaj.080282 PubMed DOI PMC
Pasantes-Morales H., Vázquez-Juarez E. (2012). Transporters and channels in cytotoxic astrocyte swelling. Neurochem. Res. 37, 2379–2387. 10.1007/s11064-012-0777-2 PubMed DOI
Pedata F., Dettori I., Coppi E., Melani A., Fusco I., Corradetti R., et al. . (2016). Purinergic signalling in brain ischemia. Neuropharmacology 104, 105–130. 10.1016/j.neuropharm.2015.11.007 PubMed DOI
Persson M., Rönnbäck L. (2012). Microglial self-defence mediated through GLT-1 and glutathione. Amino Acids 42, 207–219. 10.1007/s00726-011-0865-7 PubMed DOI
Petr G. T., Sun Y., Frederick N. M., Zhou Y., Dhamne S. C., Hameed M. Q., et al. . (2015). Conditional deletion of the glutamate transporter GLT-1 reveals that astrocytic GLT-1 protects against fatal epilepsy while neuronal GLT-1 contributes significantly to glutamate uptake into synaptosomes. J. Neurosci. 35, 5187–5201. 10.1523/jneurosci.4255-14.2015 PubMed DOI PMC
Pforte C., Henrich-Noack P., Baldauf K., Reymann K. G. (2005). Increase in proliferation and gliogenesis but decrease of early neurogenesis in the rat forebrain shortly after transient global ischemia. Neuroscience 136, 1133–1146. 10.1016/j.neuroscience.2005.08.043 PubMed DOI
Piccolini V. M., Bottone M. G., Bottiroli G., De Pascali S. A., Fanizzi F. P., Bernocchi G. (2013). Platinum drugs and neurotoxicity: effects on intracellular calcium homeostasis. Cell Biol. Toxicol. 29, 339–353. 10.1007/s10565-013-9252-3 PubMed DOI
Pignataro G., Gala R., Cuomo O., Tortiglione A., Giaccio L., Castaldo P., et al. . (2004). Two sodium/calcium exchanger gene products, NCX1 and NCX3, play a major role in the development of permanent focal cerebral ischemia. Stroke 35, 2566–2570. 10.1161/01.str.0000143730.29964.93 PubMed DOI
Pin J. P., Duvoisin R. (1995). The metabotropic glutamate receptors: structure and functions. Neuropharmacology 34, 1–26. 10.1016/0028-3908(94)00129-g PubMed DOI
Pinky N. F., Wilkie C. M., Barnes J. R., Parsons M. P. (2018). Region- and activity-dependent regulation of extracellular glutamate. J. Neurosci. 38, 5351–5366. 10.1523/JNEUROSCI.3213-17.2018 PubMed DOI PMC
Pivonkova H., Anderova M. (2017). Altered homeostatic functions in reactive astrocytes and their potential as a therapeutic target after brain ischemic injury. Curr. Pharm. Des. 23, 5056–5074. 10.2174/1381612823666170710161858 PubMed DOI
Pivonkova H., Benesova J., Butenko O., Chvatal A., Anderova M. (2010). Impact of global cerebral ischemia on K+ channel expression and membrane properties of glial cells in the rat hippocampus. Neurochem. Int. 57, 783–794. 10.1016/j.neuint.2010.08.016 PubMed DOI
Pivovarova N. B., Nguyen H. V., Winters C. A., Brantner C. A., Smith C. L., Andrews S. B. (2004). Excitotoxic calcium overload in a subpopulation of mitochondria triggers delayed death in hippocampal neurons. J. Neurosci. 24, 5611–5622. 10.1523/jneurosci.0531-04.2004 PubMed DOI PMC
Pocock J. M., Kettenmann H. (2007). Neurotransmitter receptors on microglia. Trends Neurosci. 30, 527–535. 10.1016/j.tins.2007.07.007 PubMed DOI
Pregnolato S., Chakkarapani E., Isles A. R., Luyt K. (2019). Glutamate transport and preterm brain injury. Front. Physiol. 10:417. 10.3389/fphys.2019.00417 PubMed DOI PMC
Price C. J., Karayannis T., Pal B. Z., Capogna M. (2005). Group II and III mGluRs-mediated presynaptic inhibition of EPSCs recorded from hippocampal interneurons of CA1 stratum lacunosum moleculare. Neuropharmacology 49, 45–56. 10.1016/j.neuropharm.2005.05.009 PubMed DOI
Puig B., Brenna S., Magnus T. (2018). Molecular communication of a dying neuron in stroke. Int. J. Mol. Sci. 19:E2834. 10.3390/ijms19092834 PubMed DOI PMC
Radak D., Katsiki N., Resanovic I., Jovanovic A., Sudar-Milovanovic E., Zafirovic S., et al. . (2017). Apoptosis and acute brain ischemia in ischemic stroke. Curr. Vasc. Pharmacol. 15, 115–122. 10.2174/1570161115666161104095522 PubMed DOI
Rakers C., Petzold G. C. (2017). Astrocytic calcium release mediates peri-infarct depolarizations in a rodent stroke model. J. Clin. Invest. 127, 511–516. 10.1172/jci89354 PubMed DOI PMC
Rama R., García J. C. (2016). “Excitotoxicity and oxidative stress in acute stroke,” in Ischemic Stroke—Updates, ed. Schaller B. (London: InTech; ), 17–42.
