On the Common Journey of Neural Cells through Ischemic Brain Injury and Alzheimer's Disease
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
21-24674S
Grantová Agentura České Republiky
PubMed
34575845
PubMed Central
PMC8472292
DOI
10.3390/ijms22189689
PII: ijms22189689
Knihovny.cz E-zdroje
- Klíčová slova
- Alzheimer’s disease, Wnt signaling, amyloid beta, central nervous system, dementia, ischemic brain injury, neurodegeneration, stroke,
- MeSH
- Alzheimerova nemoc etiologie metabolismus patologie MeSH
- amyloidní beta-protein metabolismus MeSH
- biologické markery MeSH
- degenerace nervu MeSH
- ischemie mozku etiologie metabolismus patologie MeSH
- lidé MeSH
- náchylnost k nemoci * MeSH
- neurony metabolismus MeSH
- poranění mozku etiologie metabolismus patologie MeSH
- signální dráha Wnt MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- amyloidní beta-protein MeSH
- biologické markery MeSH
Ischemic brain injury and Alzheimer's disease (AD) both lead to cell death in the central nervous system (CNS) and thus negatively affect particularly the elderly population. Due to the lack of a definitive cure for brain ischemia and AD, it is advisable to carefully study, compare, and contrast the mechanisms that trigger, and are involved in, both neuropathologies. A deeper understanding of these mechanisms may help ameliorate, or even prevent, the destructive effects of neurodegenerative disorders. In this review, we deal with ischemic damage and AD, with the main emphasis on the common properties of these CNS disorders. Importantly, we discuss the Wnt signaling pathway as a significant factor in the cell fate determination and cell survival in the diseased adult CNS. Finally, we summarize the interesting findings that may improve or complement the current sparse and insufficient treatments for brain ischemia and AD, and we delineate prospective directions in regenerative medicine.
2nd Faculty of Medicine Charles University 150 06 Prague Czech Republic
Institute of Experimental Medicine Czech Academy of Sciences 142 20 Prague Czech Republic
Zobrazit více v PubMed
Katan M., Luft A. Global Burden of Stroke. Semin. Neurol. 2018;38:208–211. doi: 10.1055/s-0038-1649503. PubMed DOI
DeTure M.A., Dickson D.W. The neuropathological diagnosis of Alzheimer’s disease. Mol. Neurodegener. 2019;14:1–18. doi: 10.1186/s13024-019-0333-5. PubMed DOI PMC
Pluta R., Januszewski S., Czuczwar S.J. Brain Ischemia as a Prelude to Alzheimer’s Disease. Front. Aging Neurosci. 2021;13:636653. doi: 10.3389/fnagi.2021.636653. PubMed DOI PMC
Nakagawa T., Hasegawa Y., Uekawa K., Senju S., Nakagata N., Matsui K., Kim-Mitsuyama S. Transient Mild Cerebral Ischemia Significantly Deteriorated Cognitive Impairment in a Mouse Model of Alzheimer’s DiseaseviaAngiotensin AT1 Receptor. Am. J. Hypertens. 2016;30:141–150. doi: 10.1093/ajh/hpw099. PubMed DOI
World Health Organization (WHO) The Top 10 Causes of Death. [(accessed on 4 July 2021)]. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death.
Nadarajan V., Perry R.J., Johnson J., Werring D.J. Transient ischaemic attacks: Mimics and chameleons. Pract. Neurol. 2014;14:23–31. doi: 10.1136/practneurol-2013-000782. PubMed DOI PMC
Kirdajova D.B., Kriska J., Tureckova J., Anderova M. Ischemia-Triggered Glutamate Excitotoxicity From the Perspective of Glial Cells. Front. Cell. Neurosci. 2020;14:51. doi: 10.3389/fncel.2020.00051. PubMed DOI PMC
Anderova M., Vorisek I., Pivonkova H., Benesova J., Vargova L., Cicanic M., Chvatal A., Sykova E. Cell Death/Proliferation and Alterations in Glial Morphology Contribute to Changes in Diffusivity in the Rat Hippocampus after Hypoxia—Ischemia. Br. J. Pharmacol. 2010;31:894–907. doi: 10.1038/jcbfm.2010.168. PubMed DOI PMC
Ferrer I., Planas A.M. Signaling of Cell Death and Cell Survival Following Focal Cerebral Ischemia: Life and Death Struggle in the Penumbra. J. Neuropathol. Exp. Neurol. 2003;62:329–339. doi: 10.1093/jnen/62.4.329. PubMed DOI
Brouns R., De Deyn P. The complexity of neurobiological processes in acute ischemic stroke. Clin. Neurol. Neurosurg. 2009;111:483–495. doi: 10.1016/j.clineuro.2009.04.001. PubMed DOI
A Donnan G., Fisher M., Macleod M.R., Davis S.M. Stroke. Lancet. 2008;371:1612–1623. doi: 10.1016/S0140-6736(08)60694-7. PubMed DOI
Puig B., Brenna S., Magnus T. Molecular Communication of a Dying Neuron in Stroke. Int. J. Mol. Sci. 2018;19:2834. doi: 10.3390/ijms19092834. PubMed DOI PMC
Thirugnanachandran T., Ma H., Singhal S., Slater L.-A., Davis S.M., A Donnan G., Phan T. Refining the ischemic penumbra with topography. Int. J. Stroke. 2017;13:277–284. doi: 10.1177/1747493017743056. PubMed DOI
Choudhury G.R., Ding S. Reactive astrocytes and therapeutic potential in focal ischemic stroke. Neurobiol. Dis. 2016;85:234–244. doi: 10.1016/j.nbd.2015.05.003. PubMed DOI PMC
Ding S. Dynamic reactive astrocytes after focal ischemia. Neural Regen. Res. 2014;9:2048–2052. doi: 10.4103/1673-5374.147929. PubMed DOI PMC
Okada S., Hara M., Kobayakawa K., Matsumoto Y., Nakashima Y. Astrocyte reactivity and astrogliosis after spinal cord injury. Neurosci. Res. 2018;126:39–43. doi: 10.1016/j.neures.2017.10.004. PubMed DOI
Morizawa Y.M., Hirayama Y., Ohno N., Shibata S., Shigetomi E., Sui Y., Nabekura J., Sato K., Okajima F., Takebayashi H., et al. Reactive astrocytes function as phagocytes after brain ischemia via ABCA1-mediated pathway. Nat. Commun. 2017;8 doi: 10.1038/s41467-017-00037-1. PubMed DOI PMC
Hu X., Li P., Guo Y., Wang H., Leak R.K., Chen S., Gao Y., Chen J. Microglia/Macrophage Polarization Dynamics Reveal Novel Mechanism of Injury Expansion after Focal Cerebral Ischemia. Stroke. 2012;43:3063–3070. doi: 10.1161/STROKEAHA.112.659656. PubMed DOI
Xu S., Lu J., Shao A., Zhang J.H., Zhang J. Glial Cells: Role of the Immune Response in Ischemic Stroke. Front. Immunol. 2020;11:294. doi: 10.3389/fimmu.2020.00294. PubMed DOI PMC
Barakat R.R., Redzic Z.B. The Role of Activated Microglia and Resident Macrophages in the Neurovascular Unit during Cerebral Ischemia: Is the Jury Still Out? Med. Princ. Pract. 2016;25:3–14. doi: 10.1159/000435858. PubMed DOI PMC
Woodruff T.M., Thundyil J., Tang S.-C., Sobey C.G., Taylor S.M., Arumugam T.V. Pathophysiology, treatment, and animal and cellular models of human ischemic stroke. Mol. Neurodegener. 2011;6:11–19. doi: 10.1186/1750-1326-6-11. PubMed DOI PMC
Brouns R., Sheorajpanday R., Wauters A., De Surgeloose D., Mariën P., De Deyn P.P. Evaluation of lactate as a marker of metabolic stress and cause of secondary damage in acute ischemic stroke or TIA. Clin. Chim. Acta. 2008;397:27–31. doi: 10.1016/j.cca.2008.07.016. PubMed DOI
Abramov A.Y., Scorziello A., Duchen M. Three Distinct Mechanisms Generate Oxygen Free Radicals in Neurons and Contribute to Cell Death during Anoxia and Reoxygenation. J. Neurosci. 2007;27:1129–1138. doi: 10.1523/JNEUROSCI.4468-06.2007. PubMed DOI PMC
Rossi D.J., Brady J.D., Mohr C. Astrocyte metabolism and signaling during brain ischemia. Nat. Neurosci. 2007;10:1377–1386. doi: 10.1038/nn2004. PubMed DOI PMC
Liang D., Bhatta S., Gerzanich V., Simard J.M. Cytotoxic edema: Mechanisms of pathological cell swelling. Neurosurg. Focus. 2007;22:1–9. doi: 10.3171/foc.2007.22.5.3. PubMed DOI PMC
Wu M.-Y., Yiang G.-T., Liao W.-T., Tsai A., Cheng Y.-L., Cheng P.-W., Li C.-Y. Current Mechanistic Concepts in Ischemia and Reperfusion Injury. Cell. Physiol. Biochem. 2018;46:1650–1667. doi: 10.1159/000489241. PubMed DOI
2020 Alzheimer’s Disease Facts and Figures. Alzheimers Dementia. [(accessed on 27 July 2021)]. Available online: https://alz-journals.onlinelibrary.wiley.com/doi/full/10.1002/alz.12068. DOI
Niu H., Álvarez-Álvarez I., Guillén-Grima F., Aguinaga-Ontoso I. Prevalencia e incidencia de la enfermedad de Alzheimer en Europa: Metaanálisis. Neurología. 2017;32:523–532. doi: 10.1016/j.nrl.2016.02.016. PubMed DOI
Hebert L.E., Weuve J., Scherr P.A., Evans D.A. Alzheimer disease in the United States (2010–2050) estimated using the 2010 census. Neurology. 2013;80:1778–1783. doi: 10.1212/WNL.0b013e31828726f5. PubMed DOI PMC
Prince M., Bryce R., Albanese E., Wimo A., Ribeiro W., Ferri C. The global prevalence of dementia: A systematic review and metaanalysis. Alzheimer’s Dement. 2013;9:63–75. doi: 10.1016/j.jalz.2012.11.007. PubMed DOI
Russ T.C., Batty G., Hearnshaw G.F., Fenton C., Starr J.M. Geographical variation in dementia: Systematic review with meta-analysis. Int. J. Epidemiol. 2012;41:1012–1032. doi: 10.1093/ije/dys103. PubMed DOI PMC
Lopez O.L., Kuller L.H. Handbook of Clinical Neurology. Volume 167. Elsevier; Amsterdam, The Netherlands: 2019. Epidemiology of aging and associated cognitive disorders: Prevalence and incidence of Alzheimer’s disease and other dementias; pp. 139–148. PubMed DOI
Sosa-Ortiz A.L., Castillo G.I.A., Prince M. Epidemiology of Dementias and Alzheimer’s Disease. Arch. Med. Res. 2012;43:600–608. doi: 10.1016/j.arcmed.2012.11.003. PubMed DOI
Chandra V., Ganguli M., Pandav R., Johnston J., Belle S., DeKosky S.T. Prevalence of Alzheimer’s disease and other dementias in rural India. Neurology. 1998;51:1000–1008. doi: 10.1212/WNL.51.4.1000. PubMed DOI
Hendrie H.C., O Osuntokun B., Hall K.S., O Ogunniyi A., Hui S.L., Unverzagt F.W., Gureje O., A Rodenberg C., Baiyewu O., Musick B.S. Prevalence of Alzheimer’s disease and dementia in two communities: Nigerian Africans and African Americans. Am. J. Psychiatry. 1995;152:1485–1492. doi: 10.1176/ajp.152.10.1485. PubMed DOI
Life expectancy. [(accessed on 27 July 2021)]. Available online: https://www.worlddata.info/life-expectancy.php.
