The absence of AQP4/TRPV4 complex substantially reduces acute cytotoxic edema following ischemic injury

. 2022 ; 16 () : 1054919. [epub] 20221208

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36568889

INTRODUCTION: Astrocytic Aquaporin 4 (AQP4) and Transient receptor potential vanilloid 4 (TRPV4) channels form a functional complex that likely influences cell volume regulation, the development of brain edema, and the severity of the ischemic injury. However, it remains to be fully elucidated whether blocking these channels can serve as a therapeutic approach to alleviate the consequences of having a stroke. METHODS AND RESULTS: In this study, we used in vivo magnetic resonance imaging (MRI) to quantify the extent of brain lesions one day (D1) and seven days (D7) after permanent middle cerebral artery occlusion (pMCAO) in AQP4 or TRPV4 knockouts and mice with simultaneous deletion of both channels. Our results showed that deletion of AQP4 or TRPV4 channels alone leads to a significant worsening of ischemic brain injury at both time points, whereas their simultaneous deletion results in a smaller brain lesion at D1 but equal tissue damage at D7 when compared with controls. Immunohistochemical analysis 7 days after pMCAO confirmed the MRI data, as the brain lesion was significantly greater in AQP4 or TRPV4 knockouts than in controls and double knockouts. For a closer inspection of the TRPV4 and AQP4 channel complex in the development of brain edema, we applied a real-time iontophoretic method in situ to determine ECS diffusion parameters, namely volume fraction (α) and tortuosity (λ). Changes in these parameters reflect alterations in cell volume, and tissue structure during exposure of acute brain slices to models of ischemic conditions in situ, such as oxygen-glucose deprivation (OGD), hypoosmotic stress, or hyperkalemia. The decrease in α was comparable in double knockouts and controls when exposed to hypoosmotic stress or hyperkalemia. However, during OGD, there was no decrease in α in the double knockouts as observed in the controls, which suggests less swelling of the cellular components of the brain. CONCLUSION: Although simultaneous deletion of AQP4 and TRPV4 did not improve the overall outcome of ischemic brain injury, our data indicate that the interplay between AQP4 and TRPV4 channels plays a critical role during neuronal and non-neuronal swelling in the acute phase of ischemic injury.

Zobrazit více v PubMed

Amiry-Moghaddam M., Frydenlund D. S., Ottersen O. P. (2004). Anchoring of aquaporin-4 in brain: Molecular mechanisms and implications for the physiology and pathophysiology of water transport. Neuroscience 129 999–1010. 10.1016/j.neuroscience.2004.08.049 PubMed DOI

Amiry-Moghaddam M., Williamson A., Palomba M., Eid T., De Lanerolle N. C., Nagelhus E. A., et al. (2003b). Delayed K+ clearance associated with aquaporin-4 mislocalization: Phenotypic defects in brains of alpha-syntrophin-null mice. Proc. Natl. Acad. Sci. U.S.A. 100 13615–13620. 10.1073/pnas.2336064100 PubMed DOI PMC

Amiry-Moghaddam M., Otsuka T., Hurn P. D., Traystman R. J., Haug F. M., Froehner S. C., et al. (2003a). An alpha-syntrophin-dependent pool of AQP4 in astroglial end-feet confers bidirectional water flow between blood and brain. Proc. Natl. Acad. Sci. U.S.A. 100 2106–2111. 10.1073/pnas.0437946100 PubMed DOI PMC

Anderova M., Benesova J., Mikesova M., Dzamba D., Honsa P., Kriska J., et al. (2014). Altered astrocytic swelling in the cortex of alpha-syntrophin-negative GFAP/EGFP mice. PLoS One 9:e113444. 10.1371/journal.pone.0113444 PubMed DOI PMC

Anderova M., Vorisek I., Pivonkova H., Benesova J., Vargova L., Cicanic M., et al. (2011). Cell death/proliferation and alterations in glial morphology contribute to changes in diffusivity in the rat hippocampus after hypoxia-ischemia. J. Cereb. Blood Flow Metab. 31 894–907. 10.1038/jcbfm.2010.168 PubMed DOI PMC

Andrew R. D., Labron M. W., Boehnke S. E., Carnduff L., Kirov S. A. (2007). Physiological evidence that pyramidal neurons lack functional water channels. Cereb. Cortex 17 787–802. 10.1093/cercor/bhk032 PubMed DOI