Ransom B. R., Baltan S. B. (2009). Axons get excited to death. Ann. Neurol. 65, 120–121. 10.1002/ana.21659 PubMed DOI PMC
Rao V. L., Bowen K. K., Dempsey R. J. (2001). Transient focal cerebral ischemia down-regulates glutamate transporters GLT-1 and EAAC1 expression in rat brain. Neurochem. Res. 26, 497–502. 10.1023/a:1010956711295 PubMed DOI
Rauen T., Rothstein J. D., Wässle H. (1996). Differential expression of three glutamate transporter subtypes in the rat retina. Cell Tissue Res. 286, 325–336. 10.1007/s004410050702 PubMed DOI
Rebai O., Amri M. (2018). Chlorogenic acid prevents AMPA-mediated excitotoxicity in optic nerve oligodendrocytes through a PKC and caspase-dependent pathways. Neurotox. Res. 34, 559–573. 10.1007/s12640-018-9911-5 PubMed DOI
Ribeiro F. M., Paquet M., Cregan S. P., Ferguson S. S. (2010). Group I metabotropic glutamate receptor signalling and its implication in neurological disease. CNS Neurol. Disord. Drug Targets 9, 574–595. 10.2174/187152710793361612 PubMed DOI
Riddle A., Luo N. L., Manese M., Beardsley D. J., Green L., Rorvik D. A., et al. . (2006). Spatial heterogeneity in oligodendrocyte lineage maturation and not cerebral blood flow predicts fetal ovine periventricular white matter injury. J. Neurosci. 26, 3045–3055. 10.1523/jneurosci.5200-05.2006 PubMed DOI PMC
Romera C., Hurtado O., Mallolas J., Pereira M. P., Morales J. R., Romera A., et al. . (2007). Ischemic preconditioning reveals that GLT1/EAAT2 glutamate transporter is a novel PPARγ target gene involved in neuroprotection. J. Cereb. Blood Flow Metab. 27, 1327–1338. 10.1038/sj.jcbfm.9600438 PubMed DOI
Rossi D. J., Brady J. D., Mohr C. (2007). Astrocyte metabolism and signaling during brain ischemia. Nat. Neurosci. 10, 1377–1386. 10.1038/nn2004 PubMed DOI PMC
Rossi D. J., Oshima T., Attwell D. (2000). Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature 403, 316–321. 10.1038/35002090 PubMed DOI
Rothman S. (1984). Synaptic release of excitatory amino acid neurotransmitter mediates anoxic neuronal death. J. Neurosci. 4, 1884–1891. 10.1523/jneurosci.04-07-01884.1984 PubMed DOI PMC
Rowley N. M., Madsen K. K., Schousboe A., Steve White H. (2012). Glutamate and GABA synthesis, release, transport and metabolism as targets for seizure control. Neurochem. Int. 61, 546–558. 10.1016/j.neuint.2012.02.013 PubMed DOI
Ryoo K., Park J. Y. (2016). Two-pore domain potassium channels in astrocytes. Exp. Neurobiol. 25, 222–232. 10.5607/en.2016.25.5.222 PubMed DOI PMC
Sakoh M., Ostergaard L., Rohl L., Smith D. F., Simonsen C. Z., Sorensen J. C., et al. . (2000). Relationship between residual cerebral blood flow and oxygen metabolism as predictive of ischemic tissue viability: sequential multitracer positron emission tomography scanning of middle cerebral artery occlusion during the critical first 6 hours after stroke in pigs. J. Neurosurg. 93, 647–657. 10.3171/jns.2000.93.4.0647 PubMed DOI
Salter M. G., Fern R. (2005). NMDA receptors are expressed in developing oligodendrocyte processes and mediate injury. Nature 438, 1167–1171. 10.1038/nature04301 PubMed DOI
Sánchez-Gómez M. V., Alberdi E., Pèrez-Navarro E., Alberch J., Matute C. (2011). Bax and calpain mediate excitotoxic oligodendrocyte death induced by activation of both AMPA and kainate receptors. J. Neurosci. 31, 2996–3006. 10.1523/jneurosci.5578-10.2011 PubMed DOI PMC
Sanchez-Olea R., Moran J., Martinez A., Pasantes-Morales H. (1993a). Volume-activated Rb+ transport in astrocytes in culture. Am. J. Physiol. 264, C836–C842. 10.1152/ajpcell.1993.264.4.c836 PubMed DOI