Frisoni G.B., Fox N.C., Clifford R.J., Jr., Scheltens P., Thompson P. The clinical use of structural MRI in Alzheimer disease. Nat. Rev. Neurol. 2010;6:67–77. doi: 10.1038/nrneurol.2009.215. PubMed DOI PMC
Matsuda H. MRI morphometry in Alzheimer’s disease. Ageing Res. Rev. 2016;30:17–24. doi: 10.1016/j.arr.2016.01.003. PubMed DOI
Nordberg A., Rinne J.O., Kadir A., Långström B. The use of PET in Alzheimer disease. Nat. Rev. Neurol. 2010;6:78–87. doi: 10.1038/nrneurol.2009.217. PubMed DOI
Duara R., Lopez-Alberola R.F., Barker W.W., Loewenstein D.A., Zatinsky M., Eisdorfer C.E., Weinberg G.B. A comparison of familial and sporadic Alzheimer’s disease. Neurology. 1993;43:1377. doi: 10.1212/WNL.43.7.1377. PubMed DOI
Corder E.H., Saunders A.M., Strittmatter W.J., Schmechel D.E., Gaskell P.C., Small G.W., Roses A.D., Haines J.L., Pericak-Vance M.A. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science. 1993;261:921–923. doi: 10.1126/science.8346443. PubMed DOI
Verghese P.B., Castellano J., Garai K., Wang Y., Jiang H., Shah A., Bu G., Frieden C., Holtzman D.M. ApoE influences amyloid-β (Aβ) clearance despite minimal apoE/A association in physiological conditions. Proc. Natl. Acad. Sci. USA. 2013;110:E1807–E1816. doi: 10.1073/pnas.1220484110. PubMed DOI PMC
Cerf E., Gustot A., Goormaghtigh E., Ruysschaert J.-M., Raussens V. High ability of apolipoprotein E4 to stabilize amyloid-β peptide oligomers, the pathological entities responsible for Alzheimer’s disease. FASEB J. 2011;25:1585–1595. doi: 10.1096/fj.10-175976. PubMed DOI
Armstrong R.A. Risk factors for Alzheimer’s disease. Folia Neuropathol. 2019;57:87–105. doi: 10.5114/fn.2019.85929. PubMed DOI
Mendiola-Precoma J., Berumen L.C., Padilla K., Garcia-Alcocer G. Therapies for Prevention and Treatment of Alzheimer’s Disease. BioMed Res. Int. 2016;2016:2589276. doi: 10.1155/2016/2589276. PubMed DOI PMC
Jaunmuktane Z., Mead S., Ellis M., Wadsworth J., Nicoll A.J., Kenny J., Launchbury F., Linehan J.M., Richard-Loendt A., Walker A.S., et al. Evidence for human transmission of amyloid-β pathology and cerebral amyloid angiopathy. Nat. Cell Biol. 2015;525:247–250. doi: 10.1038/nature15369. PubMed DOI
Tarasoff-Conway J.M., Carare R.O., Osorio R., Glodzik L., Butler T., Fieremans E., Axel L., Rusinek H., Nicholson C., Zlokovic B.V., et al. Clearance systems in the brain—Implications for Alzheimer disease. Nat. Rev. Neurol. 2015;11:457–470. doi: 10.1038/nrneurol.2015.119. PubMed DOI PMC
Harrison I.F., Ismail O., Machhada A., Colgan N., Ohene Y., Nahavandi P., Ahmed Z., Fisher A., Meftah S., Murray T.K., et al. Impaired glymphatic function and clearance of tau in an Alzheimer’s disease model. Brain. 2020;143:2576–2593. doi: 10.1093/brain/awaa179. PubMed DOI PMC
De Strooper B., Karran E. The Cellular Phase of Alzheimer’s Disease. Cell. 2016;164:603–615. doi: 10.1016/j.cell.2015.12.056. PubMed DOI
Jack C.R., Wiste H.J., Weigand S.D., A Rocca W., Knopman D.S., Mielke M., Lowe V.J., Senjem M.L., Gunter J.L., Preboske G.M., et al. Age-specific population frequencies of cerebral β-amyloidosis and neurodegeneration among people with normal cognitive function aged 50–89 years: A cross-sectional study. Lancet Neurol. 2014;13:997–1005. doi: 10.1016/S1474-4422(14)70194-2. PubMed DOI PMC
Jack C.R., Wiste H.J., Weigand S.D., Therneau T.M., Knopman D.S., Lowe V., Vemuri P., Mielke M., O Roberts R., Machulda M.M., et al. Age-specific and sex-specific prevalence of cerebral β-amyloidosis, tauopathy, and neurodegeneration in cognitively unimpaired individuals aged 50–95 years: A cross-sectional study. Lancet Neurol. 2017;16:435–444. doi: 10.1016/S1474-4422(17)30077-7. PubMed DOI PMC
Lazarevic V., Fieńko S., Andres-Alonso M., Anni D., Ivanova D., Montenegro-Venegas C., Gundelfinger E., Cousin M., Fejtova A. Physiological Concentrations of Amyloid Beta Regulate Recycling of Synaptic Vesicles via Alpha7 Acetylcholine Receptor and CDK5/Calcineurin Signaling. Front. Mol. Neurosci. 2017;10:221. doi: 10.3389/fnmol.2017.00221. PubMed DOI PMC
Zhang F., Gannon M., Chen Y., Yan S., Zhang S., Feng W., Tao J., Sha B., Liu Z., Saito T., et al. β-amyloid redirects norepinephrine signaling to activate the pathogenic GSK3β/tau cascade. Sci. Transl. Med. 2020;12:eaay6931. doi: 10.1126/scitranslmed.aay6931. PubMed DOI PMC
Barthélemy N.R., Network T.D.I.A., Li Y., Joseph-Mathurin N., Gordon B.A., Hassenstab J., Benzinger T.L.S., Buckles V., Fagan A.M., Perrin R.J., et al. A soluble phosphorylated tau signature links tau, amyloid and the evolution of stages of dominantly inherited Alzheimer’s disease. Nat. Med. 2020;26:398–407. doi: 10.1038/s41591-020-0781-z. PubMed DOI PMC
Snyder E.M., Nong Y., Almeida C.G., Paul S., Moran T., Choi E.Y., Nairn A., Salter M.W., Lombroso P.J., Gouras G., et al. Regulation of NMDA receptor trafficking by amyloid-β. Nat. Neurosci. 2005;8:1051–1058. doi: 10.1038/nn1503. PubMed DOI
Shankar G.M., Bloodgood B., Townsend M., Walsh D.M., Selkoe D.J., Sabatini B.L. Natural Oligomers of the Alzheimer Amyloid-β Protein Induce Reversible Synapse Loss by Modulating an NMDA-Type Glutamate Receptor-Dependent Signaling Pathway. J. Neurosci. 2007;27:2866–2875. doi: 10.1523/JNEUROSCI.4970-06.2007. PubMed DOI PMC
Cleary J.P., Walsh D.M., Hofmeister J.J., Shankar G.M., A Kuskowski M., Selkoe D.J., Ashe K.H. Natural oligomers of the amyloid-β protein specifically disrupt cognitive function. Nat. Neurosci. 2004;8:79–84. doi: 10.1038/nn1372. PubMed DOI
Wang Q., Walsh M.M., Rowan M.J., Selkoe D.J., Anwyl R. Block of Long-Term Potentiation by Naturally Secreted and Synthetic Amyloid β-Peptide in Hippocampal Slices Is Mediated via Activation of the Kinases c-Jun N-Terminal Kinase, Cyclin-Dependent Kinase 5, and p38 Mitogen-Activated Protein Kinase as well as Metabotropic Glutamate Receptor Type. J. Neurosci. 2004;24:3370–3378. doi: 10.1523/JNEUROSCI.1633-03.2004. PubMed DOI PMC
Li S., Hong S., Shepardson N.E., Walsh D.M., Shankar G.M., Selkoe D. Soluble Oligomers of Amyloid β Protein Facilitate Hippocampal Long-Term Depression by Disrupting Neuronal Glutamate Uptake. Neuron. 2009;62:788–801. doi: 10.1016/j.neuron.2009.05.012. PubMed DOI PMC
Xia M., Cheng X., Yi R., Gao D., Xiong J. The Binding Receptors of Aβ: An Alternative Therapeutic Target for Alzheimer’s Disease. Mol. Neurobiol. 2014;53:455–471. doi: 10.1007/s12035-014-8994-0. PubMed DOI
Benilova I., Karran E., De Strooper B. The toxic Aβ oligomer and Alzheimer’s disease: An emperor in need of clothes. Nat. Neurosci. 2012;15:349–357. doi: 10.1038/nn.3028. PubMed DOI
Viola K.L., Klein W.L. Amyloid β oligomers in Alzheimer’s disease pathogenesis, treatment, and diagnosis. Acta Neuropathol. 2015;129:183–206. doi: 10.1007/s00401-015-1386-3. PubMed DOI PMC
Campioni S., Mannini B., Zampagni M., Pensalfini A., Parrini C., Evangelisti E., Relini A., Stefani M., Dobson C.M., Cecchi C., et al. A causative link between the structure of aberrant protein oligomers and their toxicity. Nat. Chem. Biol. 2010;6:140–147. doi: 10.1038/nchembio.283. PubMed DOI
Walsh D.M., Klyubin I., Fadeeva J.V., Cullen W.K., Anwyl R., Wolfe M.S., Rowan M.J., Selkoe D.J. Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nat. Cell Biol. 2002;416:535–539. doi: 10.1038/416535a. PubMed DOI
Lesné S., Koh M.T., Kotilinek L., Kayed R., Glabe C.G., Yang A., Gallagher M., Ashe K.H. A specific amyloid-β protein assembly in the brain impairs memory. Nature. 2006;440:352–357. doi: 10.1038/nature04533. PubMed DOI
Prinz M., Jung S., Priller J. Microglia Biology: One Century of Evolving Concepts. Cell. 2019;179:292–311. doi: 10.1016/j.cell.2019.08.053. PubMed DOI
Salter M.W., Beggs S. Sublime Microglia: Expanding Roles for the Guardians of the CNS. Cell. 2014;158:15–24. doi: 10.1016/j.cell.2014.06.008. PubMed DOI
Li Y., Du X.-F., Liu C.-S., Wen Z.L., Du J.-L. Reciprocal Regulation between Resting Microglial Dynamics and Neuronal Activity In Vivo. Dev. Cell. 2012;23:1189–1202. doi: 10.1016/j.devcel.2012.10.027. PubMed DOI
Thériault P., ElAli A., Rivest S. The dynamics of monocytes and microglia in Alzheimer’s disease. Alzheimer’s Res. Ther. 2015;7:1–10. doi: 10.1186/s13195-015-0125-2. PubMed DOI PMC
Serrano-Pozo A., Muzikansky A., Gómez-Isla T., Growdon J.H., Betensky R.A., Frosch M.P., Hyman B.T. Differential Relationships of Reactive Astrocytes and Microglia to Fibrillar Amyloid Deposits in Alzheimer Disease. J. Neuropathol. Exp. Neurol. 2013;72:462–471. doi: 10.1097/NEN.0b013e3182933788. PubMed DOI PMC
Goetzl E.J., Miller B.L. Multicellular hypothesis for the pathogenesis of Alzheimer’s disease. FASEB J. 2017;31:1792–1795. doi: 10.1096/fj.201601221R. PubMed DOI
Babcock A.A., Ilkjær L., Clausen B.H., Villadsen B., Dissing-Olesen L., Bendixen A.T., Lyck L., Lambertsen K.L., Finsen B. Cytokine-producing microglia have an altered beta-amyloid load in aged APP/PS1 Tg mice. Brain Behav. Immun. 2015;48:86–101. doi: 10.1016/j.bbi.2015.03.006. PubMed DOI
Orre M., Kamphuis W., Dooves S., Kooijman L., Chan E.T., Kirk C.J., Smith V.D., Koot S., Mamber C., Jansen A.H., et al. Reactive glia show increased immunoproteasome activity in Alzheimer’s disease. Brain. 2013;136:1415–1431. doi: 10.1093/brain/awt083. PubMed DOI
Esolito E., Esastre M. Microglia Function in Alzheimer’s Disease. Front. Pharmacol. 2012;3:14. doi: 10.3389/fphar.2012.00014. PubMed DOI PMC