Benfenati V., Amiry-Moghaddam M., Caprini M., Mylonakou M. N., Rapisarda C., Ottersen O. P., et al. (2007). Expression and functional characterization of transient receptor potential vanilloid-related channel 4 (TRPV4) in rat cortical astrocytes. Neuroscience 148 876–892. 10.1016/j.neuroscience.2007.06.039 PubMed DOI

Benfenati V., Caprini M., Dovizio M., Mylonakou M. N., Ferroni S., Ottersen O. P., et al. (2011). An aquaporin-4/transient receptor potential vanilloid 4 (AQP4/TRPV4) complex is essential for cell-volume control in astrocytes. Proc. Natl. Acad. Sci. U.S.A. 108 2563–2568. 10.1073/pnas.1012867108 PubMed DOI PMC

Bloch O., Papadopoulos M. C., Manley G. T., Verkman A. S. (2005). Aquaporin-4 gene deletion in mice increases focal edema associated with staphylococcal brain abscess. J. Neurochem. 95 254–262. 10.1111/j.1471-4159.2005.03362.x PubMed DOI

Butenko O., Dzamba D., Benesova J., Honsa P., Benfenati V., Rusnakova V., et al. (2012). The increased activity of TRPV4 channel in the astrocytes of the adult rat hippocampus after cerebral hypoxia/ischemia. PLoS One 7:e39959. 10.1371/journal.pone.0039959 PubMed DOI PMC

Caspi A., Benninger F., Yaari Y. (2009). KV7/M channels mediate osmotic modulation of intrinsic neuronal excitability. J. Neurosci. 29 11098–11111. 10.1523/JNEUROSCI.0942-09.2009 PubMed DOI PMC

Chakraborty R., Goswami C. (2022). Both heat-sensitive TRPV4 and cold-sensitive TRPM8 ion channels regulate microglial activity. Biochem. Biophys. Res. Commun. 611 132–139. 10.1016/j.bbrc.2022.04.032 PubMed DOI

Chmelova M., Sucha P., Bochin M., Vorisek I., Pivonkova H., Hermanova Z., et al. (2019). The role of aquaporin-4 and transient receptor potential vaniloid isoform 4 channels in the development of cytotoxic edema and associated extracellular diffusion parameter changes. Eur. J. Neurosci. 50 1685–1699. 10.1111/ejn.14338 PubMed DOI

Clement T., Rodriguez-Grande B., Badaut J. (2020). Aquaporins in brain edema. J. Neurosci. Res. 98 9–18. 10.1002/jnr.24354 PubMed DOI

D’Agostino R. B. (1986). “Tests for normal distribution,” in Goodness-of-fit techniques, eds D’Agostino R. B., Stepenes M. A. (New York, NY: Marcel Dekker; ).

Diaz-Otero J. M., Yen T. C., Ahmad A., Laimon-Thomson E., Abolibdeh B., Kelly K., et al. (2019). Transient receptor potential vanilloid 4 channels are important regulators of parenchymal arteriole dilation and cognitive function. Microcirculation 26:e12535. 10.1111/micc.12535 PubMed DOI PMC

Dmytrenko L., Cicanic M., Anderova M., Vorisek I., Ottersen O. P., Sykova E., et al. (2013). The impact of alpha-syntrophin deletion on the changes in tissue structure and extracellular diffusion associated with cell swelling under physiological and pathological conditions. PLoS One 8:e68044. 10.1371/journal.pone.0068044 PubMed DOI PMC

Dunn K. M., Hill-Eubanks D. C., Liedtke W. B., Nelson M. T. (2013). Trpv4 channels stimulate Ca2+-induced Ca2+ release in astrocytic endfeet and amplify neurovascular coupling responses. Proc. Natl. Acad. Sci. U.S.A. 110 6157–6162. 10.1073/pnas.1216514110 PubMed DOI PMC

Eilert-Olsen M., Hjukse J. B., Thoren A. E., Tang W., Enger R., Jensen V., et al. (2019). Astroglial endfeet exhibit distinct Ca(2+) signals during hypoosmotic conditions. Glia 67 2399–2409. 10.1002/glia.23692 PubMed DOI

Faropoulos K., Polia A., Tsakona C., Pitaraki E., Moutafidi A., Gatzounis G., et al. (2021). Evaluation of AQP4/TRPV4 channel co-expression, microvessel density, and its association with peritumoral brain edema in intracranial meningiomas. J. Mol. Neurosci. 71 1786–1795. 10.1007/s12031-021-01801-1 PubMed DOI PMC