Sanchez-Olea R., Pena C., Moran J., Pasantes-Morales H. (1993b). Inhibition of volume regulation and efflux of osmoregulatory amino acids by blockers of Cl- transport in cultured astrocytes. Neurosci. Lett. 156, 141–144. 10.1016/0304-3940(93)90458-w PubMed DOI
Sanganalmath S. K., Gopal P., Parker J. R., Downs R. K., Parker J. C., Jr., Dawn B. (2017). Global cerebral ischemia due to circulatory arrest: insights into cellular pathophysiology and diagnostic modalities. Mol. Cell. Biochem. 426, 111–127. 10.1007/s11010-016-2885-9 PubMed DOI
Sattler R., Xiong Z., Lu W. Y., Hafner M., MacDonald J. F., Tymianski M. (1999). Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein. Science 284, 1845–1848. 10.1126/science.284.5421.1845 PubMed DOI
Savtchouk I., Volterra A. (2018). Gliotransmission: beyond black-and-white. J. Neurosci. 38, 14–25. 10.1523/jneurosci.0017-17.2017 PubMed DOI PMC
Schneider G. H., Baethmann A., Kempski O. (1992). Mechanisms of glial swelling induced by glutamate. Can. J. Physiol. Pharmacol. 70, S334–S343. 10.1139/y92-280 PubMed DOI
Schober A. L., Wilson C. S., Mongin A. A. (2017). Molecular composition and heterogeneity of the LRRC8-containing swelling-activated osmolyte channels in primary rat astrocytes. J. Physiol. 595, 6939–6951. 10.1113/jp275053 PubMed DOI PMC
Schwarz Y., Zhao N., Kirchhoff F., Bruns D. (2017). Astrocytes control synaptic strength by two distinct v-SNARE-dependent release pathways. Nat. Neurosci. 20, 1529–1539. 10.1038/nn.4647 PubMed DOI
Segovia K. N., McClure M., Moravec M., Luo N. L., Wan Y., Gong X., et al. . (2008). Arrested oligodendrocyte lineage maturation in chronic perinatal white matter injury. Ann. Neurol. 63, 520–530. 10.1002/ana.21359 PubMed DOI PMC
Serrano A., Robitaille R., Lacaille J. C. (2008). Differential NMDA-dependent activation of glial cells in mouse hippocampus. Glia 56, 1648–1663. 10.1002/glia.20717 PubMed DOI
Seshadri S., Beiser A., Kelly-Hayes M., Kase C. S., Au R., Kannel W. B., et al. . (2006). The lifetime risk of stroke: estimates from the Framingham Study. Stroke 37, 345–350. 10.1161/01.str.0000199613.38911.b2 PubMed DOI
Seyama T., Kamei Y., Iriyama T., Imada S., Ichinose M., Toshimitsu M., et al. . (2018). Pretreatment with magnesium sulfate attenuates white matter damage by preventing cell death of developing oligodendrocytes. J. Obstet. Gynaecol. Res. 44, 601–607. 10.1111/jog.13568 PubMed DOI
Shashidharan P., Huntley G. W., Murray J. M., Buku A., Moran T., Walsh M. J., et al. . (1997). Immunohistochemical localization of the neuron-specific glutamate transporter EAAC1 (EAAT3) in rat brain and spinal cord revealed by a novel monoclonal antibody. Brain Res. 773, 139–148. 10.1016/s0006-8993(97)00921-9 PubMed DOI
Sheldon A. L., Robinson M. B. (2007). The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention. Neurochem. Int. 51, 333–355. 10.1016/j.neuint.2007.03.012 PubMed DOI PMC
Shelton M. K., McCarthy K. D. (1999). Mature hippocampal astrocytes exhibit functional metabotropic and ionotropic glutamate receptors in situ. Glia 26, 1–11. 10.1002/(sici)1098-1136(199903)26:1<1::aid-glia1>3.0.co;2-z PubMed DOI
Shibata M., Hisahara S., Hara H., Yamawaki T., Fukuuchi Y., Yuan J., et al. . (2000). Caspases determine the vulnerability of oligodendrocytes in the ischemic brain. J. Clin. Invest. 106, 643–653. 10.1172/jci10203 PubMed DOI PMC