Yong V.W., Moumdjian R., Yong F.P., Ruijs T.C., Freedman M.S., Cashman N., Antel J. Gamma-interferon promotes proliferation of adult human astrocytes in vitro and reactive gliosis in the adult mouse brain in vivo. Proc. Natl. Acad. Sci. USA. 1991;88:7016–7020. doi: 10.1073/pnas.88.16.7016. PubMed DOI PMC
Blasko I., Veerhuis R., Stampfer-Kountchev M., Saurwein-Teissl M., Eikelenboom P., Grubeck-Loebenstein B. Costimulatory Effects of Interferon-γ and Interleukin-1β or Tumor Necrosis Factor α on the Synthesis of Aβ1-40 and Aβ1-42 by Human Astrocytes. Neurobiol. Dis. 2000;7:682–689. doi: 10.1006/nbdi.2000.0321. PubMed DOI
Kleinberger G., Yamanishi Y., Suárez-Calvet M., Czirr E., Lohmann E., Cuyvers E., Struyfs H., Pettkus N., Wenninger-Weinzierl A., Mazaheri F., et al. TREM2 mutations implicated in neurodegeneration impair cell surface transport and phagocytosis. Sci. Transl. Med. 2014;6:243ra86. doi: 10.1126/scitranslmed.3009093. PubMed DOI
Griciuc A., Serrano-Pozo A., Parrado A.R., Lesinski A.N., Asselin C.N., Mullin K., Hooli B., Choi S.H., Hyman B.T., Tanzi R.E. Alzheimer’s Disease Risk Gene CD33 Inhibits Microglial Uptake of Amyloid Beta. Neuron. 2013;78:631–643. doi: 10.1016/j.neuron.2013.04.014. PubMed DOI PMC
Heneka M.T., Carson M.J., El Khoury J., Landreth G.E., Brosseron F., Feinstein D.L., Jacobs A.H., Wyss-Coray T., Vitorica J., Ransohoff R.M., et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015;14:388–405. doi: 10.1016/S1474-4422(15)70016-5. PubMed DOI PMC
Liu C., Cui G., Zhu M., Kang X., Guo H. Neuroinflammation in Alzheimer’s disease: Chemokines produced by astrocytes and chemokine receptors. Int. J. Clin. Exp. Pathol. 2014;7:8342–8355. PubMed PMC
Goetzl E.J., Mustapic M., Kapogiannis D., Eitan E., Lobach I.V., Goetzl L., Schwartz J.B., Miller B.L. Cargo proteins of plasma astrocyte-derived exosomes in Alzheimer’s disease. FASEB J. 2016;30:3853–3859. doi: 10.1096/fj.201600756R. PubMed DOI PMC
Haj-Yasein N.N., Vindedal G.F., Eilert-Olsen M., Gundersen G.A., Skare Ø., Laake P., Klungland A., Thorén A.E., Burkhardt J.M., Ottersen O.P., et al. Glial-conditional deletion of aquaporin-4 (Aqp4) reduces blood-brain water uptake and confers barrier function on perivascular astrocyte endfeet. Proc. Natl. Acad. Sci. USA. 2011;108:17815–17820. doi: 10.1073/pnas.1110655108. PubMed DOI PMC
Lan Y.-L., Zhao J., Ma T., Li S. The Potential Roles of Aquaporin 4 in Alzheimer’s Disease. Mol. Neurobiol. 2016;53:5300–5309. doi: 10.1007/s12035-015-9446-1. PubMed DOI
Valenza M., Facchinetti R., Steardo L., Scuderi C. Altered Waste Disposal System in Aging and Alzheimer’s Disease: Focus on Astrocytic Aquaporin. Front Pharmacol. 2020;10:1656. doi: 10.3389/fphar.2019.01656. PubMed DOI PMC
Iram T., Trudler D., Kain D., Kanner S., Galron R., Vassar R., Barzilai A., Blinder P., Fishelson Z., Frenkel D. Astrocytes from old Alzheimer’s disease mice are impaired in Aβ uptake and in neuroprotection. Neurobiol. Dis. 2016;96:84–94. doi: 10.1016/j.nbd.2016.08.001. PubMed DOI
Hynd M.R., Scott H.L., Dodd P.R. Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer’s disease. Neurochem. Int. 2004;45:583–595. doi: 10.1016/j.neuint.2004.03.007. PubMed DOI
Assefa B.T., Gebre A.K., Altaye B.M. Reactive Astrocytes as Drug Target in Alzheimer’s Disease. BioMed Res. Int. 2018;2018:4160247. doi: 10.1155/2018/4160247. PubMed DOI PMC
Acosta C., Anderson H.D., Anderson C.M. Astrocyte dysfunction in Alzheimer disease. J. Neurosci. Res. 2017;95:2430–2447. doi: 10.1002/jnr.24075. PubMed DOI
Bartzokis G. Alzheimer’s disease as homeostatic responses to age-related myelin breakdown. Neurobiol. Aging. 2011;32:1341–1371. doi: 10.1016/j.neurobiolaging.2009.08.007. PubMed DOI PMC
Behrendt G., Baer K., Buffo A., Curtis M., Faull R., Rees M., Götz M., Dimou L. Dynamic changes in myelin aberrations and oligodendrocyte generation in chronic amyloidosis in mice and men. Glia. 2013;61:273–286. doi: 10.1002/glia.22432. PubMed DOI
Desai M.K., Mastrangelo M.A., Ryan D., Sudol K.L., Narrow W.C., Bowers W.J. Early Oligodendrocyte/Myelin Pathology in Alzheimer’s Disease Mice Constitutes a Novel Therapeutic Target. Am. J. Pathol. 2010;177:1422–1435. doi: 10.2353/ajpath.2010.100087. PubMed DOI PMC
Lall R., Mohammed R., Ojha U. What are the links between hypoxia and Alzheimer’s disease? Neuropsychiatr. Dis. Treat. 2019;ume 15:1343–1354. doi: 10.2147/NDT.S203103. PubMed DOI PMC
Silva M.V.F., Loures C.D.M.G., Alves L.C.V., De Souza L.C., Borges K.B.G., Carvalho M.D.G. Alzheimer’s disease: Risk factors and potentially protective measures. J. Biomed. Sci. 2019;26:1–11. doi: 10.1186/s12929-019-0524-y. PubMed DOI PMC
Huang H.-D., Yang C.-M., Shu H.-F., Kuang Y.-Q., Yang T., He W.-Q., Zhao K., Xia X., Cheng J.-M., Ma Y., et al. Genetic predisposition of stroke: Understanding the evolving landscape through meta-analysis. Int. J. Clin. Exp. Med. 2015;8:1315–1323. PubMed PMC
Chauhan G., Debette S. Genetic Risk Factors for Ischemic and Hemorrhagic Stroke. Curr. Cardiol. Rep. 2016;18:124. doi: 10.1007/s11886-016-0804-z. PubMed DOI PMC
Rosenberg G.A. Understanding aging effects on brain ischemia. Neurobiol. Dis. 2019;126:3–4. doi: 10.1016/j.nbd.2019.04.002. PubMed DOI
Li J., Shan W., Zuo Z. Age-Related Upregulation of Carboxyl Terminal Modulator Protein Contributes to the Decreased Brain Ischemic Tolerance in Older Rats. Mol. Neurobiol. 2017;55:6145–6154. doi: 10.1007/s12035-017-0826-6. PubMed DOI PMC
Cortes-Canteli M., Iadecola C. Alzheimer’s Disease and Vascular Aging. J. Am. Coll. Cardiol. 2020;75:942–951. doi: 10.1016/j.jacc.2019.10.062. PubMed DOI PMC
Sengoku R. Aging and Alzheimer’s disease pathology. Neuropathology. 2019;40:22–29. doi: 10.1111/neup.12626. PubMed DOI
Habib N., McCabe C., Medina S., Varshavsky M., Kitsberg D., Dvir-Szternfeld R., Green G., Dionne D., Nguyen L., Marshall J.L., et al. Disease-associated astrocytes in Alzheimer’s disease and aging. Nat. Neurosci. 2020;23:701–706. doi: 10.1038/s41593-020-0624-8. PubMed DOI PMC
Yassine H.N., Finch C.E. APOE Alleles and Diet in Brain Aging and Alzheimer’s Disease. Front. Aging Neurosci. 2020;12:150. doi: 10.3389/fnagi.2020.00150. PubMed DOI PMC
Pan B., Jin X., Jun L., Qiu S., Zheng Q., Pan M. The relationship between smoking and stroke. Medicine. 2019;98:e14872. doi: 10.1097/MD.0000000000014872. PubMed DOI PMC
Wallin C., Sholts S.B., Österlund N., Luo J., Jarvet J., Roos P.M., Ilag L., Gräslund A., Wärmländer S.K.T.S. Alzheimer’s disease and cigarette smoke components: Effects of nicotine, PAHs, and Cd(II), Cr(III), Pb(II), Pb(IV) ions on amyloid-β peptide aggregation. Sci. Rep. 2017;7:14423. doi: 10.1038/s41598-017-13759-5. PubMed DOI PMC
Ułamek-Kozioł M., Pluta R., Januszewski S., Kocki J., Bogucka-Kocka A., Czuczwar S.J. Expression of Alzheimer’s disease risk genes in ischemic brain degeneration. Pharmacol. Rep. 2016;68:1345–1349. doi: 10.1016/j.pharep.2016.09.006. PubMed DOI
Ułamek-Kozioł M., Pluta R., Bogucka-Kocka A., Januszewski S., Kocki J., Czuczwar S.J. Brain ischemia with Alzheimer phenotype dysregulates Alzheimer’s disease-related proteins. Pharmacol. Rep. 2016;68:582–591. doi: 10.1016/j.pharep.2016.01.006. PubMed DOI
Pluta R., Ułamek-Kozioł M., Januszewski S., Czuczwar S.J. Participation of Amyloid and Tau Protein in Neuronal Death and Neurodegeneration after Brain Ischemia. Int. J. Mol. Sci. 2020;21:4599. doi: 10.3390/ijms21134599. PubMed DOI PMC
Badan I., Dinca I., Buchhold B., Suofu Y., Walker L., Gratz M., Platt D.H., Kessler C.H., Popa-Wagner A. Accelerated accumulation of N- and C-terminal betaAPP fragments and delayed recovery of microtubule-associated protein 1B expression following stroke in aged rats. Eur. J. Neurosci. 2004;19:2270–2280. doi: 10.1111/j.0953-816X.2004.03323.x. PubMed DOI
Shi J., Yang S., Stubley L., Day A., Simpkins J. Hypoperfusion induces overexpression of β-amyloid precursor protein mRNA in a focal ischemic rodent model. Brain Res. 2000;853:1–4. doi: 10.1016/S0006-8993(99)02113-7. PubMed DOI
Pluta R., Januszewski S., Jabłoński M., Ułamek M. Brain Edema XIV. Volume 106. Springer; Vienna, Austria: 2010. Factors in Creepy Delayed Neuronal Death in Hippocampus Following Brain Ischemia–Reperfusion Injury with Long-Term Survival; pp. 37–41. PubMed DOI
Qi J.-P., Wu H., Yang Y., Wang D.-D., Chen Y.-X., Gu Y.-H., Liu T. Cerebral Ischemia and Alzheimer’s Disease: The Expression of Amyloid-β and Apolipoprotein E in Human Hippocampus. J. Alzheimer’s Dis. 2007;12:335–341. doi: 10.3233/JAD-2007-12406. PubMed DOI
Blumenau S., Foddis M., Müller S., Holtgrewe M., Bentele K., Berchtold D., Beule D., Dirnagl U., Sassi C. Investigating APOE, APP-Aβ metabolism genes and Alzheimer’s disease GWAS hits in brain small vessel ischemic disease. Sci. Rep. 2020;10:7103. doi: 10.1038/s41598-020-63183-5. PubMed DOI PMC
Pluta R., Ułamek-Kozioł M., Januszewski S., Sciślewska M., Bogucka-Kocka A., Kocki J. Alzheimer’s factors in postischemic dementia. Rom. J. Morphol. Embryol. 2012;53:461–466. PubMed
Pluta R., Ułamek-Kozioł M., Januszewski S., Czuczwar S.J. Tau Protein Dysfunction after Brain Ischemia. J. Alzheimer’s Dis. 2018;66:429–437. doi: 10.3233/JAD-180772. PubMed DOI PMC