Formaggio F., Saracino E., Mola M. G., Rao S. B., Amiry-Moghaddam M., Muccini M., et al. (2019). LRRC8A is essential for swelling-activated chloride current and for regulatory volume decrease in astrocytes. FASEB J. 33 101–113. 10.1096/fj.201701397RR PubMed DOI

Han J., Xu H. H., Chen X. L., Hu H. R., Hu K. M., Chen Z. W., et al. (2018). Total flavone of rhododendron improves cerebral ischemia injury by activating vascular TRPV4 to induce endothelium-derived hyperpolarizing factor-mediated responses. Evid. Based Complement. Alternat. Med. 2018:8919867. 10.1155/2018/8919867 PubMed DOI PMC

Hellas J. A., Andrew R. D. (2021). Neuronal swelling: A non-osmotic consequence of spreading depolarization. Neurocrit. Care 35 112–134. 10.1007/s12028-021-01326-w PubMed DOI PMC

Hirt L., Fukuda A. M., Ambadipudi K., Rashid F., Binder D., Verkman A., et al. (2017). Improved long-term outcome after transient cerebral ischemia in aquaporin-4 knockout mice. J. Cereb. Blood Flow Metab. 37 277–290. 10.1177/0271678X15623290 PubMed DOI PMC

Ho M. L., Rojas R., Eisenberg R. L. (2012). Cerebral edema. AJR Am. J. Roentgenol. 199 W258–W273. 10.2214/AJR.11.8081 PubMed DOI

Holloway P. M., Gavins F. N. (2016). Modeling ischemic stroke in vitro: Status QUO and future perspectives. Stroke 47 561–569. 10.1161/STROKEAHA.115.011932 PubMed DOI PMC

Hoshi Y., Okabe K., Shibasaki K., Funatsu T., Matsuki N., Ikegaya Y., et al. (2018). Ischemic brain injury leads to brain edema via hyperthermia-induced TRPV4 activation. J. Neurosci. 38 5700–5709. 10.1523/JNEUROSCI.2888-17.2018 PubMed DOI PMC

Jiang S., Wu Y., Fang D. F., Chen Y. (2018). Hypothermic preconditioning but not ketamine reduces oxygen and glucose deprivation induced neuronal injury correlated with downregulation of COX-2 expression in mouse hippocampal slices. J. Pharmacol. Sci. 137 30–37. 10.1016/j.jphs.2018.04.001 PubMed DOI

Jie P., Tian Y., Hong Z., Li L., Zhou L., Chen L., et al. (2015). Blockage of transient receptor potential vanilloid 4 inhibits brain edema in middle cerebral artery occlusion mice. Front. Cell. Neurosci. 9:141. 10.3389/fncel.2015.00141 PubMed DOI PMC

Jo A. O., Ryskamp D. A., Phuong T. T., Verkman A. S., Yarishkin O., Macaulay N., et al. (2015). TRPV4 and AQP4 channels synergistically regulate cell volume and calcium homeostasis in retinal Muller glia. J Neurosci 35 13525–13537. 10.1523/JNEUROSCI.1987-15.2015 PubMed DOI PMC

Kahle K. T., Khanna A. R., Alper S. L., Adragna N. C., Lauf P. K., Sun D., et al. (2015). K-Cl cotransporters, cell volume homeostasis, and neurological disease. Trends Mol. Med. 21 513–523. 10.1016/j.molmed.2015.05.008 PubMed DOI PMC

Katada R., Akdemir G., Asavapanumas N., Ratelade J., Zhang H., Verkman A. S. (2014). Greatly improved survival and neuroprotection in aquaporin-4-knockout mice following global cerebral ischemia. FASEB J. 28 705–714. 10.1096/fj.13-231274 PubMed DOI PMC

Katoozi S., Skauli N., Rahmani S., Camassa L. M. A., Boldt H. B., Ottersen O. P., et al. (2017). Targeted deletion of AQP4 promotes the formation of astrocytic gap junctions. Brain Struct. Funct. 222 3959–3972. 10.1007/s00429-017-1448-5 PubMed DOI

Konno M., Shirakawa H., Iida S., Sakimoto S., Matsutani I., Miyake T., et al. (2012). Stimulation of transient receptor potential vanilloid 4 channel suppresses abnormal activation of microglia induced by lipopolysaccharide. Glia 60 761–770. 10.1002/glia.22306 PubMed DOI