Shibata T., Yamada K., Watanabe M., Ikenaka K., Wada K., Tanaka K., et al. . (1997). Glutamate transporter GLAST is expressed in the radial glia-astrocyte lineage of developing mouse spinal cord. J. Neurosci. 17, 9212–9219. 10.1523/jneurosci.17-23-09212.1997 PubMed DOI PMC
Shih A. Y., Johnson D. A., Wong G., Kraft A. D., Jiang L., Erb H., et al. . (2003). Coordinate regulation of glutathione biosynthesis and release by Nrf2-expressing glia potently protects neurons from oxidative stress. J. Neurosci. 23, 3394–3406. 10.1523/jneurosci.23-08-03394.2003 PubMed DOI PMC
Simard J. M., Chen M., Tarasov K. V., Bhatta S., Ivanova S., Melnitchenko L., et al. . (2006). Newly expressed SUR1-regulated NC(Ca-ATP) channel mediates cerebral edema after ischemic stroke. Nat. Med. 12, 433–440. 10.1038/nm1390 PubMed DOI PMC
Simões A. P., Silva C. G., Marques J. M., Pochmann D., Porciuncula L. O., Ferreira S., et al. . (2018). Glutamate-induced and NMDA receptor-mediated neurodegeneration entails P2Y1 receptor activation. Cell Death Dis. 9:297. 10.1038/s41419-018-0351-1 PubMed DOI PMC
Sivakumar V., Ling E. A., Lu J., Kaur C. (2010). Role of glutamate and its receptors and insulin-like growth factors in hypoxia induced periventricular white matter injury. Glia 58, 507–523. 10.1002/glia.20940 PubMed DOI
Socodato R., Portugal C. C., Rodrigues A., Henriques J., Rodrigues C., Figueira C., et al. . (2018). Redox tuning of Ca2+ signaling in microglia drives glutamate release during hypoxia. Free Radic. Biol. Med. 118, 137–149. 10.1016/j.freeradbiomed.2018.02.036 PubMed DOI
Somjen G. G. (2001). Mechanisms of spreading depression and hypoxic spreading depression-like depolarization. Physiol. Rev. 81, 1065–1096. 10.1152/physrev.2001.81.3.1065 PubMed DOI
Song Y., Li Z., He T., Qu M., Jiang L., Li W., et al. . (2019). M2 microglia-derived exosomes protect the mouse brain from ischemia-reperfusion injury via exosomal miR-124. Theranostics 9, 2910–2923. 10.7150/thno.30879 PubMed DOI PMC
Soria F. N., Pèrez-Samartin A., Martin A., Gona K. B., Llop J., Szczupak B., et al. . (2014). Extrasynaptic glutamate release through cystine/glutamate antiporter contributes to ischemic damage. J. Clin. Invest. 124, 3645–3655. 10.1172/jci71886 PubMed DOI PMC
Soriano F. X., Papadia S., Hofmann F., Hardingham N. R., Bading H., Hardingham G. E. (2006). Preconditioning doses of NMDA promote neuroprotection by enhancing neuronal excitability. J. Neurosci. 26, 4509–4518. 10.1523/JNEUROSCI.0455-06.2006 PubMed DOI PMC
Stellwagen D., Beattie E. C., Seo J. Y., Malenka R. C. (2005). Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-α. J. Neurosci. 25, 3219–3228. 10.1523/jneurosci.4486-04.2005 PubMed DOI PMC
Stokum J. A., Kurland D. B., Gerzanich V., Simard J. M. (2015). Mechanisms of astrocyte-mediated cerebral edema. Neurochem. Res. 40, 317–328. 10.1007/s11064-014-1374-3 PubMed DOI PMC
Stokum J. A., Kwon M. S., Woo S. K., Tsymbalyuk O., Vennekens R., Gerzanich V., et al. . (2018). SUR1-TRPM4 and AQP4 form a heteromultimeric complex that amplifies ion/water osmotic coupling and drives astrocyte swelling. Glia 66, 108–125. 10.1002/glia.23231 PubMed DOI PMC
Strong A. J., Anderson P. J., Watts H. R., Virley D. J., Lloyd A., Irving E. A., et al. . (2007). Peri-infarct depolarizations lead to loss of perfusion in ischaemic gyrencephalic cerebral cortex. Brain 130, 995–1008. 10.1093/brain/awl392 PubMed DOI
Su G., Kintner D. B., Flagella M., Shull G. E., Sun D. (2002a). Astrocytes from Na+-K+-Cl− cotransporter-null mice exhibit absence of swelling and decrease in EAA release. Am. J. Physiol. Cell Physiol. 282, C1147–C1160. 10.1152/ajpcell.00538.2001 PubMed DOI