Pluta R., Bogucka-Kocka A., Ułamek-Kozioł M., Bogucki J., Januszewski S., Kocki J., Czuczwar S.J. Ischemic tau protein gene induction as an additional key factor driving development of Alzheimer’s phenotype changes in CA1 area of hippocampus in an ischemic model of Alzheimer’s disease. Pharmacol. Rep. 2018;70:881–884. doi: 10.1016/j.pharep.2018.03.004. PubMed DOI
Pluta R. Astroglial Expression of the β-Amyloid in Ischemia-Reperfusion Brain Injury. Ann. N. Y. Acad. Sci. 2002;977:102–108. doi: 10.1111/j.1749-6632.2002.tb04803.x. PubMed DOI
Guo C.-Y., Xiong T.-Q., Tan B.-H., Gui Y., Ye N., Li S.-L., Li Y.-C. The temporal and spatial changes of actin cytoskeleton in the hippocampal CA1 neurons following transient global ischemia. Brain Res. 2019;1720:146297. doi: 10.1016/j.brainres.2019.06.016. PubMed DOI
Takuma K., Baba A., Matsuda T. Astrocyte apoptosis: Implications for neuroprotection. Prog. Neurobiol. 2004;72:111–127. doi: 10.1016/j.pneurobio.2004.02.001. PubMed DOI
Milewski K., Bogacińska-Karaś M., Hilgier W., Albrecht J., Zielińska M. TNFα increases STAT3-mediated expression of glutaminase isoform KGA in cultured rat astrocytes. Cytokine. 2019;123:154774. doi: 10.1016/j.cyto.2019.154774. PubMed DOI
Gülke E., Gelderblom M., Magnus T. Danger signals in stroke and their role on microglia activation after ischemia. Ther. Adv. Neurol. Disord. 2018;11:1756286418774254. doi: 10.1177/1756286418774254. PubMed DOI PMC
Koistinaho M., Koistinaho J. Interactions between Alzheimer’s disease and cerebral ischemia—Focus on inflammation. Brain Res. Rev. 2005;48:240–250. doi: 10.1016/j.brainresrev.2004.12.014. PubMed DOI
Radenovic L., Nenadic M., Ułamek-Kozioł M., Januszewski S., Czuczwar S.J., Andjus P.R., Pluta R. Heterogeneity in brain distribution of activated microglia and astrocytes in a rat ischemic model of Alzheimer’s disease after 2 years of survival. Aging. 2020;12:12251–12267. doi: 10.18632/aging.103411. PubMed DOI PMC
Valny M., Honsa P., Kriska J., Anderova M. Multipotency and therapeutic potential of NG2 cells. Biochem. Pharmacol. 2017;141:42–55. doi: 10.1016/j.bcp.2017.05.008. PubMed DOI
Kirdajova D., Valihrach L., Valny M., Kriska J., Krocianova D., Benesova S., Abaffy P., Zucha D., Klassen R., Kolenicova D., et al. Transient astrocyte-like NG2 glia subpopulation emerges solely following permanent brain ischemia. Glia. 2021 doi: 10.1002/glia.24064. PubMed DOI PMC
Valny M., Honsa P., Waloschkova E., Matuskova H., Kriska J., Kirdajova D., Androvic P., Valihrach L., Kubista M., Anderova M. A single-cell analysis reveals multiple roles of oligodendroglial lineage cells during post-ischemic regeneration. Glia. 2018;66:1068–1081. doi: 10.1002/glia.23301. PubMed DOI
Honsa P., Valny M., Kriska J., Matuskova H., Harantova L., Kirdajova D., Valihrach L., Androvic P., Kubista M., Anderova M. Generation of reactive astrocytes from NG2 cells is regulated by sonic hedgehog. Glia. 2016;64:1518–1531. doi: 10.1002/glia.23019. PubMed DOI
Doyle S., Hansen D.B., Vella J., Bond P., Harper G., Zammit C., Valentino M., Fern R. Vesicular glutamate release from central axons contributes to myelin damage. Nat. Commun. 2018;9:1032. doi: 10.1038/s41467-018-03427-1. PubMed DOI PMC
Nasrabady S.E., Rizvi B., Goldman J.E., Brickman A.M. White matter changes in Alzheimer’s disease: A focus on myelin and oligodendrocytes. Acta Neuropathol. Commun. 2018;6:1–10. doi: 10.1186/s40478-018-0515-3. PubMed DOI PMC
Veeresh P., Kaur H., Sarmah D., Mounica L., Verma G., Kotian V., Kesharwani R., Kalia K., Borah A., Wang X., et al. Endoplasmic reticulum–mitochondria crosstalk: From junction to function across neurological disorders. Ann. N. Y. Acad. Sci. 2019;1457:41–60. doi: 10.1111/nyas.14212. PubMed DOI
Tang Y.-C., Tian H.-X., Yi T., Chen H.-B. The critical roles of mitophagy in cerebral ischemia. Protein Cell. 2016;7:699–713. doi: 10.1007/s13238-016-0307-0. PubMed DOI PMC
Shao Z., Dou S., Zhu J., Wang H., Xu D., Wang C., Cheng B., Bai B. The Role of Mitophagy in Ischemic Stroke. Front. Neurol. 2020;11:608610. doi: 10.3389/fneur.2020.608610. PubMed DOI PMC
Reddy P.H., Oliver D.M. Amyloid Beta and Phosphorylated Tau-Induced Defective Autophagy and Mitophagy in Alzheimer’s Disease. Cells. 2019;8:488. doi: 10.3390/cells8050488. PubMed DOI PMC
Fang E.F., Hou Y., Palikaras K., Adriaanse B.A., Kerr J.S., Yang B., Lautrup S., Hasan-Olive M.M., Caponio D., Dan X., et al. Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nat. Neurosci. 2019;22:401–412. doi: 10.1038/s41593-018-0332-9. PubMed DOI PMC
Kolenicova D., Tureckova J., Pukajova B., Harantova L., Kriska J., Kirdajova D., Vorisek I., Kamenicka M., Valihrach L., Androvic P., et al. High potassium exposure reveals the altered ability of astrocytes to regulate their volume in the aged hippocampus of GFAP/EGFP mice. Neurobiol. Aging. 2020;86:162–181. doi: 10.1016/j.neurobiolaging.2019.10.009. PubMed DOI
Tannenberg R., Scott H., Westphalen R., Dodd P. The Identification and Characterization of Excitotoxic Nerve-endings in Alzheimer Disease. Curr. Alzheimer Res. 2004;1:11–25. doi: 10.2174/1567205043480591. PubMed DOI
Wang R., Reddy P.H. Role of Glutamate and NMDA Receptors in Alzheimer’s Disease. J. Alzheimer’s Dis. 2017;57:1041–1048. doi: 10.3233/JAD-160763. PubMed DOI PMC
Liu J., Chang L., Song Y., Li H., Wu Y. The Role of NMDA Receptors in Alzheimer’s Disease. Front. Neurosci. 2019;13:43. doi: 10.3389/fnins.2019.00043. PubMed DOI PMC
Kulijewicz-Nawrot M., Syková E., Chvatal A., Verkhratsky A., Rodríguez J.J. Astrocytes and Glutamate Homoeostasis in Alzheimer’s Disease: A Decrease in Glutamine Synthetase, But Not in Glutamate Transporter-1, in the Prefrontal Cortex. ASN Neuro. 2013;5 doi: 10.1042/AN20130017. PubMed DOI PMC
Esposito Z., Belli L., Toniolo S., Sancesario G., Bianconi C., Martorana A. Amyloid β, Glutamate, Excitotoxicity in Alzheimer’s Disease: Are We on the Right Track? CNS Neurosci. Ther. 2013;19:549–555. doi: 10.1111/cns.12095. PubMed DOI PMC
Rossi D.J., Oshima T., Attwell D. Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nat. Cell Biol. 2000;403:316–321. doi: 10.1038/35002090. PubMed DOI
Setti S.E., Hunsberger H.C., Reed M.N. Alterations in hippocampal activity and Alzheimer’s disease. Transl. Issues Psychol. Sci. 2017;3:348–356. doi: 10.1037/tps0000124. PubMed DOI PMC
Costea L., Mészáros Á., Bauer H., Bauer H.-C., Traweger A., Wilhelm I., Farkas A.E., Krizbai I.A. The Blood–Brain Barrier and Its Intercellular Junctions in Age-Related Brain Disorders. Int. J. Mol. Sci. 2019;20:5472. doi: 10.3390/ijms20215472. PubMed DOI PMC
Li Y., Zhong W., Jiang Z., Tang X. New progress in the approaches for blood–brain barrier protection in acute ischemic stroke. Brain Res. Bull. 2019;144:46–57. doi: 10.1016/j.brainresbull.2018.11.006. PubMed DOI
Jiang X., Andjelkovic A.V., Zhu L., Yang T., Bennett M.V.L., Chen J., Keep R.F., Shi Y. Blood-brain barrier dysfunction and recovery after ischemic stroke. Prog. Neurobiol. 2018;163–164:144–171. doi: 10.1016/j.pneurobio.2017.10.001. PubMed DOI PMC
Kowalski R.G., Haarbauer-Krupa J.K., Bell J.M., Corrigan J.D., Hammond F.M., Torbey M.T., Hofmann M.C., Dams-O’Connor K., Miller A.C., Whiteneck G.G. Acute Ischemic Stroke after Moderate to Severe Traumatic Brain Injury. Stroke. 2017;48:1802–1809. doi: 10.1161/STROKEAHA.117.017327. PubMed DOI PMC
Abrahamson E.E., Ikonomovic M.D. Brain injury-induced dysfunction of the blood brain barrier as a risk for dementia. Exp. Neurol. 2020;328:113257. doi: 10.1016/j.expneurol.2020.113257. PubMed DOI
Wang L., Ma S., Hu Z., McGuire T.F., Xie X.-Q. Chemogenomics Systems Pharmacology Mapping of Potential Drug Targets for Treatment of Traumatic Brain Injury. J. Neurotrauma. 2019;36:565–575. doi: 10.1089/neu.2018.5757. PubMed DOI PMC
Nagelhus E.A., Ottersen O.P. Physiological Roles of Aquaporin-4 in Brain. Physiol. Rev. 2013;93:1543–1562. doi: 10.1152/physrev.00011.2013. PubMed DOI PMC
Benfenati V., Caprini M., Dovizio M., Mylonakou M.N., Ferroni S., Ottersen O.P., Amiry-Moghaddam M. An aquaporin-4/transient receptor potential vanilloid 4 (AQP4/TRPV4) complex is essential for cell-volume control in astrocytes. Proc. Natl. Acad. Sci. USA. 2011;108:2563–2568. doi: 10.1073/pnas.1012867108. PubMed DOI PMC
Tourdias T., Mori N., Dragonu I., Cassagno N., Boiziau C., Aussudre J., Brochet B., Moonen C., Petry K.G., Dousset V. Differential aquaporin 4 expression during edema build-up and resolution phases of brain inflammation. J. Neuroinflamm. 2011;8:143. doi: 10.1186/1742-2094-8-143. PubMed DOI PMC
Butenko O., Dzamba D., Benesova J., Honsa P., Benfenati V., Rusnakova V., Ferroni S., Anderova M. The Increased Activity of TRPV4 Channel in the Astrocytes of the Adult Rat Hippocampus after Cerebral Hypoxia/Ischemia. PLoS ONE. 2012;7:e39959. doi: 10.1371/journal.pone.0039959. PubMed DOI PMC
Lee J.C., Choe S.Y. Age-related changes in the distribution of transient receptor potential vanilloid 4 channel (TRPV4) in the central nervous system of rats. J. Mol. Histol. 2014;45:497–505. doi: 10.1007/s10735-014-9578-z. PubMed DOI
Liu N., Yan F., Ma Q., Zhao J. Modulation of TRPV4 and BKCa for treatment of brain diseases. Bioorg. Med. Chem. 2020;28:115609. doi: 10.1016/j.bmc.2020.115609. PubMed DOI