Kreisman N. R., Wooliscroft L. B., Campbell C. F., Dotiwala A. K., Cox M. L., Denson A. C., et al. (2020). Preconditioning hippocampal slices with hypothermia promotes rapid tolerance to hypoxic depolarization and swelling: Mediation by erythropoietin. Brain Res. 1726:146517. 10.1016/j.brainres.2019.146517 PubMed DOI

Kriska J., Hermanova Z., Knotek T., Tureckova J., Anderova M. (2021). On the common journey of neural cells through ischemic brain injury and Alzheimer’s disease. Int. J. Mol. Sci. 22:9689. 10.3390/ijms22189689 PubMed DOI PMC

Li L., Qu W., Zhou L., Lu Z., Jie P., Chen L., et al. (2013). Activation of transient receptor potential vanilloid 4 increases NMDA-activated current in hippocampal pyramidal neurons. Front. Cell. Neurosci. 7:17. 10.3389/fncel.2013.00017 PubMed DOI PMC

Liang D., Bhatta S., Gerzanich V., Simard J. M. (2007). Cytotoxic edema: Mechanisms of pathological cell swelling. Neurosurg. Focus 22:E2. PubMed PMC

Liedtke W. (2007). TRPV channels’ role in osmotransduction and mechanotransduction. Handb. Exp. Pharmacol. 179 473–487. 10.1007/978-3-540-34891-7_28 PubMed DOI

Liedtke W., Friedman J. M. (2003). Abnormal osmotic regulation in trpv4-/- mice. Proc. Natl. Acad. Sci. U.S.A. 100 13698–13703. 10.1073/pnas.1735416100 PubMed DOI PMC

Liu N., Wu J., Chen Y., Zhao J. (2020). Channels that cooperate with TRPV4 in the brain. J. Mol. Neurosci. 70 1812–1820. 10.1007/s12031-020-01574-z PubMed DOI

MacAulay N., Hamann S., Zeuthen T. (2004). Water transport in the brain: Role of cotransporters. Neuroscience 129 1031–1044. 10.1016/j.neuroscience.2004.06.045 PubMed DOI

Manley G. T., Fujimura M., Ma T., Noshita N., Filiz F., Bollen A. W., et al. (2000). Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat. Med. 6 159–163. 10.1038/72256 PubMed DOI

McCoy E. S., Haas B. R., Sontheimer H. (2010). Water permeability through aquaporin-4 is regulated by protein kinase C and becomes rate-limiting for glioma invasion. Neuroscience 168 971–981. 10.1016/j.neuroscience.2009.09.020 PubMed DOI PMC

Mola M. G., Saracino E., Formaggio F., Amerotti A. G., Barile B., Posati T., et al. (2021). Cell volume regulation mechanisms in differentiated astrocytes. Cell. Physiol. Biochem. 55 196–212. PubMed

Mola M. G., Sparaneo A., Gargano C. D., Spray D. C., Svelto M., Frigeri A., et al. (2016). The speed of swelling kinetics modulates cell volume regulation and calcium signaling in astrocytes: A different point of view on the role of aquaporins. Glia 64 139–154. 10.1002/glia.22921 PubMed DOI PMC

Murphy T. R., Davila D., Cuvelier N., Young L. R., Lauderdale K., Binder D. K., et al. (2017). Hippocampal and cortical pyramidal neurons swell in parallel with astrocytes during acute hypoosmolar stress. Front. Cell. Neurosci. 11:275. 10.3389/fncel.2017.00275 PubMed DOI PMC

Nagelhus E. A., Ottersen O. P. (2013). Physiological roles of aquaporin-4 in brain. Physiol. Rev. 93 1543–1562. PubMed PMC

Nagelhus E. A., Horio Y., Inanobe A., Fujita A., Haug F. M., Nielsen S., et al. (1999). Immunogold evidence suggests that coupling of K+ siphoning and water transport in rat retinal Muller cells is mediated by a coenrichment of Kir4.1 and AQP4 in specific membrane domains. Glia 26 47–54. 10.1002/(sici)1098-1136(199903)26:1<47::aid-glia5>3.0.co;2-5 PubMed DOI

Nicchia G. P., Frigeri A., Liuzzi G. M., Svelto M. (2003). Inhibition of aquaporin-4 expression in astrocytes by RNAi determines alteration in cell morphology, growth, and water transport and induces changes in ischemia-related genes. FASEB J. 17 1508–1510. 10.1096/fj.02-1183fje PubMed DOI