Su G., Kintner D. B., Sun D. (2002b). Contribution of Na+-K+-Cl− cotransporter to high-[K+]o- induced swelling and EAA release in astrocytes. Am. J. Physiol. Cell Physiol. 282, C1136–C1146. 10.1152/ajpcell.00478.2001 PubMed DOI
Sugawara T., Noshita N., Lewen A., Gasche Y., Ferrand-Drake M., Fujimura M., et al. . (2002). Overexpression of copper/zinc superoxide dismutase in transgenic rats protects vulnerable neurons against ischemic damage by blocking the mitochondrial pathway of caspase activation. J. Neurosci. 22, 209–217. 10.1523/jneurosci.22-01-00209.2002 PubMed DOI PMC
Sun X., Shih A. Y., Johannssen H. C., Erb H., Li P., Murphy T. H. (2006). Two-photon imaging of glutathione levels in intact brain indicates enhanced redox buffering in developing neurons and cells at the cerebrospinal fluid and blood-brain interface. J. Biol. Chem. 281, 17420–17431. 10.1074/jbc.m601567200 PubMed DOI
Takano T., Oberheim N., Cotrina M. L., Nedergaard M. (2009). Astrocytes and ischemic injury. Stroke 40, S8–S12. 10.1161/STROKEAHA.108.533166 PubMed DOI PMC
Takeuchi H., Jin S., Wang J., Zhang G., Kawanokuchi J., Kuno R., et al. . (2006). Tumor necrosis factor-α induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner. J. Biol. Chem. 281, 21362–21368. 10.1074/jbc.m600504200 PubMed DOI
Takumi Y., Matsubara A., Danbolt N. C., Laake J. H., Storm-Mathisen J., Usami S., et al. . (1997). Discrete cellular and subcellular localization of glutamine synthetase and the glutamate transporter GLAST in the rat vestibular end organ. Neuroscience 79, 1137–1144. 10.1016/s0306-4522(97)00025-0 PubMed DOI
Talos D. M., Fishman R. E., Park H., Folkerth R. D., Follett P. L., Volpe J. J., et al. . (2006). Developmental regulation of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor subunit expression in forebrain and relationship to regional susceptibility to hypoxic/ischemic injury: I. Rodent cerebral white matter and cortex. J. Comp. Neurol. 497, 42–60. 10.1002/cne.20972 PubMed DOI PMC
Tanaka H., Calderone A., Jover T., Grooms S. Y., Yokota H., Zukin R. S., et al. . (2002). Ischemic preconditioning acts upstream of GluR2 down-regulation to afford neuroprotection in the hippocampal CA1. Proc. Natl. Acad. Sci. U S A 99, 2362–2367. 10.1073/pnas.261713299 PubMed DOI PMC
Tannenberg R. K., Scott H. L., Westphalen R. I., Dodd P. R. (2004). The identification and characterization of excitotoxic nerve-endings in Alzheimer disease. Curr. Alzheimer Res. 1, 11–25. 10.2174/1567205043480591 PubMed DOI
Thompson B. J., Ronaldson P. T. (2014). Drug delivery to the ischemic brain. Adv. Pharmacol. 71, 165–202. 10.1016/bs.apha.2014.06.013 PubMed DOI PMC
Thrane A. S., Rangroo Thrane V., Nedergaard M. (2014). Drowning stars: reassessing the role of astrocytes in brain edema. Trends Neurosci. 37, 620–628. 10.1016/j.tins.2014.08.010 PubMed DOI PMC
Thushara Vijayakumar N., Sangwan A., Sharma B., Majid A., Rajanikant G. K. (2016). Cerebral ischemic preconditioning: the road so far. Mol. Neurobiol. 53, 2579–2593. 10.1007/s12035-015-9278-z PubMed DOI
Torp R., Hoover F., Danbolt N. C., Storm-Mathisen J., Ottersen O. P. (1997). Differential distribution of the glutamate transporters GLT1 and rEAAC1 in rat cerebral cortex and thalamus: an in situ hybridization analysis. Anat. Embryol. 195, 317–326. 10.1007/s004290050051 PubMed DOI
Torralba D., Baixauli F., Sánchez-Madrid F. (2016). Mitochondria know no boundaries: mechanisms and functions of intercellular mitochondrial transfer. Front. Cell Dev. Biol. 4:107. 10.3389/fcell.2016.00107 PubMed DOI PMC