Lamus F., Martín C., Carnicero E., Moro J., Fernández J., Mano A., Gato Á., Alonso M.I. FGF2/EGF contributes to brain neuroepithelial precursor proliferation and neurogenesis in rat embryos: The involvement of embryonic cerebrospinal fluid. Dev. Dyn. 2019;249:141–153. doi: 10.1002/dvdy.135. PubMed DOI
Ho D.M., Artavanis-Tsakonas S., Louvi A. The Notch pathway in CNS homeostasis and neurodegeneration. Wiley Interdiscip. Rev. Dev. Biol. 2020;9:e358. doi: 10.1002/wdev.358. PubMed DOI
Eskandari S., Sajadimajd S., Alaei L., Soheilikhah Z., Derakhshankhah H., Bahrami G. Targeting Common Signaling Pathways for the Treatment of Stroke and Alzheimer’s: A Comprehensive Review. Neurotox. Res. 2021:1–24. doi: 10.1007/s12640-021-00381-7. PubMed DOI
Rakers C., Schleif M., Blank N., Matušková H., Ulas T., Händler K., Torres S.V., Schumacher T., Tai K., Schultze J.L., et al. Stroke target identification guided by astrocyte transcriptome analysis. Glia. 2019;67:619–633. doi: 10.1002/glia.23544. PubMed DOI
Reichenbach N., Delekate A., Plescher M., Schmitt F., Krauss S., Blank N., Halle A., Petzold G.C. Inhibition of Stat3-mediated astrogliosis ameliorates pathology in an Alzheimer’s disease model. EMBO Mol. Med. 2019;11:e9665. doi: 10.15252/emmm.201809665. PubMed DOI PMC
Gruber J., Yee Z., Tolwinski N.S. Developmental Drift and the Role of Wnt Signaling in Aging. Cancers. 2016;8:73. doi: 10.3390/cancers8080073. PubMed DOI PMC
Palomer E., Buechler J., Salinas P.C. Wnt Signaling Deregulation in the Aging and Alzheimer’s Brain. Front. Cell. Neurosci. 2019;13:227. doi: 10.3389/fncel.2019.00227. PubMed DOI PMC
Masckauchán T.N.H., Shawber C.J., Funahashi Y., Li C.-M., Kitajewski J. Wnt/β-Catenin Signaling Induces Proliferation, Survival and Interleukin-8 in Human Endothelial Cells. Angiogenesis. 2005;8:43–51. doi: 10.1007/s10456-005-5612-9. PubMed DOI
Kriska J., Janeckova L., Kirdajova D., Honsa P., Knotek T., Dzamba D., Kolenicova D., Butenko O., Vojtechova M., Capek M., et al. Wnt/β-Catenin Signaling Promotes Differentiation of Ischemia-Activated Adult Neural Stem/Progenitor Cells to Neuronal Precursors. Front. Neurosci. 2021;15:628983. doi: 10.3389/fnins.2021.628983. PubMed DOI PMC
Kriska J., Honsa P., Dzamba D., Butenko O., Kolenicova D., Janeckova L., Nahacka Z., Andera L., Kozmik Z., Taketo M.M., et al. Manipulating Wnt signaling at different subcellular levels affects the fate of neonatal neural stem/progenitor cells. Brain Res. 2016;1651:73–87. doi: 10.1016/j.brainres.2016.09.026. PubMed DOI
Kuwabara T., Hsieh J., Muotri A., Yeo E., Warashina M., Lie D.C., Moore L., Nakashima K., Asashima M., Gage F.H. Wnt-mediated activation of NeuroD1 and retro-elements during adult neurogenesis. Nat. Neurosci. 2009;12:1097–1105. doi: 10.1038/nn.2360. PubMed DOI PMC
Hartung N., Benary U., Wolf J., Kofahl B. Paracrine and autocrine regulation of gene expression by Wnt-inhibitor Dickkopf in wild-type and mutant hepatocytes. BMC Syst. Biol. 2017;11:98. doi: 10.1186/s12918-017-0470-9. PubMed DOI PMC
Katoh M. Canonical and non-canonical WNT signaling in cancer stem cells and their niches: Cellular heterogeneity, omics reprogramming, targeted therapy and tumor plasticity (Review) Int. J. Oncol. 2017;51:1357–1369. doi: 10.3892/ijo.2017.4129. PubMed DOI PMC
De Herreros A.G., Duñach M., De Herreros G. Intracellular Signals Activated by Canonical Wnt Ligands Independent of GSK3 Inhibition and β-Catenin Stabilization. Cells. 2019;8:1148. doi: 10.3390/cells8101148. PubMed DOI PMC
Flores-Hernández E., Velázquez D.M., Castañeda-Patlán M.C., Fuentes-García G., Fonseca-Camarillo G., Yamamoto-Furusho J.K., Romero-Avila M.T., García-Sáinz J.A., Robles-Flores M. Canonical and non-canonical Wnt signaling are simultaneously activated by Wnts in colon cancer cells. Cell. Signal. 2020;72:109636. doi: 10.1016/j.cellsig.2020.109636. PubMed DOI
Gao C., Chen Y.-G. Dishevelled: The hub of Wnt signaling. Cell. Signal. 2010;22:717–727. doi: 10.1016/j.cellsig.2009.11.021. PubMed DOI
Nusse R., Clevers H. Wnt/β-Catenin Signaling, Disease, and Emerging Therapeutic Modalities. Cell. 2017;169:985–999. doi: 10.1016/j.cell.2017.05.016. PubMed DOI
Green J., Nusse R., Van Amerongen R. The Role of Ryk and Ror Receptor Tyrosine Kinases in Wnt Signal Transduction. Cold Spring Harb. Perspect. Biol. 2014;6:a009175. doi: 10.1101/cshperspect.a009175. PubMed DOI PMC
Ameyar M., Wisniewska M., Weitzman J. A role for AP-1 in apoptosis: The case for and against. Biochimie. 2003;85:747–752. doi: 10.1016/j.biochi.2003.09.006. PubMed DOI
Vandervorst K., Dreyer C.A., Konopelski S.E., Lee H., Ho H.-Y.H., Carraway K.L. Wnt/PCP Signaling Contribution to Carcinoma Collective Cell Migration and Metastasis. Cancer Res. 2019;79:1719–1729. doi: 10.1158/0008-5472.CAN-18-2757. PubMed DOI PMC
Knotek T., Janeckova L., Kriska J., Korinek V., Anderova M. Glia and Neural Stem and Progenitor Cells of the Healthy and Ischemic Brain: The Workplace for the Wnt Signaling Pathway. Genes. 2020;11:804. doi: 10.3390/genes11070804. PubMed DOI PMC
Martínez M., Inestrosa N.C. The transcriptional landscape of Alzheimer’s disease and its association with Wnt signaling pathway. Neurosci. Biobehav. Rev. 2021;128:454–466. doi: 10.1016/j.neubiorev.2021.06.029. PubMed DOI
Taciak B., Pruszynska I., Kiraga L., Bialasek M., Krol M. Wnt signaling pathway in development and cancer. J. Physiol. Pharmacol. Off. J. Pol. Physiol. Soc. 2018;69:185–196. PubMed
Liang C.-J., Wang Z.-W., Chang Y.-W., Lee K.-C., Lin W.-H., Lee J.-L. SFRPs Are Biphasic Modulators of Wnt-Signaling-Elicited Cancer Stem Cell Properties beyond Extracellular Control. Cell Rep. 2019;28:1511–1525. doi: 10.1016/j.celrep.2019.07.023. PubMed DOI
Semënov M.V., Zhang X., He X. DKK1 Antagonizes Wnt Signaling without Promotion of LRP6 Internalization and Degradation. J. Biol. Chem. 2008;283:21427–21432. doi: 10.1074/jbc.M800014200. PubMed DOI PMC
Jia L., Piña-Crespo J., Li Y. Restoring Wnt/β-catenin signaling is a promising therapeutic strategy for Alzheimer’s disease. Mol. Brain. 2019;12:1–11. doi: 10.1186/s13041-019-0525-5. PubMed DOI PMC
Xia M.-Y., Zhao X.-Y., Huang Q.-L., Sun H.-Y., Sun C., Yuan J., He C., Sun Y., Huang X., Kong W., et al. Activation of Wnt/β-catenin signaling by lithium chloride attenuatesd-galactose-induced neurodegeneration in the auditory cortex of a rat model of aging. FEBS Open Bio. 2017;7:759–776. doi: 10.1002/2211-5463.12220. PubMed DOI PMC
Inestrosa N.C., de Ferrari G.V., Garrido J.L., Alvarez A., Olivares G., Barría M.I., Bronfman M., A Chacón M. Wnt signaling involvement in β-amyloid-dependent neurodegeneration. Neurochem. Int. 2002;41:341–344. doi: 10.1016/S0197-0186(02)00056-6. PubMed DOI
Inestrosa N.C., Rojas C.T. Loss of canonical Wnt signaling is involved in the pathogenesis of Alzheimer’s disease. Neural Regen. Res. 2018;13:1705–1710. doi: 10.4103/1673-5374.238606. PubMed DOI PMC
Libro R., Bramanti P., Mazzon E. The role of the Wnt canonical signaling in neurodegenerative diseases. Life Sci. 2016;158:78–88. doi: 10.1016/j.lfs.2016.06.024. PubMed DOI
Zhan L., Liu D., Wen H., Hu J., Pang T., Sun W., Xu E. Hypoxic postconditioning activates the Wnt/β-catenin pathway and protects against transient global cerebral ischemia through Dkk1 Inhibition and GSK-3β inactivation. FASEB J. 2019;33:9291–9307. doi: 10.1096/fj.201802633R. PubMed DOI
Oliva C., Vargas J.Y., Inestrosa N.C. Wnt signaling: Role in LTP, neural networks and memory. Ageing Res. Rev. 2013;12:786–800. doi: 10.1016/j.arr.2013.03.006. PubMed DOI
Jansen O., Rohr A. Neurothrombectomy in the treatment of acute ischaemic stroke. Nat. Rev. Neurol. 2013;9:645–652. doi: 10.1038/nrneurol.2013.204. PubMed DOI
Mastroiacovo F., Busceti C.L., Biagioni F., Moyanova S., Meisler M.H., Battaglia G., Caricasole A., Bruno V.M.G., Nicoletti F. Induction of the Wnt Antagonist, Dickkopf-1, Contributes to the Development of Neuronal Death in Models of Brain Focal Ischemia. Br. J. Pharmacol. 2008;29:264–276. doi: 10.1038/jcbfm.2008.111. PubMed DOI
Li Q., Dashwood W.M., Zhong X., Nakagama H., Dashwood R.H. Bcl-2 overexpression in PhIP-induced colon tumors: Cloning of the rat Bcl-2 promoter and characterization of a pathway involving β-catenin, c-Myc and E2F. Oncogene. 2007;26:6194–6202. doi: 10.1038/sj.onc.1210438. PubMed DOI PMC
Seifert-Held T., Pekar T., Gattringer T., Simmet N.E., Scharnagl H., Stojakovic T., Fazekas F., Storch M.K. Circulating Dickkopf-1 in acute ischemic stroke and clinically stable cerebrovascular disease. Atherosclerosis. 2011;218:233–237. doi: 10.1016/j.atherosclerosis.2011.05.015. PubMed DOI
He X.-W., Wang E., Bao Y.-Y., Wang F., Zhu M., Hu X.-F., Jin X.-P. High serum levels of sclerostin and Dickkopf-1 are associated with acute ischaemic stroke. Atherosclerosis. 2016;253:22–28. doi: 10.1016/j.atherosclerosis.2016.08.003. PubMed DOI
Zhang J., Zhang J., Qi C., Yang P., Chen X., Liu Y. Activation of Wnt3α/β-catenin signal pathway attenuates apoptosis of the cerebral microvascular endothelial cells induced by oxygen-glucose deprivation. Biochem. Biophys. Res. Commun. 2017;490:71–77. doi: 10.1016/j.bbrc.2017.03.130. PubMed DOI
Chacón M.A., Varela-Nallar L., Inestrosa N.C. Frizzled-1 is involved in the neuroprotective effect of Wnt3a against Aβ oligomers. J. Cell. Physiol. 2008;217:215–227. doi: 10.1002/jcp.21497. PubMed DOI