Nicholson C., Hrabetova S. (2017). Brain extracellular space: The final frontier of neuroscience. Biophys. J. 113 2133–2142. PubMed PMC

Nicholson C., Phillips J. M. (1981). Ion diffusion modified by tortuosity and volume fraction in the extracellular microenvironment of the rat cerebellum. J. Physiol. 321 225–257. 10.1113/jphysiol.1981.sp013981 PubMed DOI PMC

Nolte C., Matyash M., Pivneva T., Schipke C. G., Ohlemeyer C., Hanisch U. K., et al. (2001). GFAP promoter-controlled EGFP-expressing transgenic mice: A tool to visualize astrocytes and astrogliosis in living brain tissue. Glia 33 72–86. PubMed

Ohashi K., Deyashiki A., Miyake T., Nagayasu K., Shibasaki K., Shirakawa H., et al. (2018). TRPV4 is functionally expressed in oligodendrocyte precursor cells and increases their proliferation. Pflugers Arch. 470 705–716. 10.1007/s00424-018-2130-3 PubMed DOI

Ordaz B., Tuz K., Ochoa L. D., Lezama R., Pena-Segura C., Franco R. (2004). Osmolytes and mechanisms involved in regulatory volume decrease under conditions of sudden or gradual osmolarity decrease. Neurochem. Res. 29 65–72. PubMed

Papadopoulos M. C., Verkman A. S. (2007). Aquaporin-4 and brain edema. Pediatr. Nephrol. 22 778–784. PubMed PMC

Pasantes-Morales H., Morales Mulia S. (2000). Influence of calcium on regulatory volume decrease: Role of potassium channels. Nephron 86 414–427. PubMed

Pasantes-Morales H., Franco R., Torres-Marquez M. E., Hernandez-Fonseca K., Ortega A. (2000). Amino acid osmolytes in regulatory volume decrease and isovolumetric regulation in brain cells: Contribution and mechanisms. Cell. Physiol. Biochem. 10 361–370. 10.1159/000016369 PubMed DOI

Perez-Pinzon M. A., Tao L., Nicholson C. (1995). Extracellular potassium, volume fraction, and tortuosity in rat hippocampal CA1, CA3, and cortical slices during ischemia. J. Neurophysiol. 74 565–573. 10.1152/jn.1995.74.2.565 PubMed DOI

Pivonkova H., Hermanova Z., Kirdajova D., Awadova T., Malinsky J., Valihrach L., et al. (2018). The Contribution of TRPV4 channels to astrocyte volume regulation and brain edema formation. Neuroscience 394 127–143. PubMed

Posati T., Pistone A., Saracino E., Formaggio F., Mola M. G., Troni E., et al. (2016). A nanoscale interface promoting molecular and functional differentiation of neural cells. Sci. Rep. 6:31226. PubMed PMC

Rakers C., Schmid M., Petzold G. C. (2017). TRPV4 channels contribute to calcium transients in astrocytes and neurons during peri-infarct depolarizations in a stroke model. Glia 65 1550–1561. 10.1002/glia.23183 PubMed DOI

Redmon S. N., Yarishkin O., Lakk M., Jo A., Mustafic E., Tvrdik P., et al. (2021). TRPV4 channels mediate the mechanoresponse in retinal microglia. Glia 69 1563–1582. 10.1002/glia.23979 PubMed DOI PMC

Reed M. M., Blazer-Yost B. (2022). Channels and transporters in astrocyte volume regulation in health and disease. Cell. Physiol. Biochem. 56 12–30. PubMed

Rice M. E., Nicholson C. (1991). Diffusion characteristics and extracellular volume fraction during normoxia and hypoxia in slices of rat neostriatum. J. Neurophysiol. 65 264–272. 10.1152/jn.1991.65.2.264 PubMed DOI

Richard M. J., Saleh T. M., El Bahh B., Zidichouski J. A. (2010). A novel method for inducing focal ischemia in vitro. J. Neurosci. Methods 190 20–27. PubMed PMC

Risher W. C., Andrew R. D., Kirov S. A. (2009). Real-time passive volume responses of astrocytes to acute osmotic and ischemic stress in cortical slices and in vivo revealed by two-photon microscopy. Glia 57 207–221. 10.1002/glia.20747 PubMed DOI PMC