Trendelenburg G., Prass K., Priller J., Kapinya K., Polley A., Muselmann C., et al. . (2002). Serial analysis of gene expression identifies metallothionein-II as major neuroprotective gene in mouse focal cerebral ischemia. J. Neurosci. 22, 5879–5888. 10.1523/jneurosci.22-14-05879.2002 PubMed DOI PMC
Tretter L., Adam-Vizi V. (2002). Glutamate release by an Na+ load and oxidative stress in nerve terminals: relevance to ischemia/reperfusion. J. Neurochem. 83, 855–862. 10.1046/j.1471-4159.2002.01191.x PubMed DOI
Umebayashi D., Natsume A., Takeuchi H., Hara M., Nishimura Y., Fukuyama R., et al. . (2014). Blockade of gap junction hemichannel protects secondary spinal cord injury from activated microglia-mediated glutamate exitoneurotoxicity. J. Neurotrauma 31, 1967–1974. 10.1089/neu.2013.3223 PubMed DOI PMC
Unal-Cevik I., Kilinc M., Can A., Gursoy-Ozdemir Y., Dalkara T. (2004). Apoptotic and necrotic death mechanisms are concomitantly activated in the same cell after cerebral ischemia. Stroke 35, 2189–2194. 10.1161/01.str.0000136149.81831.c5 PubMed DOI
Uzdensky A. B. (2019). Apoptosis regulation in the penumbra after ischemic stroke: expression of pro- and antiapoptotic proteins. Apoptosis 24, 687–702. 10.1007/s10495-019-01556-6 PubMed DOI
Van Damme P., Bogaert E., Dewil M., Hersmus N., Kiraly D., Scheveneels W., et al. . (2007). Astrocytes regulate GluR2 expression in motor neurons and their vulnerability to excitotoxicity. Proc. Natl. Acad. Sci. U S A 104, 14825–14830. 10.1073/pnas.0705046104 PubMed DOI PMC
VanGilder R. L., Huber J. D., Rosen C. L., Barr T. L. (2012). The transcriptome of cerebral ischemia. Brain Res. Bull. 88, 313–319. 10.1016/j.brainresbull.2012.02.002 PubMed DOI PMC
Verma M., Wills Z., Chu C. T. (2018). Excitatory dendritic mitochondrial calcium toxicity: implications for Parkinson’s and other neurodegenerative diseases. Front. Neurosci. 12:523. 10.3389/fnins.2018.00523 PubMed DOI PMC
Vitarella D., DiRisio D. J., Kimelberg H. K., Aschner M. (1994). Potassium and taurine release are highly correlated with regulatory volume decrease in neonatal primary rat astrocyte cultures. J. Neurochem. 63, 1143–1149. 10.1046/j.1471-4159.1994.63031143.x PubMed DOI
Volpe J. J., Kinney H. C., Jensen F. E., Rosenberg P. A. (2011). The developing oligodendrocyte: key cellular target in brain injury in the premature infant. Int. J. Dev. Neurosci. 29, 423–440. 10.1016/j.ijdevneu.2011.02.012 PubMed DOI PMC
Volterra A., Trotti D., Racagni G. (1994). Glutamate uptake is inhibited by arachidonic acid and oxygen radicals via two distinct and additive mechanisms. Mol. Pharmacol. 46, 986–992. PubMed
Voss F. K., Ullrich F., Munch J., Lazarow K., Lutter D., Mah N., et al. . (2014). Identification of LRRC8 heteromers as an essential component of the volume-regulated anion channel VRAC. Science 344, 634–638. 10.1126/science.1252826 PubMed DOI
Wadiche J. I., Amara S. G., Kavanaugh M. P. (1995). Ion fluxes associated with excitatory amino acid transport. Neuron 15, 721–728. 10.1016/0896-6273(95)90159-0 PubMed DOI
Waller R., Murphy M., Garwood C. J., Jennings L., Heath P. R., Chambers A., et al. . (2018). Metallothionein-I/II expression associates with the astrocyte DNA damage response and not Alzheimer-type pathology in the aging brain. Glia 66, 2316–2323. 10.1002/glia.23465 PubMed DOI
Wang M., Song J., Xiao W., Yang L., Yuan J., Wang W., et al. . (2012). Changes in lipid-sensitive two-pore domain potassium channel TREK-1 expression and its involvement in astrogliosis following cerebral ischemia in rats. J. Mol. Neurosci. 46, 384–392. 10.1007/s12031-011-9598-z PubMed DOI
Warby S. C., Doty C. N., Graham R. K., Carroll J. B., Yang Y. Z., Singaraja R. R., et al. . (2008). Activated caspase-6 and caspase-6-cleaved fragments of huntingtin specifically colocalize in the nucleus. Hum. Mol. Genet. 17, 2390–2404. 10.1093/hmg/ddn139 PubMed DOI
Weller M. L., Stone I. M., Goss A., Rau T., Rova C., Poulsen D. J. (2008). Selective overexpression of excitatory amino acid transporter 2 (EAAT2) in astrocytes enhances neuroprotection from moderate but not severe hypoxia-ischemia. Neuroscience 155, 1204–1211. 10.1016/j.neuroscience.2008.05.059 PubMed DOI PMC
Wetterling F., Chatzikonstantinou E., Tritschler L., Meairs S., Fatar M., Schad L. R., et al. . (2016). Investigating potentially salvageable penumbra tissue in an in vivo model of transient ischemic stroke using sodium, diffusion, and perfusion magnetic resonance imaging. BMC Neurosci. 17:82. 10.1186/s12868-016-0316-1 PubMed DOI PMC
Wilson C. S., Mongin A. A. (2018). Cell volume control in healthy brain and neuropathologies. Curr. Top. Membr. 81, 385–455. 10.1016/bs.ctm.2018.07.006 PubMed DOI PMC
Wilson-Costello D., Friedman H., Minich N., Siner B., Taylor G., Schluchter M., et al. . (2007). Improved neurodevelopmental outcomes for extremely low birth weight infants in 2000–2002. Pediatrics 119, 37–45. 10.1542/peds.2006-1416 PubMed DOI
Winkler E. A., Minter D., Yue J. K., Manley G. T. (2016). Cerebral edema in traumatic brain injury: pathophysiology and prospective therapeutic targets. Neurosurg. Clin. N. Am. 27, 473–488. 10.1016/j.nec.2016.05.008 PubMed DOI
Woo D. H., Han K. S., Shim J. W., Yoon B. E., Kim E., Bae J. Y., et al. . (2012). TREK-1 and Best1 channels mediate fast and slow glutamate release in astrocytes upon GPCR activation. Cell 151, 25–40. 10.1016/j.cell.2012.09.005 PubMed DOI
Wu X., Liu Y., Chen X., Sun Q., Tang R., Wang W., et al. . (2013). Involvement of TREK-1 activity in astrocyte function and neuroprotection under simulated ischemia conditions. J. Mol. Neurosci. 49, 499–506. 10.1007/s12031-012-9875-5 PubMed DOI
Wu X. M., Liu Y., Qian Z. M., Luo Q. Q., Ke Y. (2016). CX3CL1/CX3CR1 axis plays a key role in ischemia-induced oligodendrocyte injury via p38MAPK signaling pathway. Mol. Neurobiol. 53, 4010–4018. 10.1007/s12035-015-9339-3 PubMed DOI
Xiao Y., Geng F., Wang G., Li X., Zhu J., Zhu W. (2018). Bone marrow-derived mesenchymal stem cells-derived exosomes prevent oligodendrocyte apoptosis through exosomal miR-134 by targeting caspase-8. J. Cell. Biochem. [Epub ahead of print]. 10.1002/jcb.27519 PubMed DOI
Xin W. J., Weng H. R., Dougherty P. M. (2009). Plasticity in expression of the glutamate transporters GLT-1 and GLAST in spinal dorsal horn glial cells following partial sciatic nerve ligation. Mol. Pain 5:15. 10.1186/1744-8069-5-15 PubMed DOI PMC
Yan Z., Khadra A., Li S., Tomic M., Sherman A., Stojilkovic S. S. (2010). Experimental characterization and mathematical modeling of P2X7 receptor channel gating. J. Neurosci. 30, 14213–14224. 10.1523/jneurosci.2390-10.2010 PubMed DOI PMC
Yang J.-L., Mukda S., Chen S.-D. (2018). Diverse roles of mitochondria in ischemic stroke. Redox Biol. 16, 263–275. 10.1016/j.redox.2018.03.002 PubMed DOI PMC
Yang J., Vitery M. D. C., Chen J., Osei-Owusu J., Chu J., Qiu Z. (2019). Glutamate-releasing SWELL1 channel in astrocytes modulates synaptic transmission and promotes brain damage in stroke. Neuron 102, 813.e6–827.e6. 10.1016/j.neuron.2019.03.029 PubMed DOI PMC
Yao G. Y., Zhu Q., Xia J., Chen F. J., Huang M., Liu J., et al. . (2018). Ischemic postconditioning confers cerebroprotection by stabilizing VDACs after brain ischemia. Cell Death Dis. 9:1033. 10.1038/s41419-018-1089-5 PubMed DOI PMC
Yuan F., Wang T. (1996). Glutamate-induced swelling of cultured astrocytes is mediated by metabotropic glutamate receptor. Sci. China C Life Sci. 39, 517–522. PubMed
Yung L. M., Wei Y., Qin T., Wang Y., Smith C. D., Waeber C. (2012). Sphingosine kinase 2 mediates cerebral preconditioning and protects the mouse brain against ischemic injury. Stroke 43, 199–204. 10.1161/strokeaha.111.626911 PubMed DOI PMC
Zeng W., Tong Y., Li H., Luo R., Mao M. (2012). P2X7 receptor modulation of the viability of radial glial clone L2.3 cells during hypoxic-ischemic brain injury. Mol. Med. Rep. 5, 1357–1361. 10.3892/mmr.2012.816 PubMed DOI
Zhang H., Cao H. J., Kimelberg H. K., Zhou M. (2011). Volume regulated anion channel currents of rat hippocampal neurons and their contribution to oxygen-and-glucose deprivation induced neuronal death. PLoS One 6:e16803. 10.1371/journal.pone.0016803 PubMed DOI PMC
Zhang L., Dong L. Y., Li Y. J., Hong Z., Wei W. S. (2012). miR-21 represses FasL in microglia and protects against microglia-mediated neuronal cell death following hypoxia/ischemia. Glia 60, 1888–1895. 10.1002/glia.22404 PubMed DOI
Zhang M., Gong J. X., Wang J. L., Jiang M. Y., Li L., Hu Y. Y., et al. . (2017). p38 MAPK participates in the mediation of GLT-1 up-regulation during the induction of brain ischemic tolerance by cerebral ischemic preconditioning. Mol. Neurobiol. 54, 58–71. 10.1007/s12035-015-9652-x PubMed DOI
Zhang L. N., Hao L., Guo Y. S., Wang H. Y., Li L. L., Liu L. Z., et al. . (2019). Are glutamate transporters neuroprotective or neurodegenerative during cerebral ischemia? J. Mol. Med. 97, 281–289. 10.1007/s00109-019-01745-5 PubMed DOI
Zhang M., Li W. B., Geng J. X., Li Q. J., Sun X. C., Xian X. H., et al. . (2007). The upregulation of glial glutamate transporter-1 participates in the induction of brain ischemic tolerance in rats. J. Cereb. Blood Flow Metab. 27, 1352–1368. 10.1038/sj.jcbfm.9600441 PubMed DOI
Zhang J. M., Wang H. K., Ye C. Q., Ge W., Chen Y., Jiang Z. L., et al. . (2003). ATP released by astrocytes mediates glutamatergic activity-dependent heterosynaptic suppression. Neuron 40, 971–982. 10.1016/s0896-6273(03)00717-7 PubMed DOI
Zhang J., Zhang Y., Xing S., Liang Z., Zeng J. (2012). Secondary neurodegeneration in remote regions after focal cerebral infarction: a new target for stroke management? Stroke 43, 1700–1705. 10.1161/STROKEAHA.111.632448 PubMed DOI
Zhao W., Belayev L., Ginsberg M. D. (1997). Transient middle cerebral artery occlusion by intraluminal suture: II. Neurological deficits and pixel-based correlation of histopathology with local blood flow and glucose utilization. J. Cereb. Blood Flow Metab. 17, 1281–1290. 10.1097/00004647-199712000-00003 PubMed DOI
Zhao S. C., Ma L. S., Chu Z. H., Xu H., Wu W. Q., Liu F. (2017). Regulation of microglial activation in stroke. Acta Pharmacol. Sin. 38, 445–458. 10.1038/aps.2016.162 PubMed DOI PMC
Zhao F., Qu Y., Wang H., Huang L., Zhu J., Li S., et al. . (2017). The effect of miR-30d on apoptosis and autophagy in cultured astrocytes under oxygen-glucose deprivation. Brain Res. 1671, 67–76. 10.1016/j.brainres.2017.06.011 PubMed DOI
On the Common Journey of Neural Cells through Ischemic Brain Injury and Alzheimer's Disease