Abe T., Zhou P., Jackman K., Capone C., Casolla B., Hochrainer K., Kahles T., Ross M.E., Anrather J., Iadecola C. Lipoprotein Receptor–Related Protein-6 Protects the Brain from Ischemic Injury. Stroke. 2013;44:2284–2291. doi: 10.1161/STROKEAHA.113.001320. PubMed DOI PMC
Zhou X., Zhou J., Li X., Guo C., Fang T., Chen Z. GSK-3β inhibitors suppressed neuroinflammation in rat cortex by activating autophagy in ischemic brain injury. Biochem. Biophys. Res. Commun. 2011;411:271–275. doi: 10.1016/j.bbrc.2011.06.117. PubMed DOI
Hurn P.D., Macrae I.M. Estrogen as a Neuroprotectant in Stroke. Br. J. Pharmacol. 2000;20:631–652. doi: 10.1097/00004647-200004000-00001. PubMed DOI
Scott E.L., Brann D.W. Estrogen regulation of Dkk1 and Wnt/β-Catenin signaling in neurodegenerative disease. Brain Res. 2013;1514:63–74. doi: 10.1016/j.brainres.2012.12.015. PubMed DOI PMC
Zhang Q.-G., Wang R., Khan M., Mahesh V., Brann D.W. Role of Dickkopf-1, an Antagonist of the Wnt/β-Catenin Signaling Pathway, in Estrogen-Induced Neuroprotection and Attenuation of Tau Phosphorylation. J. Neurosci. 2008;28:8430–8441. doi: 10.1523/JNEUROSCI.2752-08.2008. PubMed DOI PMC
Boldrini M., Fulmore C.A., Tartt A.N., Simeon L.R., Pavlova I., Poposka V., Rosoklija G.B., Stankov A., Arango V., Dwork A.J., et al. Human Hippocampal Neurogenesis Persists throughout Aging. Cell Stem Cell. 2018;22:589–599. doi: 10.1016/j.stem.2018.03.015. PubMed DOI PMC
Zhang R.L., Chopp M., Roberts C., Liu X., Wei M., Nejad-Davarani S., Wang X., Zhang Z.G. Stroke Increases Neural Stem Cells and Angiogenesis in the Neurogenic Niche of the Adult Mouse. PLoS ONE. 2014;9:e113972. doi: 10.1371/journal.pone.0113972. PubMed DOI PMC
Cui X.-P., Xing Y., Chen J.-M., Dong S.-W., Ying D.-J., Yew D.T. Wnt/beta-catenin is involved in the proliferation of hippocampal neural stem cells induced by hypoxia. Ir. J. Med Sci. 2010;180:387–393. doi: 10.1007/s11845-010-0566-3. PubMed DOI
Piccin D., Morshead C.M. Wnt Signaling Regulates Symmetry of Division of Neural Stem Cells in the Adult Brain and in Response to Injury. Stem Cells. 2011;29:528–538. doi: 10.1002/stem.589. PubMed DOI
Qi C., Zhang J., Chen X., Wan J., Wang J., Zhang P., Liu Y. Hypoxia stimulates neural stem cell proliferation by increasing HIF-1α expression and activating Wnt/β-catenin signaling. Cell. Mol. Biol. 2017;63:12–19. doi: 10.14715/cmb/2017.63.7.2. PubMed DOI PMC
Chen X., Zhou B., Yan T., Wu H., Feng J., Chen H., Gao C., Peng T., Yang D., Shen J. Peroxynitrite enhances self-renewal, proliferation and neuronal differentiation of neural stem/progenitor cells through activating HIF-1α and Wnt/β-catenin signaling pathway. Free. Radic. Biol. Med. 2018;117:158–167. doi: 10.1016/j.freeradbiomed.2018.02.011. PubMed DOI
Zhang X., Zhu C., Luo Q., Dong J., Liu L., Li M., Zhu H., Ma X., Wang J. Impact of siRNA targeting of β-catenin on differentiation of rat neural stem cells and gene expression of Ngn1 and BMP4 following in vitro hypoxic-ischemic brain damage. Mol. Med. Rep. 2016;14:3595–3601. doi: 10.3892/mmr.2016.5667. PubMed DOI PMC
Shruster A., Ben-Zur T., Melamed E., Offen D. Wnt Signaling Enhances Neurogenesis and Improves Neurological Function after Focal Ischemic Injury. PLoS ONE. 2012;7:e40843. doi: 10.1371/journal.pone.0040843. PubMed DOI PMC
Laksitorini M., Yathindranath V., Xiong W., Hombach-Klonisch S., Miller D.W. Modulation of Wnt/β-catenin signaling promotes blood-brain barrier phenotype in cultured brain endothelial cells. Sci. Rep. 2019;9:19718. doi: 10.1038/s41598-019-56075-w. PubMed DOI PMC
Menet R., Lecordier S., ElAli A. Wnt Pathway: An Emerging Player in Vascular and Traumatic Mediated Brain Injuries. Front. Physiol. 2020;11:565667. doi: 10.3389/fphys.2020.565667. PubMed DOI PMC
Martowicz A., Trusohamn M., Jensen N., Wisniewska-Kruk J., Corada M., Ning F.C., Kele J., Dejana E., Nyqvist D. Endothelial β-Catenin Signaling Supports Postnatal Brain and Retinal Angiogenesis by Promoting Sprouting, Tip Cell Formation, and VEGFR (Vascular Endothelial Growth Factor Receptor) 2 Expression. Arter. Thromb. Vasc. Biol. 2019;39:2273–2288. doi: 10.1161/ATVBAHA.119.312749. PubMed DOI
Peghaire C., Bats M.-L., Sewduth R., Jeanningros S., Jaspard-Vinassa B., Couffinhal T., Duplàa C., Dufourcq P. Fzd7 (Frizzled-7) Expressed by Endothelial Cells Controls Blood Vessel Formation through Wnt/β-Catenin Canonical Signaling. Arter. Thromb. Vasc. Biol. 2016;36:2369–2380. doi: 10.1161/ATVBAHA.116.307926. PubMed DOI
Hübner K., Cabochette P., Diéguez-Hurtado R., Wiesner C., Wakayama Y., Grassme K.S., Hubert M., Guenther S., Belting H.-G., Affolter M., et al. Wnt/β-catenin signaling regulates VE-cadherin-mediated anastomosis of brain capillaries by counteracting S1pr1 signaling. Nat. Commun. 2018;9:4860. doi: 10.1038/s41467-018-07302-x. PubMed DOI PMC
Corada M., Orsenigo F., Bhat G.P., Conze L.L., Breviario F., Cunha S.I., Claesson-Welsh L., Beznoussenko G.V., Mironov A.A., Bacigaluppi M., et al. Fine-Tuning of Sox17 and Canonical Wnt Coordinates the Permeability Properties of the Blood-Brain Barrier. Circ. Res. 2019;124:511–525. doi: 10.1161/CIRCRESAHA.118.313316. PubMed DOI PMC
De Ferrari G.V., E Avila M., Medina M., Pérez-Palma E., Bustos B., Alarcon M. Wnt/β-Catenin Signaling in Alzheimer’s Disease. CNS Neurol. Disord.-Drug Targets. 2014;13:745–754. doi: 10.2174/1871527312666131223113900. PubMed DOI
Hu Y., Chen W., Wu L., Jiang L., Liang N., Tan L., Liang M., Tang N. TGF-β1 Restores Hippocampal Synaptic Plasticity and Memory in Alzheimer Model via the PI3K/Akt/Wnt/β-Catenin Signaling Pathway. J. Mol. Neurosci. 2019;67:142–149. doi: 10.1007/s12031-018-1219-7. PubMed DOI
Folke J., Pakkenberg B., Brudek T. Impaired Wnt Signaling in the Prefrontal Cortex of Alzheimer’s Disease. Mol. Neurobiol. 2018;56:873–891. doi: 10.1007/s12035-018-1103-z. PubMed DOI
Ochalek A., Mihalik B., Avci H.X., Chandrasekaran A., Téglási A., Bock I., Giudice M.L., Táncos Z., Molnar K., Laszlo L., et al. Neurons derived from sporadic Alzheimer’s disease iPSCs reveal elevated TAU hyperphosphorylation, increased amyloid levels, and GSK3B activation. Alzheimer’s Res. Ther. 2017;9:90. doi: 10.1186/s13195-017-0317-z. PubMed DOI PMC
Zhang Z., Hartmann H., Do V.M., Abramowski D., Sturchler-Pierrat C., Staufenbiel M., Sommer B., Van De Wetering M., Clevers H., Saftig P., et al. Destabilization of β-catenin by mutations in presenilin-1 potentiates neuronal apoptosis. Nat. Cell Biol. 1998;395:698–702. doi: 10.1038/27208. PubMed DOI
Tachibana M., Holm M.-L., Liu C.-C., Shinohara M., Aikawa T., Oue H., Yamazaki Y., Martens Y.A., Murray M., Sullivan P.M., et al. APOE4-mediated amyloid-β pathology depends on its neuronal receptor LRP. J. Clin. Investig. 2019;129:1272–1277. doi: 10.1172/JCI124853. PubMed DOI PMC
Caricasole A., Copani A., Caraci F., Aronica E., Rozemuller A.J., Caruso A., Storto M., Gaviraghi G., Terstappen G.C., Nicoletti F. Induction of Dickkopf-1, a Negative Modulator of the Wnt Pathway, Is Associated with Neuronal Degeneration in Alzheimer’s Brain. J. Neurosci. 2004;24:6021–6027. doi: 10.1523/JNEUROSCI.1381-04.2004. PubMed DOI PMC
Rojas C.T., Burgos P.V., Inestrosa N.C. Inhibition of Wnt signaling induces amyloidogenic processing of amyloid precursor protein and the production and aggregation of Amyloid-β (Aβ)42peptides. J. Neurochem. 2016;139:1175–1191. doi: 10.1111/jnc.13873. PubMed DOI
Ly P.T., Wu Y., Zou H., Wang R., Zhou W., Kinoshita A., Zhang M., Yang Y., Cai F., Woodgett J., et al. Inhibition of GSK3β-mediated BACE1 expression reduces Alzheimer-associated phenotypes. J. Clin. Investig. 2012;123:224–235. doi: 10.1172/JCI64516. PubMed DOI PMC
Su Y., Ryder J., Li B., Wu X., Fox N., Solenberg P., Brune K., Paul S., Zhou Y., Liu F., et al. Lithium, a Common Drug for Bipolar Disorder Treatment, Regulates Amyloid-β Precursor Protein Processing. Biochemistry. 2004;43:6899–6908. doi: 10.1021/bi035627j. PubMed DOI
Fiorentini A., Rosi M.C., Grossi C., Luccarini I., Casamenti F. Lithium Improves Hippocampal Neurogenesis, Neuropathology and Cognitive Functions in APP Mutant Mice. PLoS ONE. 2010;5:e14382. doi: 10.1371/journal.pone.0014382. PubMed DOI PMC
Rojas C.T., Inestrosa N.C. Wnt signaling loss accelerates the appearance of neuropathological hallmarks of Alzheimer’s disease in J20-APP transgenic and wild-type mice. J. Neurochem. 2018;144:443–465. doi: 10.1111/jnc.14278. PubMed DOI
Plattner F., Angelo M., Giese K.P. The Roles of Cyclin-dependent Kinase 5 and Glycogen Synthase Kinase 3 in Tau Hyperphosphorylation. J. Biol. Chem. 2006;281:25457–25465. doi: 10.1074/jbc.M603469200. PubMed DOI
Amaral A.C., Perez-Nievas B.G., Chong M.S.T., Gonzalez-Martinez A., Argente-Escrig H., Rubio-Guerra S., Commins C., Muftu S., Eftekharzadeh B., Hudry E., et al. Isoform-selective decrease of glycogen synthase kinase-3-beta (GSK-3β) reduces synaptic tau phosphorylation, transcellular spreading, and aggregation. iScience. 2021;24:102058. doi: 10.1016/j.isci.2021.102058. PubMed DOI PMC
Wan W., Xia S., Kalionis B., Liu L., Li Y. The Role of Wnt Signaling in the Development of Alzheimer’s Disease: A Potential Therapeutic Target? BioMed Res. Int. 2014;2014:301575. doi: 10.1155/2014/301575. PubMed DOI PMC
Norwitz N.G., Mota A.S., Norwitz S.G., Clarke K. Multi-Loop Model of Alzheimer Disease: An Integrated Perspective on the Wnt/GSK3β, α-Synuclein, and Type 3 Diabetes Hypotheses. Front. Aging Neurosci. 2019;11:184. doi: 10.3389/fnagi.2019.00184. PubMed DOI PMC
Vossel K.A., Xu J.C., Fomenko V., Miyamoto T., Suberbielle E., Knox J.A., Ho K., Kim D.H., Yu G.-Q., Mucke L. Tau reduction prevents Aβ-induced axonal transport deficits by blocking activation of GSK3β. J. Cell Biol. 2015;209:419–433. doi: 10.1083/jcb.201407065. PubMed DOI PMC
Koh S.-H., Noh M.Y., Kim S.H. Amyloid-beta-induced neurotoxicity is reduced by inhibition of glycogen synthase kinase. Brain Res. 2008;1188:254–262. doi: 10.1016/j.brainres.2007.10.064. PubMed DOI
Sellers K., Elliott C., Jackson J., Ghosh A., Ribe E., I Rojo A., Jarosz-Griffiths H., Watson I.A., Xia W., Semenov M., et al. Amyloid β synaptotoxicity is Wnt-PCP dependent and blocked by fasudil. Alzheimer’s Dement. 2018;14:306–317. doi: 10.1016/j.jalz.2017.09.008. PubMed DOI PMC
Purro S.A., Dickins E.M., Salinas P.C. The Secreted Wnt Antagonist Dickkopf-1 Is Required for Amyloid β-Mediated Synaptic Loss. J. Neurosci. 2012;32:3492–3498. doi: 10.1523/JNEUROSCI.4562-11.2012. PubMed DOI PMC
Killick R., Ribe E., Al-Shawi R., Malik B., Hooper C., Fernandes C., Dobson R., Nolan P., Lourdusamy A., Furney S., et al. Clusterin regulates β-amyloid toxicity via Dickkopf-1-driven induction of the wnt–PCP–JNK pathway. Mol. Psychiatry. 2014;19:88–98. doi: 10.1038/mp.2012.163. PubMed DOI PMC
Zeng Q., Long Z., Feng M., Zhao Y., Luo S., Wang K., Wang Y., Yang G., He G. Valproic Acid Stimulates Hippocampal Neurogenesis via Activating the Wnt/β-Catenin Signaling Pathway in the APP/PS1/Nestin-GFP Triple Transgenic Mouse Model of Alzheimer’s Disease. Front. Aging Neurosci. 2019;11:62. doi: 10.3389/fnagi.2019.00062. PubMed DOI PMC
Xuan A.-G., Pan X.-B., Wei P., Ji W.-D., Zhang W.-J., Liu J.-H., Hong L.-P., Chen W.-L., Long D.-H. Valproic Acid Alleviates Memory Deficits and Attenuates Amyloid-β Deposition in Transgenic Mouse Model of Alzheimer’s Disease. Mol. Neurobiol. 2014;51:300–312. doi: 10.1007/s12035-014-8751-4. PubMed DOI
Bian H., Bian W., Lin X., Ma Z., Chen W., Pu Y. RNA Interference Silencing of Glycogen Synthase Kinase 3β Inhibites Tau Phosphorylation in Mice with Alzheimer Disease. Neurochem. Res. 2016;41:2470–2480. doi: 10.1007/s11064-016-1960-7. PubMed DOI
Rockenstein E., Torrance M., Adame A., Mante M., Bar-On P., Rose J.B., Crews L., Masliah E. Neuroprotective Effects of Regulators of the Glycogen Synthase Kinase-3 Signaling Pathway in a Transgenic Model of Alzheimer’s Disease Are Associated with Reduced Amyloid Precursor Protein Phosphorylation. J. Neurosci. 2007;27:1981–1991. doi: 10.1523/JNEUROSCI.4321-06.2007. PubMed DOI PMC
Cisternas P., Oliva C.A., Torres V.I., Barrera D.P., Inestrosa N.C. Presymptomatic Treatment With Andrographolide Improves Brain Metabolic Markers and Cognitive Behavior in a Model of Early-Onset Alzheimer’s Disease. Front. Cell. Neurosci. 2019;13:295. doi: 10.3389/fncel.2019.00295. PubMed DOI PMC
Vargas J.Y., Fuenzalida M., Inestrosa N.C. In vivo Activation of Wnt Signaling Pathway Enhances Cognitive Function of Adult Mice and Reverses Cognitive Deficits in an Alzheimer’s Disease Model. J. Neurosci. 2014;34:2191–2202. doi: 10.1523/JNEUROSCI.0862-13.2014. PubMed DOI PMC
Zheng R., Zhang Z.-H., Chen C., Chen Y., Jia S.-Z., Liu Q., Ni J.-Z., Song G.-L. Selenomethionine promoted hippocampal neurogenesis via the PI3K-Akt-GSK3β-Wnt pathway in a mouse model of Alzheimer’s disease. Biochem. Biophys. Res. Commun. 2017;485:6–15. doi: 10.1016/j.bbrc.2017.01.069. PubMed DOI
Varela-Nallar L., Rojas-Abalos M., Abbott A.C., Moya E.A., Iturriaga R., Inestrosa N.C. Chronic hypoxia induces the activation of the Wnt/β-catenin signaling pathway and stimulates hippocampal neurogenesis in wild-type and APPswe-PS1ΔE9 transgenic mice in vivo. Front. Cell. Neurosci. 2014;8:17. doi: 10.3389/fncel.2014.00017. PubMed DOI PMC
Huang M., Liang Y., Chen H., Xu B., Chai C., Xing P. The Role of Fluoxetine in Activating Wnt/β-Catenin Signaling and Repressing β-Amyloid Production in an Alzheimer Mouse Model. Front. Aging Neurosci. 2018;10:164. doi: 10.3389/fnagi.2018.00164. PubMed DOI PMC
Aghaizu N.D., Jin H., Whiting P.J. Dysregulated Wnt Signalling in the Alzheimer’s Brain. Brain Sci. 2020;10:902. doi: 10.3390/brainsci10120902. PubMed DOI PMC
Ma Q., Zhao Z., Sagare A.P., Wu Y., Wang M., Owens N.C., Verghese P.B., Herz J., Holtzman D.M., Zlokovic B.V. Blood-brain barrier-associated pericytes internalize and clear aggregated amyloid-β42 by LRP1-dependent apolipoprotein E isoform-specific mechanism. Mol. Neurodegener. 2018;13:1–13. doi: 10.1186/s13024-018-0286-0. PubMed DOI PMC
Daneman R., Agalliu D., Zhou L., Kuhnert F., Kuo C.J., Barres B.A. Wnt/beta-catenin signaling is required for CNS, but not non-CNS, angiogenesis. Proc. Natl. Acad. Sci. USA. 2009;106:641–646. doi: 10.1073/pnas.0805165106. PubMed DOI PMC
Cisternas P., Zolezzi J.M., Martinez M., Torres V.I., Wong G.W., Inestrosa N.C. Wnt-induced activation of glucose metabolism mediates the in vivo neuroprotective roles of Wnt signaling in Alzheimer disease. J. Neurochem. 2019;149:54–72. doi: 10.1111/jnc.14608. PubMed DOI PMC
Reya T., Clevers H. Wnt signalling in stem cells and cancer. Nat. Cell Biol. 2005;434:843–850. doi: 10.1038/nature03319. PubMed DOI
Guan R., Zhang X., Guo M. Glioblastoma stem cells and Wnt signaling pathway: Molecular mechanisms and therapeutic targets. Chin. Neurosurg. J. 2020;6:1–6. doi: 10.1186/s41016-020-00207-z. PubMed DOI PMC
Davis M., O’Connell T., Johnson S., Cline S., Merikle E., Martenyi F., Simpson K.N. Estimating Alzheimer’s Disease Progression Rates from Normal Cognition through Mild Cognitive Impairment and Stages of Dementia. Curr. Alzheimer Res. 2018;15:777–788. doi: 10.2174/1567205015666180119092427. PubMed DOI PMC
Haile W.B., Wu J., Echeverry R., Wu F., An J., Yepes M. Tissue-Type Plasminogen Activator has a Neuroprotective Effect in the Ischemic Brain Mediated by Neuronal TNF-α. Br. J. Pharmacol. 2011;32:57–69. doi: 10.1038/jcbfm.2011.106. PubMed DOI PMC
Kim J.S. tPA Helpers in the Treatment of Acute Ischemic Stroke: Are They Ready for Clinical Use? J. Stroke. 2019;21:160–174. doi: 10.5853/jos.2019.00584. PubMed DOI PMC
Schneider L.S., Dagerman K.S., Higgins J., McShane R. Lack of Evidence for the Efficacy of Memantine in Mild Alzheimer Disease. Arch. Neurol. 2011;68:991–998. doi: 10.1001/archneurol.2011.69. PubMed DOI
Mangialasche F., Solomon A., Winblad B., Mecocci P., Kivipelto M. Alzheimer’s disease: Clinical trials and drug development. Lancet Neurol. 2010;9:702–716. doi: 10.1016/S1474-4422(10)70119-8. PubMed DOI
Hefti F., Goure W.F., Jerecic J., Iverson K.S., Walicke P.A., Krafft G.A. The case for soluble Aβ oligomers as a drug target in Alzheimer’s disease. Trends Pharmacol. Sci. 2013;34:261–266. doi: 10.1016/j.tips.2013.03.002. PubMed DOI
Rasool S., Martínez-Coria H., Wu J.W., LaFerla F., Glabe C.G. Systemic vaccination with anti-oligomeric monoclonal antibodies improves cognitive function by reducing Aβ deposition and tau pathology in 3xTg-AD mice. J. Neurochem. 2013;126:473–482. doi: 10.1111/jnc.12305. PubMed DOI PMC
Xiao C., Davis F.J., Chauhan B.C., Viola K.L., Lacor P.N., Velasco P.T., Klein W.L., Chauhan N.B. Brain Transit and Ameliorative Effects of Intranasally Delivered Anti-Amyloid-β Oligomer Antibody in 5XFAD Mice. J. Alzheimer’s Dis. 2013;35:777–788. doi: 10.3233/JAD-122419. PubMed DOI PMC
Tucker S., Möller C., Tegerstedt K., Lord A., Laudon H., Sjödahl J., Söderberg L., Spens E., Sahlin C., Waara E.R., et al. The Murine Version of BAN2401 (mAb158) Selectively Reduces Amyloid-β Protofibrils in Brain and Cerebrospinal Fluid of tg-ArcSwe Mice. J. Alzheimer’s Dis. 2014;43:575–588. doi: 10.3233/JAD-140741. PubMed DOI
Izzo N.J., Staniszewski A., To L., Fà M., Teich A., Saeed F., Wostein H., Walko T., Vaswani A., Wardius M., et al. Alzheimer’s Therapeutics Targeting Amyloid Beta 1–42 Oligomers I: Abeta 42 Oligomer Binding to Specific Neuronal Receptors Is Displaced by Drug Candidates That Improve Cognitive Deficits. PLoS ONE. 2014;9:e111898. doi: 10.1371/journal.pone.0111898. PubMed DOI PMC
Izzo N., Xu J., Zeng C., Kirk M.J., Mozzoni K., Silky C., Rehak C., Yurko R., Look G., Rishton G., et al. Alzheimer’s Therapeutics Targeting Amyloid Beta 1–42 Oligomers II: Sigma-2/PGRMC1 Receptors Mediate Abeta 42 Oligomer Binding and Synaptotoxicity. PLoS ONE. 2014;9:e111899. doi: 10.1371/journal.pone.0111899. PubMed DOI PMC
Blurton-Jones M., Kitazawa M., Martínez-Coria H., Castello N.A., Müller F.-J., Loring J., Yamasaki T.R., Poon W., Green K.N., LaFerla F.M. Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease. Proc. Natl. Acad. Sci. USA. 2009;106:13594–13599. doi: 10.1073/pnas.0901402106. PubMed DOI PMC
Ager R.R., Davis J.L., Agazaryan A., Benavente F., Poon W., LaFerla F.M., Blurton-Jones M. Human neural stem cells improve cognition and promote synaptic growth in two complementary transgenic models of Alzheimer’s disease and neuronal loss. Hippocampus. 2015;25:813–826. doi: 10.1002/hipo.22405. PubMed DOI PMC
Boese A.C., Hamblin M.H., Lee J.-P. Neural stem cell therapy for neurovascular injury in Alzheimer’s disease. Exp. Neurol. 2020;324:113112. doi: 10.1016/j.expneurol.2019.113112. PubMed DOI