Rosenkranz S. C., Shaposhnykov A., Schnapauff O., Epping L., Vieira V., Heidermann K., et al. (2020). TRPV4-mediated regulation of the blood brain barrier is abolished during inflammation. Front. Cell Dev. Biol. 8:849. 10.3389/fcell.2020.00849 PubMed DOI PMC

Ruan J., Yao Y. (2020). Behavioral tests in rodent models of stroke. Brain Hemorrhages 1 171–184. PubMed PMC

Ryskamp D. A., Jo A. O., Frye A. M., Vazquez-Chona F., Macaulay N., Thoreson W. B., et al. (2014). Swelling and eicosanoid metabolites differentially gate TRPV4 channels in retinal neurons and glia. J. Neurosci. 34 15689–15700. 10.1523/JNEUROSCI.2540-14.2014 PubMed DOI PMC

Saadoun S., Papadopoulos M. C., Watanabe H., Yan D., Manley G. T., Verkman A. S. (2005). Involvement of aquaporin-4 in astroglial cell migration and glial scar formation. J. Cell Sci. 118 5691–5698. PubMed

Salman M. M., Kitchen P., Woodroofe M. N., Brown J. E., Bill R. M., Conner A. C., et al. (2017). Hypothermia increases aquaporin 4 (AQP4) plasma membrane abundance in human primary cortical astrocytes via a calcium/transient receptor potential vanilloid 4 (TRPV4)- and calmodulin-mediated mechanism. Eur. J. Neurosci. 46 2542–2547. 10.1111/ejn.13723 PubMed DOI PMC

Shi W. Z., Zhao C. Z., Zhao B., Shi Q. J., Zhang L. H., Wang Y. F., et al. (2012). Aggravated inflammation and increased expression of cysteinyl leukotriene receptors in the brain after focal cerebral ischemia in AQP4-deficient mice. Neurosci. Bull. 28 680–692. PubMed PMC

Shibasaki K., Sugio S., Takao K., Yamanaka A., Miyakawa T., Tominaga M., et al. (2015). TRPV4 activation at the physiological temperature is a critical determinant of neuronal excitability and behavior. Pflugers Arch. 467 2495–2507. PubMed

Shibasaki K., Suzuki M., Mizuno A., Tominaga M. (2007). Effects of body temperature on neural activity in the hippocampus: Regulation of resting membrane potentials by transient receptor potential vanilloid 4. J. Neurosci. 27 1566–1575. 10.1523/JNEUROSCI.4284-06.2007 PubMed DOI PMC

Solenov E., Watanabe H., Manley G. T., Verkman A. S. (2004). Sevenfold-reduced osmotic water permeability in primary astrocyte cultures from AQP-4-deficient mice, measured by a fluorescence quenching method. Am. J. Physiol. Cell Physiol. 286 C426–C432. 10.1152/ajpcell.00298.2003 PubMed DOI

Sommer C. J. (2017). Ischemic stroke: Experimental models and reality. Acta Neuropathol. 133 245–261. PubMed PMC

Song M., Yu S. P. (2014). Ionic regulation of cell volume changes and cell death after ischemic stroke. Transl. Stroke Res. 5 17–27. 10.1007/s12975-013-0314-x PubMed DOI PMC

Steffensen A. B., Sword J., Croom D., Kirov S. A., Macaulay N. (2015). Chloride cotransporters as a molecular mechanism underlying spreading depolarization-induced dendritic beading. J. Neurosci. 35 12172–12187. 10.1523/JNEUROSCI.0400-15.2015 PubMed DOI PMC

Svoboda J., Sykova E. (1991). Extracellular space volume changes in the rat spinal cord produced by nerve stimulation and peripheral injury. Brain Res. 560 216–224. 10.1016/0006-8993(91)91235-s PubMed DOI

Syková E. (1992). “Ion-selective electrodes,” in Monitoring neuronal cells: A practical approach, ed. Stamford J. (New York, NY: Oxford University Press; ).