Rothstein J.D., Patel S.A., Regan M.R., Haenggeli C., Huang Y.H., Bergles D.E., Jin L., Hoberg M.D., Vidensky S., Chung D.S., et al. β-Lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature. 2005;433:73–77. doi: 10.1038/nature03180. PubMed DOI
Zumkehr J., Rodriguez-Ortiz C.J., Cheng D., Kieu Z., Wai T., Hawkins C., Kilian J., Lim S.L., Medeiros R., Kitazawa M. Ceftriaxone ameliorates tau pathology and cognitive decline via restoration of glial glutamate transporter in a mouse model of Alzheimer’s disease. Neurobiol. Aging. 2015;36:2260–2271. doi: 10.1016/j.neurobiolaging.2015.04.005. PubMed DOI
Brann D.W., Dhandapani K., Wakade C., Mahesh V.B., Khan M. Neurotrophic and neuroprotective actions of estrogen: Basic mechanisms and clinical implications. Steroids. 2007;72:381–405. doi: 10.1016/j.steroids.2007.02.003. PubMed DOI PMC
Ji Y.-F., Xu S.-M., Zhu J., Wang X.-X., Shen Y. Insulin increases glutamate transporter GLT1 in cultured astrocytes. Biochem. Biophys. Res. Commun. 2011;405:691–696. doi: 10.1016/j.bbrc.2011.01.105. PubMed DOI
Frizzo M.E.D.S., Dall’Onder L.P., Dalcin K.B., Souza D. Riluzole Enhances Glutamate Uptake in Rat Astrocyte Cultures. Cell. Mol. Neurobiol. 2004;24:123–128. doi: 10.1023/B:CEMN.0000012717.37839.07. PubMed DOI
Etminan M., Gill S., Samii A. Effect of non-steroidal anti-inflammatory drugs on risk of Alzheimer’s disease: Systematic review and meta-analysis of observational studies. BMJ. 2003;327:128. doi: 10.1136/bmj.327.7407.128. PubMed DOI PMC
Wang J., Tan L., Wang H.-F., Tan C.-C., Meng X.-F., Wang C., Tang S.-W., Yu J.-T. Anti-Inflammatory Drugs and Risk of Alzheimer’s Disease: An Updated Systematic Review and Meta-Analysis. J. Alzheimer’s Dis. 2015;44:385–396. doi: 10.3233/JAD-141506. PubMed DOI
Miguel-Álvarez M., Santos-Lozano A., Sanchis-Gomar F., Fiuza-Luces C., Pareja-Galeano H., Garatachea N., Lucia A. Non-Steroidal Anti-Inflammatory Drugs as a Treatment for Alzheimer’s Disease: A Systematic Review and Meta-Analysis of Treatment Effect. Drugs Aging. 2015;32:139–147. doi: 10.1007/s40266-015-0239-z. PubMed DOI
Butchart J., Brook L., Hopkins V., Teeling J., Püntener U., Culliford D., Sharples R., Sharif S., McFarlane B., Raybould R., et al. Etanercept in Alzheimer disease: A randomized, placebo-controlled, double-blind, phase 2 trial. Neurology. 2015;84:2161–2168. doi: 10.1212/WNL.0000000000001617. PubMed DOI PMC
Duffy J.P., Harrington E.M., Salituro F.G., Cochran J.E., Green J., Gao H., Bemis G.W., Evindar G., Galullo V.P., Ford P.J., et al. The Discovery of VX-745: A Novel and Selective p38α Kinase Inhibitor. ACS Med. Chem. Lett. 2011;2:758–763. doi: 10.1021/ml2001455. PubMed DOI PMC
Dong Y., Li X., Cheng J., Hou L. Drug Development for Alzheimer’s Disease: Microglia Induced Neuroinflammation as a Target? Int. J. Mol. Sci. 2019;20:558. doi: 10.3390/ijms20030558. PubMed DOI PMC
Cummings J., Aisen P., Lemere C., Atri A., Sabbagh M., Salloway S. Aducanumab produced a clinically meaningful benefit in association with amyloid lowering. Alzheimer’s Res. Ther. 2021;13:1–3. doi: 10.1186/s13195-021-00838-z. PubMed DOI PMC
Bastrup J., Hansen K.H., Poulsen T.B., Kastaniegaard K., Asuni A.A., Christensen S., Belling D., Helboe L., Stensballe A., Volbracht C. Anti-Aβ Antibody Aducanumab Regulates the Proteome of Senile Plaques and Closely Surrounding Tissue in a Transgenic Mouse Model of Alzheimer’s Disease. J. Alzheimer’s Dis. 2021;79:249–265. doi: 10.3233/JAD-200715. PubMed DOI
Knopman D.S., Jones D.T., Greicius M.D. Failure to demonstrate efficacy of aducanumab: An analysis of the EMERGE and ENGAGE trials as reported by Biogen, December. Alzheimer’s Dement. 2021;17:696–701. doi: 10.1002/alz.12213. PubMed DOI
Gao K., Zhang T., Wang F., Lv C. Therapeutic Potential of Wnt-3a in Neurological Recovery after Spinal Cord Injury. Eur. Neurol. 2019;81:197–204. doi: 10.1159/000502004. PubMed DOI
Jope R.S., Cheng Y., Lowell J., Worthen R., Sitbon Y.H., Beurel E. Stressed and Inflamed, Can GSK3 Be Blamed? Trends Biochem. Sci. 2017;42:180–192. doi: 10.1016/j.tibs.2016.10.009. PubMed DOI PMC
Kawamoto E., Gleichmann M., Yshii L., Lima L.D.S., Mattson M., Scavone C. Effect of activation of canonical Wnt signaling by the Wnt-3a protein on the susceptibility of PC12 cells to oxidative and apoptotic insults. Braz. J. Med. Biol. Res. 2012;45:58–67. doi: 10.1590/S0100-879X2011007500157. PubMed DOI PMC
Iozzi S., Remelli R., Lelli B., Diamanti D., Pileri S., Bracci L., Roncarati R., Caricasole A., Bernocco S. Functional Characterization of a Small-Molecule Inhibitor of the DKK1-LRP6 Interaction. ISRN Mol. Biol. 2012;2012:823875. doi: 10.5402/2012/823875. PubMed DOI PMC
Ling S., Birnbaum Y., Nanhwan M.K., Thomas B., Bajaj M., Li Y., Li Y., Ye Y. Dickkopf-1 (DKK1) phosphatase and tensin homolog on chromosome 10 (PTEN) crosstalk via microRNA interference in the diabetic heart. Basic Res. Cardiol. 2013;108:352. doi: 10.1007/s00395-013-0352-2. PubMed DOI
Ross S.P., Baker K.E., Fisher A., Hoff L., Pak E.S., Murashov A.K. miRNA-431 Prevents Amyloid-β-Induced Synapse Loss in Neuronal Cell Culture Model of Alzheimer’s Disease by Silencing Kremen. Front. Cell. Neurosci. 2018;12:87. doi: 10.3389/fncel.2018.00087. PubMed DOI PMC
Silva-Alvarez C., Arrázola M.S., A Godoy J., Ordenes D., Inestrosa N.C. Canonical Wnt signaling protects hippocampal neurons from Aβ oligomers: Role of non-canonical Wnt-5a/Ca2+ in mitochondrial dynamics. Front. Cell. Neurosci. 2013;7:97. doi: 10.3389/fncel.2013.00097. PubMed DOI PMC
Chen J., Long Z., Li Y., Luo M., Luo S., He G. Alteration of the Wnt/GSK3β/β-catenin signalling pathway by rapamycin ameliorates pathology in an Alzheimer’s disease model. Int. J. Mol. Med. 2019;44:313–323. doi: 10.3892/ijmm.2019.4198. PubMed DOI
Vallée A., Vallée J.-N., Guillevin R., Lecarpentier Y. Riluzole: A therapeutic strategy in Alzheimer’s disease by targeting the WNT/β-catenin pathway. Aging. 2020;12:3095–3113. doi: 10.18632/aging.102830. PubMed DOI PMC
Farías G.G., Godoy J.A., Vázquez M.C., Adani R., Meshulam H., Avila J., Amitai G., Inestrosa N.C. The anti-inflammatory and cholinesterase inhibitor bifunctional compound IBU-PO protects from β-amyloid neurotoxicity by acting on Wnt signaling components. Neurobiol. Dis. 2005;18:176–183. doi: 10.1016/j.nbd.2004.09.012. PubMed DOI
Wiciński M., Socha M., Malinowski B., Wódkiewicz E., Walczak M., Górski K., Słupski M., Pawlak-Osińska K. Liraglutide and its Neuroprotective Properties—Focus on Possible Biochemical Mechanisms in Alzheimer’s Disease and Cerebral Ischemic Events. Int. J. Mol. Sci. 2019;20:1050. doi: 10.3390/ijms20051050. PubMed DOI PMC
Inestrosa N.C., Godoy J.A., Vargas J.Y., Arrázola M.S., Rios J.A., Carvajal F.J., Serrano F.G., Farías G.G. Nicotine Prevents Synaptic Impairment Induced by Amyloid-β Oligomers through α7-Nicotinic Acetylcholine Receptor Activation. Neuromolecular Med. 2013;15:549–569. doi: 10.1007/s12017-013-8242-1. PubMed DOI
Echuang D.-M., Ewang Z., Echiu C.-T. GSK-3 as a Target for Lithium-Induced Neuroprotection against Excitotoxicity in Neuronal Cultures and Animal Models of Ischemic Stroke. Front. Mol. Neurosci. 2011;4:15. doi: 10.3389/fnmol.2011.00015. PubMed DOI PMC
Tümpel S., Rudolph K.L. Quiescence: Good and Bad of Stem Cell Aging. Trends Cell Biol. 2019;29:672–685. doi: 10.1016/j.tcb.2019.05.002. PubMed DOI
Ji Y.-B., Gao Q., Tan X.-X., Huang X.-W., Ma Y.-Z., Fang C., Wang S.-N., Qiu L.-H., Cheng Y.-X., Guo F.-Y., et al. Lithium alleviates blood-brain barrier breakdown after cerebral ischemia and reperfusion by upregulating endothelial Wnt/β-catenin signaling in mice. Neuropharmacology. 2021;186:108474. doi: 10.1016/j.neuropharm.2021.108474. PubMed DOI
Mohamadianinejad S.E., Majdinasab N., Sajedi S.A., Abdollahi F., Moqaddam M.M., Sadr F. The Effect of Lithium in Post-Stroke Motor Recovery. Clin. Neuropharmacol. 2014;37:73–78. doi: 10.1097/WNF.0000000000000028. PubMed DOI
Clinical Trials. [(accessed on 27 July 2021)]; Available online: clinicaltrials.gov.
Doeppner T.R., Kaltwasser B., Sanchez-Mendoza E.H., Caglayan A.B., Bähr M., Hermann D.M. Lithium-induced neuroprotection in stroke involves increased miR-124 expression, reduced RE1-silencing transcription factor abundance and decreased protein deubiquitination by GSK3β inhibition-independent pathways. Br. J. Pharmacol. 2017;37:914–926. doi: 10.1177/0271678X16647738. PubMed DOI PMC
Pluta R., Ułamek-Kozioł M., Czuczwar S.J. Neuroprotective and Neurological/Cognitive Enhancement Effects of Curcumin after Brain Ischemia Injury with Alzheimer’s Disease Phenotype. Int. J. Mol. Sci. 2018;19:4002. doi: 10.3390/ijms19124002. PubMed DOI PMC
Pluta R., Bogucka-Kocka A., Ułamek-Kozioł M., Furmaga-Jabłońska W., Januszewski S., Brzozowska J., Jabłoński M., Kocki J. Review paper Neurogenesis and neuroprotection in postischemic brain neurodegeneration with Alzheimer phenotype: Is there a role for curcumin? Folia Neuropathol. 2015;2:89–99. doi: 10.5114/fn.2015.52405. PubMed DOI
Forouzanfar F., Read M.I., Barreto G.E., Sahebkar A. Neuroprotective effects of curcumin through autophagy modulation. IUBMB Life. 2020;72:652–664. doi: 10.1002/iub.2209. PubMed DOI
Tiwari S.K., Agarwal S., Tripathi A., Chaturvedi R.K. Bisphenol-A Mediated Inhibition of Hippocampal Neurogenesis Attenuated by Curcumin via Canonical Wnt Pathway. Mol. Neurobiol. 2016;53:3010–3029. doi: 10.1007/s12035-015-9197-z. PubMed DOI