Syková E., Jendelová P. (2005). Magnetic resonance tracking of implanted adult and embryonic stem cells in injured brain and spinal cord. Ann. N. Y. Acad. Sci. 1049, 146–160. 10.1196/annals.1334.014 PubMed DOI

Sykova E., Nicholson C. (2008). Diffusion in brain extracellular space. Physiol. Rev. 88 1277–1340. PubMed PMC

Sykova E., Vargova L. (2008). Extrasynaptic transmission and the diffusion parameters of the extracellular space. Neurochem. Int. 52 5–13. PubMed

Tanaka K., Matsumoto S., Yamada T., Yamasaki R., Suzuki M., Kido M. A., et al. (2020). Reduced post-ischemic brain injury in transient receptor potential vanilloid 4 knockout mice. Front. Neurosci. 14:453. 10.3389/fnins.2020.00453 PubMed DOI PMC

Thorne R. G., Nicholson C. (2006). In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space. Proc. Natl. Acad. Sci. U.S.A. 103 5567–5572. 10.1073/pnas.0509425103 PubMed DOI PMC

Thrane A. S., Rappold P. M., Fujita T., Torres A., Bekar L. K., Takano T., et al. (2011). Critical role of aquaporin-4 (AQP4) in astrocytic Ca2+ signaling events elicited by cerebral edema. Proc. Natl. Acad. Sci. U.S.A. 108 846–851. 10.1073/pnas.1015217108 PubMed DOI PMC

Toft-Bertelsen T. L., Krizaj D., Macaulay N. (2017). When size matters: Transient receptor potential vanilloid 4 channel as a volume-sensor rather than an osmo-sensor. J. Physiol. 595 3287–3302. 10.1113/JP274135 PubMed DOI PMC

Toft-Bertelsen T. L., Larsen B. R., Macaulay N. (2018). Sensing and regulation of cell volume – we know so much and yet understand so little: TRPV4 as a sensor of volume changes but possibly without a volume-regulatory role? Channels (Austin) 12 100–108. 10.1080/19336950.2018.1438009 PubMed DOI PMC

Verkman A. S. (2013). Aquaporins. Curr. Biol. 23 R52–R55. PubMed PMC

Vizi E. S., Kiss J. P., Lendvai B. (2004). Nonsynaptic communication in the central nervous system. Neurochem. Int. 45 443–451. PubMed

Vorisek I., Sykova E. (1997). Ischemia-induced changes in the extracellular space diffusion parameters, K+, and pH in the developing rat cortex and corpus callosum. J. Cereb. Blood Flow Metab. 17 191–203. 10.1097/00004647-199702000-00009 PubMed DOI

Wang Y. F., Parpura V. (2018). Astroglial modulation of hydromineral balance and cerebral edema. Front. Mol. Neurosci. 11:204. 10.3389/fnmol.2018.00204 PubMed DOI PMC

Wilson C. S., Mongin A. A. (2018). Cell volume control in healthy brain and neuropathologies. Curr. Top. Membr. 81 385–455. PubMed PMC

Wolburg H., Wolburg-Buchholz K., Fallier-Becker P., Noell S., Mack A. F. (2011). Structure and functions of aquaporin-4-based orthogonal arrays of particles. Int. Rev. Cell Mol. Biol. 287 1–41. 10.1016/B978-0-12-386043-9.00001-3 PubMed DOI

Yao X., Derugin N., Manley G. T., Verkman A. S. (2015). Reduced brain edema and infarct volume in aquaporin-4 deficient mice after transient focal cerebral ischemia. Neurosci. Lett. 584 368–372. 10.1016/j.neulet.2014.10.040 PubMed DOI PMC

Zeng X. N., Sun X. L., Gao L., Fan Y., Ding J. H., Hu G. (2007). Aquaporin-4 deficiency down-regulates glutamate uptake and Glt-1 expression in astrocytes. Mol. Cell. Neurosci. 34 34–39. 10.1016/j.mcn.2006.09.008 PubMed DOI

Zeng X. N., Xie L. L., Liang R., Sun X. L., Fan Y., Hu G. (2012). AQP4 knockout aggravates ischemia/reperfusion injury in mice. CNS Neurosci. Ther. 18 388–394. 10.1111/j.1755-5949.2012.00308.x PubMed DOI PMC

Zhang H., Verkman A. S. (2008). Aquaporin-4 independent Kir4.1 K+ channel function in brain glial cells. Mol. Cell. Neurosci. 37 1–10. 10.1016/j.mcn.2007.08.007 PubMed DOI PMC

Zhao H., Zhang K., Tang R., Meng H., Zou Y., Wu P., et al. (2018). TRPV4 Blockade preserves the blood-brain barrier by inhibiting stress fiber formation in a rat model of intracerebral hemorrhage. Front. Mol. Neurosci. 11:97. 10.3389/fnmol.2018.00097 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace