Reactive gliosis in traumatic brain injury: a comprehensive review

. 2024 ; 18 () : 1335849. [epub] 20240228

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid38481632

Traumatic brain injury (TBI) is one of the most common pathological conditions impacting the central nervous system (CNS). A neurological deficit associated with TBI results from a complex of pathogenetic mechanisms including glutamate excitotoxicity, inflammation, demyelination, programmed cell death, or the development of edema. The critical components contributing to CNS response, damage control, and regeneration after TBI are glial cells-in reaction to tissue damage, their activation, hypertrophy, and proliferation occur, followed by the formation of a glial scar. The glial scar creates a barrier in damaged tissue and helps protect the CNS in the acute phase post-injury. However, this process prevents complete tissue recovery in the late/chronic phase by producing permanent scarring, which significantly impacts brain function. Various glial cell types participate in the scar formation, but this process is mostly attributed to reactive astrocytes and microglia, which play important roles in several brain pathologies. Novel technologies including whole-genome transcriptomic and epigenomic analyses, and unbiased proteomics, show that both astrocytes and microglia represent groups of heterogenic cell subpopulations with different genomic and functional characteristics, that are responsible for their role in neurodegeneration, neuroprotection and regeneration. Depending on the representation of distinct glia subpopulations, the tissue damage as well as the regenerative processes or delayed neurodegeneration after TBI may thus differ in nearby or remote areas or in different brain structures. This review summarizes TBI as a complex process, where the resultant effect is severity-, region- and time-dependent and determined by the model of the CNS injury and the distance of the explored area from the lesion site. Here, we also discuss findings concerning intercellular signaling, long-term impacts of TBI and the possibilities of novel therapeutical approaches. We believe that a comprehensive study with an emphasis on glial cells, involved in tissue post-injury processes, may be helpful for further research of TBI and be the decisive factor when choosing a TBI model.

Zobrazit více v PubMed

Aalinkeel R., Mahajan S. D. (2016). Neuroprotective role of galectin-1 in central nervous system pathophysiology. PubMed DOI PMC

Abdul-Muneer P. M., Long M., Conte A. A., Santhakumar V., Pfister B. J. (2017). High Ca(2 +) influx during traumatic brain injury leads to caspase-1-dependent neuroinflammation and cell death. PubMed DOI PMC

Abe N., Choudhury M. E., Watanabe M., Kawasaki S., Nishihara T., Yano H., et al. (2018). Comparison of the detrimental features of microglia and infiltrated macrophages in traumatic brain injury: A study using a hypnotic bromovalerylurea. PubMed DOI

Acaz-Fonseca E., Duran J. C., Carrero P., Garcia-Segura L. M., Arevalo M. A. (2015). Sex differences in glia reactivity after cortical brain injury. PubMed DOI

Adams K. L., Gallo V. (2018). The diversity and disparity of the glial scar. PubMed DOI PMC

Ahmed F., Gyorgy A., Kamnaksh A., Ling G., Tong L., Parks S., et al. (2012). Time-dependent changes of protein biomarker levels in the cerebrospinal fluid after blast traumatic brain injury. PubMed DOI

Ahmed M. E., Selvakumar G. P., Kempuraj D., Raikwar S. P., Thangavel R., Bazley K., et al. (2020). Glia Maturation Factor (GMF) regulates microglial expression phenotypes and the associated neurological deficits in a mouse model of traumatic brain injury. PubMed DOI

Akay L. A., Effenberger A. H., Tsai L. H. (2021). Cell of all trades: oligodendrocyte precursor cells in synaptic, vascular, and immune function. PubMed DOI PMC

Alibhai J. D., Diack A. B., Manson J. C. (2018). Unravelling the glial response in the pathogenesis of Alzheimer’s disease. PubMed DOI

Allen G. V., Gerami D., Esser M. J. (2000). Conditioning effects of repetitive mild neurotrauma on motor function in an animal model of focal brain injury. PubMed DOI

Amiry-Moghaddam M., Frydenlund D. S., Ottersen O. P. (2004). Anchoring of aquaporin-4 in brain: Molecular mechanisms and implications for the physiology and pathophysiology of water transport. PubMed DOI

Amorini A. M., Lazzarino G., Di Pietro V., Signoretti S., Lazzarino G., Belli A., et al. (2017). Severity of experimental traumatic brain injury modulates changes in concentrations of cerebral free amino acids. PubMed DOI PMC

Anderson M. A., Burda J. E., Ren Y., Ao Y., O’Shea T. M., Kawaguchi R., et al. (2016). Astrocyte scar formation aids central nervous system axon regeneration. PubMed DOI PMC

Androvic P., Kirdajova D., Tureckova J., Zucha D., Rohlova E., Abaffy P., et al. (2020). Decoding the transcriptional response to ischemic stroke in young and aged mouse brain. PubMed DOI

Angeloni C., Prata C., Dalla Sega F. V., Piperno R., Hrelia S. (2015). Traumatic brain injury and NADPH oxidase: a deep relationship. PubMed DOI PMC

Antunes A., Martins-de-Souza D. (2023). Single-Cell RNA sequencing and its applications in the study of psychiatric disorders. PubMed DOI PMC

Araki T., Yokota H., Morita A. (2017). Pediatric traumatic brain injury: characteristic features, diagnosis, and management. PubMed DOI PMC

Arevalo M. A., Santos-Galindo M., Bellini M. J., Azcoitia I., Garcia-Segura L. M. (2010). Actions of estrogens on glial cells: Implications for neuroprotection. PubMed DOI

Armand E. J., Li J., Xie F., Luo C., Mukamel E. A. (2021). Single-cell sequencing of brain cell transcriptomes and epigenomes. PubMed DOI PMC

Arneson D., Zhang G., Ahn I. S., Ying Z., Diamante G., Cely I., et al. (2022). Systems spatiotemporal dynamics of traumatic brain injury at single-cell resolution reveals humanin as a therapeutic target. PubMed DOI PMC

Arneson D., Zhang G., Ying Z., Zhuang Y., Byun H. R., Ahn I. S., et al. (2018). Single cell molecular alterations reveal target cells and pathways of concussive brain injury. PubMed DOI PMC

Arun P., Rossetti F., Wilder D. M., Sajja S., Van Albert S. A., Wang Y., et al. (2020). Blast exposure leads to accelerated cellular senescence in the rat brain. PubMed DOI PMC

Asadi-Pooya A. A., Farazdaghi M. (2021). Is severe head injury associated with functional (psychogenic) seizures? PubMed DOI

Asher R. A., Morgenstern D. A., Moon L. D., Fawcett J. W. (2001). Chondroitin sulphate proteoglycans: inhibitory components of the glial scar. PubMed DOI

Asher R. A., Morgenstern D. A., Shearer M. C., Adcock K. H., Pesheva P., Fawcett J. W. (2002). Versican is upregulated in CNS injury and is a product of oligodendrocyte lineage cells. PubMed DOI PMC

Atif H., Hicks S. D. (2019). A Review of MicroRNA Biomarkers in Traumatic Brain Injury. PubMed DOI PMC

Aungst S. L., Kabadi S. V., Thompson S. M., Stoica B. A., Faden A. I. (2014). Repeated mild traumatic brain injury causes chronic neuroinflammation, changes in hippocampal synaptic plasticity, and associated cognitive deficits. PubMed DOI PMC

Bachstetter A. D., Rowe R. K., Kaneko M., Goulding D., Lifshitz J., Van Eldik L. J. (2013). The p38alpha MAPK regulates microglial responsiveness to diffuse traumatic brain injury. PubMed DOI PMC

Bachstetter A. D., Xing B., de Almeida L., Dimayuga E. R., Watterson D. M., Van Eldik L. J. (2011). Microglial p38alpha MAPK is a key regulator of proinflammatory cytokine up-regulation induced by toll-like receptor (TLR) ligands or beta-amyloid (Abeta). PubMed DOI PMC

Baker D. J., Petersen R. C. (2018). Cellular senescence in brain aging and neurodegenerative diseases: evidence and perspectives. PubMed DOI PMC

Barnes C. A. (1979). Memory deficits associated with senescence: a neurophysiological and behavioral study in the rat. PubMed DOI

Barnett A. M., Crews F. T., Coleman L. G. (2021). Microglial depletion and repopulation: a new era of regenerative medicine? PubMed DOI PMC

Bashir A., Abebe Z. A., McInnes K. A., Button E. B., Tatarnikov I., Cheng W. H., et al. (2020). Increased severity of the CHIMERA model induces acute vascular injury, sub-acute deficits in memory recall, and chronic white matter gliosis. PubMed DOI

Basurco L., Abellanas M. A., Ayerra L., Conde E., Vinueza-Gavilanes R., Luquin E., et al. (2023). Microglia and astrocyte activation is region-dependent in the alpha-synuclein mouse model of Parkinson’s disease. PubMed DOI PMC

Bellezza I., Giambanco I., Minelli A., Donato R. (2018). Nrf2-Keap1 signaling in oxidative and reductive stress. PubMed DOI

Bellver-Landete V., Bretheau F., Mailhot B., Vallieres N., Lessard M., Janelle M. E., et al. (2019). Microglia are an essential component of the neuroprotective scar that forms after spinal cord injury. PubMed DOI PMC

Benfenati V., Caprini M., Dovizio M., Mylonakou M. N., Ferroni S., Ottersen O. P., et al. (2011). An aquaporin-4/transient receptor potential vanilloid 4 (AQP4/TRPV4) complex is essential for cell-volume control in astrocytes. PubMed DOI PMC

Bennett I. J., Madden D. J., Vaidya C. J., Howard D. V., Howard J. H., Jr. (2010). Age-related differences in multiple measures of white matter integrity: A diffusion tensor imaging study of healthy aging. PubMed DOI PMC

Bennett R. E., Mac Donald C. L., Brody D. L. (2012). Diffusion tensor imaging detects axonal injury in a mouse model of repetitive closed-skull traumatic brain injury. PubMed DOI PMC

Beschorner R., Dietz K., Schauer N., Mittelbronn M., Schluesener H. J., Trautmann K., et al. (2007). Expression of EAAT1 reflects a possible neuroprotective function of reactive astrocytes and activated microglia following human traumatic brain injury. PubMed DOI

Beltzig L., Frumkina A., Schwarzenbach C., Kaina B. (2021). Cytotoxic, Genotoxic and Senolytic Potential of Native and Micellar Curcumin. PubMed DOI PMC

Bhalala O. G., Pan L., Sahni V., McGuire T. L., Gruner K., Tourtellotte W. G., et al. (2012). microRNA-21 regulates astrocytic response following spinal cord injury. PubMed DOI PMC

Biegon A. (2021). Considering Biological Sex in Traumatic Brain Injury. PubMed DOI PMC

Bodnar C. N., Roberts K. N., Higgins E. K., Bachstetter A. D. (2019). A systematic review of closed head injury models of mild traumatic brain injury in mice and rats. PubMed DOI PMC

Bolton A. N., Saatman K. E. (2014). Regional neurodegeneration and gliosis are amplified by mild traumatic brain injury repeated at 24-hour intervals. PubMed DOI PMC

Bonifacino T., Zerbo R. A., Balbi M., Torazza C., Frumento G., Fedele E., et al. (2021). Nearly 30 years of animal models to study amyotrophic lateral sclerosis: A historical overview and future perspectives. PubMed DOI PMC

Bonnier C., Mesples B., Gressens P. (2004). Animal models of shaken baby syndrome: revisiting the pathophysiology of this devastating injury. PubMed DOI

Borst K., Dumas A. A., Prinz M. (2021). Microglia: Immune and non-immune functions. PubMed DOI

Boutin C., Hardt O., de Chevigny A., Core N., Goebbels S., Seidenfaden R., et al. (2010). NeuroD1 induces terminal neuronal differentiation in olfactory neurogenesis. PubMed DOI PMC

Boza-Serrano A., Reyes J. F., Rey N. L., Leffler H., Bousset L., Nilsson U., et al. (2014). The role of Galectin-3 in alpha-synuclein-induced microglial activation. PubMed DOI PMC

Brambrink A. M., Back S. A., Riddle A., Gong X., Moravec M. D., Dissen G. A., et al. (2012). Isoflurane-induced apoptosis of oligodendrocytes in the neonatal primate brain. PubMed DOI PMC

Bramlett H. M., Dietrich W. D. (2001). Neuropathological protection after traumatic brain injury in intact female rats versus males or ovariectomized females. PubMed DOI

Brazinova A., Rehorcikova V., Taylor M. S., Buckova V., Majdan M., Psota M., et al. (2021). Epidemiology of traumatic brain injury in europe: A living systematic review. PubMed DOI PMC

Brett B. L., Gardner R. C., Godbout J., Dams-O’Connor K., Keene C. D. (2022). Traumatic Brain Injury and Risk of Neurodegenerative Disorder. PubMed DOI PMC

Briggs D. I., Angoa-Perez M., Kuhn D. M. (2016). Prolonged Repetitive Head Trauma Induces a Singular Chronic Traumatic Encephalopathy-Like Pathology in White Matter Despite Transient Behavioral Abnormalities. PubMed DOI

Browne K. D., Chen X. H., Meaney D. F., Smith D. H. (2011). Mild traumatic brain injury and diffuse axonal injury in swine. PubMed DOI PMC

Bryden D. W., Tilghman J. I., Hinds S. R., II (2019). Blast-Related Traumatic Brain Injury: Current Concepts and Research Considerations. PubMed DOI PMC

Bugay V., Bozdemir E., Vigil F. A., Chun S. H., Holstein D. M., Elliott W. R., et al. (2020). A mouse model of repetitive blast traumatic brain injury reveals post-trauma seizures and increased neuronal excitability. PubMed DOI PMC

Buffo A., Rite I., Tripathi P., Lepier A., Colak D., Horn A. P., et al. (2008). Origin and progeny of reactive gliosis: A source of multipotent cells in the injured brain. PubMed DOI PMC

Burda J. E., Sofroniew M. V. (2014). Reactive gliosis and the multicellular response to CNS damage and disease. PubMed DOI PMC

Burguillos M. A., Svensson M., Schulte T., Boza-Serrano A., Garcia-Quintanilla A., Kavanagh E., et al. (2015). Microglia-Secreted Galectin-3 Acts as a Toll-like Receptor 4 Ligand and Contributes to Microglial Activation. PubMed DOI

Butt A. M., De La Rocha I. C., Rivera A. (2019). Oligodendroglial Cells in Alzheimer’s Disease. PubMed DOI

Cai W., Yang T., Liu H., Han L., Zhang K., Hu X., et al. (2018). Peroxisome proliferator-activated receptor gamma (PPARgamma): A master gatekeeper in CNS injury and repair. PubMed DOI PMC

Calabresi P., Mechelli A., Natale G., Volpicelli-Daley L., Di Lazzaro G., Ghiglieri V. (2023). Alpha-synuclein in Parkinson’s disease and other synucleinopathies: from overt neurodegeneration back to early synaptic dysfunction. PubMed DOI PMC

Calafatti M., Cocozza G., Limatola C., Garofalo S. (2023). Microglial crosstalk with astrocytes and immune cells in amyotrophic lateral sclerosis. PubMed DOI PMC

Camacho-Soto A., Warden M. N., Searles Nielsen S., Salter A., Brody D. L., Prather H., et al. (2017). Traumatic brain injury in the prodromal period of Parkinson’s disease: A large epidemiological study using medicare data. PubMed DOI PMC

Campolo M., Crupi R., Cordaro M., Cardali S. M., Ardizzone A., Casili G., et al. (2021). Co-Ultra PEALut enhances endogenous repair response following moderate traumatic brain injury. PubMed DOI PMC

Campos-Pires R., Koziakova M., Yonis A., Pau A., Macdonald W., Harris K., et al. (2018). Xenon protects against blast-induced traumatic brain injury in an PubMed DOI PMC

Campos-Pires R., Ong B. E., Koziakova M., Ujvari E., Fuller I., Boyles C., et al. (2023). Repetitive, but not single, mild blast TBI causes persistent neurological impairments and selective cortical neuronal loss in rats. PubMed DOI PMC

Capizzi A., Woo J., Verduzco-Gutierrez M. (2020). Traumatic brain injury: An overview of epidemiology, pathophysiology, and medical management. PubMed DOI

Caplan H. W., Cardenas F., Gudenkauf F., Zelnick P., Xue H., Cox C. S., et al. (2020). Spatiotemporal distribution of microglia after traumatic brain injury in male mice. PubMed DOI PMC

Cargnello M., Roux P. P. (2011). Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. PubMed DOI PMC

Castejon O. J. (1998). Morphological astrocytic changes in complicated human brain trauma. A light and electron microscopic study. PubMed DOI

Castro L., Noelia M., Vidal-Jorge M., Sanchez-Ortiz D., Gandara D., Martinez-Saez E., et al. (2019). Kir6.2, the pore-forming subunit of ATP-Sensitive K(+) channels, is overexpressed in human posttraumatic brain contusions. PubMed DOI PMC

Chamoun R., Suki D., Gopinath S. P., Goodman J. C., Robertson C. (2010). Role of extracellular glutamate measured by cerebral microdialysis in severe traumatic brain injury. PubMed DOI PMC

Chanti-Ketterl M., Pieper C. F., Yaffe K., Plassman B. L. (2023). Associations between traumatic brain injury and cognitive decline among older male veterans: A twin study. PubMed DOI PMC

Chapman J., Fielder E., Passos J. F. (2019). Mitochondrial dysfunction and cell senescence: deciphering a complex relationship. PubMed DOI

Chen M., Dong Y., Simard J. M. (2003). Functional coupling between sulfonylurea receptor type 1 and a non-selective cation channel in reactive astrocytes from adult rat brain. PubMed DOI PMC

Chen M., Simard J. M. (2001). Cell swelling and a non-selective cation channel regulated by internal Ca2 + and ATP in native reactive astrocytes from adult rat brain. PubMed DOI PMC

Chen Y. C., Ma N. X., Pei Z. F., Wu Z., Do-Monte F. H., Keefe S., et al. (2020). A NeuroD1 AAV-based gene therapy for functional brain repair after ischemic injury through PubMed DOI PMC

Chen Z., Tortella F. C., Dave J. R., Marshall V. S., Clarke D. L., Sing G., et al. (2009). Human amnion-derived multipotent progenitor cell treatment alleviates traumatic brain injury-induced axonal degeneration. PubMed DOI

Chen Z. J., Negra M., Levine A., Ughrin Y., Levine J. M. (2002). Oligodendrocyte precursor cells: reactive cells that inhibit axon growth and regeneration. PubMed DOI

Cherian L., Hlatky R., Robertson C. S. (2004). Nitric oxide in traumatic brain injury. PubMed DOI PMC

Cherry J. D., Tripodis Y., Alvarez V. E., Huber B., Kiernan P. T., Daneshvar D. H., et al. (2016). Microglial neuroinflammation contributes to tau accumulation in chronic traumatic encephalopathy. PubMed DOI PMC

Chini C., Hogan K. A., Warner G. M., Tarrago M. G., Peclat T. R., Tchkonia T., et al. (2019). The NADase CD38 is induced by factors secreted from senescent cells providing a potential link between senescence and age-related cellular NAD(+) decline. PubMed DOI PMC

Chmelova M., Sucha P., Bochin M., Vorisek I., Pivonkova H., Hermanova Z., et al. (2019). The role of aquaporin-4 and transient receptor potential vaniloid isoform 4 channels in the development of cytotoxic edema and associated extracellular diffusion parameter changes. PubMed DOI

Chopra S., Shaw M., Shaw T., Sachdev P. S., Anstey K. J., Cherbuin N. (2018). More highly myelinated white matter tracts are associated with faster processing speed in healthy adults. PubMed DOI

Clark R. S., Chen J., Watkins S. C., Kochanek P. M., Chen M., Stetler R. A., et al. (1997). Apoptosis-suppressor gene bcl-2 expression after traumatic brain injury in rats. PubMed DOI PMC

Clark R. S., Kochanek P. M., Watkins S. C., Chen M., Dixon C. E., Seidberg N. A., et al. (2000). Caspase-3 mediated neuronal death after traumatic brain injury in rats. PubMed DOI

Clarke L. E., Liddelow S. A., Chakraborty C., Munch A. E., Heiman M., Barres B. A. (2018). Normal aging induces A1-like astrocyte reactivity. PubMed DOI PMC

Clausen F., Hanell A., Israelsson C., Hedin J., Ebendal T., Mir A. K., et al. (2011). Neutralization of interleukin-1beta reduces cerebral edema and tissue loss and improves late cognitive outcome following traumatic brain injury in mice. PubMed DOI

Cohen J., Torres C. (2019). Astrocyte senescence: Evidence and significance. PubMed DOI PMC

Conti A. C., Raghupathi R., Trojanowski J. Q., McIntosh T. K. (1998). Experimental brain injury induces regionally distinct apoptosis during the acute and delayed post-traumatic period. PubMed DOI PMC

Cornelius C., Crupi R., Calabrese V., Graziano A., Milone P., Pennisi G., et al. (2013). Traumatic brain injury: oxidative stress and neuroprotection. PubMed DOI

Corrigan F., Wee I. C., Collins-Praino L. E. (2023). Chronic motor performance following different traumatic brain injury severity-A systematic review. PubMed DOI PMC

Cuenda A., Rousseau S. (2007). p38 MAP-kinases pathway regulation, function and role in human diseases. PubMed DOI

Culley D. J., Cotran E. K., Karlsson E., Palanisamy A., Boyd J. D., Xie Z., et al. (2013). Isoflurane affects the cytoskeleton but not survival, proliferation, or synaptogenic properties of rat astrocytes PubMed DOI PMC

Dagher N. N., Najafi A. R., Kayala K. M., Elmore M. R., White T. E., Medeiros R., et al. (2015). Colony-stimulating factor 1 receptor inhibition prevents microglial plaque association and improves cognition in 3xTg-AD mice. PubMed DOI PMC

Davalos D., Grutzendler J., Yang G., Kim J. V., Zuo Y., Jung S., et al. (2005). ATP mediates rapid microglial response to local brain injury PubMed DOI

de Boer E. M. J., Orie V. K., Williams T., Baker M. R., De Oliveira H. M., Polvikoski T., et al. (2020). TDP-43 proteinopathies: a new wave of neurodegenerative diseases. PubMed DOI PMC

Delic V., Beck K. D., Pang K. C. H., Citron B. A. (2020). Biological links between traumatic brain injury and Parkinson’s disease. PubMed DOI PMC

Deng Y., Jiang X., Deng X., Chen H., Xu J., Zhang Z., et al. (2020). Pioglitazone ameliorates neuronal damage after traumatic brain injury via the PPARgamma/NF-kappaB/IL-6 signaling pathway. PubMed DOI PMC

Dent K. A., Christie K. J., Bye N., Basrai H. S., Turbic A., Habgood M., et al. (2015). Oligodendrocyte birth and death following traumatic brain injury in adult mice. PubMed DOI PMC

Deshetty U. M., Periyasamy P. (2023). Potential biomarkers in experimental animal models for traumatic brain injury. PubMed DOI PMC

Dewan M. C., Rattani A., Gupta S., Baticulon R. E., Hung Y. C., Punchak M., et al. (2018). Estimating the global incidence of traumatic brain injury. PubMed DOI

DeWitt D. S., Hawkins B. E., Dixon C. E., Kochanek P. M., Armstead W., Bass C. R., et al. (2018). Pre-clinical testing of therapies for traumatic brain injury. PubMed DOI PMC

Dickerson M. R., Bailey Z. S., Murphy S. F., Urban M. J., VandeVord P. J. (2020). Glial activation in the thalamus contributes to vestibulomotor deficits following blast-induced neurotrauma. PubMed DOI PMC

Dimou L., Gallo V. (2015). NG2-glia and their functions in the central nervous system. PubMed DOI PMC

Dixon C. E., Kochanek P. M., Yan H. Q., Schiding J. K., Griffith R. G., Baum E., et al. (1999). One-year study of spatial memory performance, brain morphology, and cholinergic markers after moderate controlled cortical impact in rats. PubMed DOI

Dixon C. E., Lyeth B. G., Povlishock J. T., Findling R. L., Hamm R. J., Marmarou A., et al. (1987). A fluid percussion model of experimental brain injury in the rat. PubMed DOI

Dong H., Zhang Y., Huang Y., Deng H. (2022). Pathophysiology of RAGE in inflammatory diseases. PubMed DOI PMC

Dong X. X., Wang Y., Qin Z. H. (2009). Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. PubMed DOI PMC

Dong Y. X., Zhang H. Y., Li H. Y., Liu P. H., Sui Y., Sun X. H. (2018). Association between Alzheimer’s disease pathogenesis and early demyelination and oligodendrocyte dysfunction. PubMed DOI PMC

Donkin J. J., Vink R. (2010). Mechanisms of cerebral edema in traumatic brain injury: therapeutic developments. PubMed DOI

Droge W. (2002). Free radicals in the physiological control of cell function. PubMed DOI

Dyck S. M., Karimi-Abdolrezaee S. (2015). Chondroitin sulfate proteoglycans: Key modulators in the developing and pathologic central nervous system. PubMed DOI

Eakin K., Rowe R. K., Lifshitz J. (2015). “Modeling Fluid Percussion Injury: Relevance to Human Traumatic Brain Injury,” in PubMed

Early A. N., Gorman A. A., Van Eldik L. J., Bachstetter A. D., Morganti J. M. (2020). Effects of advanced age upon astrocyte-specific responses to acute traumatic brain injury in mice. PubMed DOI PMC

Edwards K. A., Gill J. M., Pattinson C. L., Lai C., Briere M., Rogers N. J., et al. (2020). Interleukin-6 is associated with acute concussion in military combat personnel. PubMed DOI PMC

Eikelenboom P., van Exel E., Hoozemans J. J., Veerhuis R., Rozemuller A. J., van Gool W. A. (2010). Neuroinflammation - an early event in both the history and pathogenesis of Alzheimer’s disease. PubMed DOI

Escartin C., Galea E., Lakatos A., O’Callaghan J. P., Petzold G. C., Serrano-Pozo A., et al. (2021). Reactive astrocyte nomenclature, definitions, and future directions. PubMed DOI PMC

Fan H., Tang H. B., Chen Z., Wang H. Q., Zhang L., Jiang Y., et al. (2020). Inhibiting HMGB1-RAGE axis prevents pro-inflammatory macrophages/microglia polarization and affords neuroprotection after spinal cord injury. PubMed DOI PMC

Fan J., Fong T., Chen X., Chen C., Luo P., Xie H. (2018). Glia maturation factor-beta: a potential therapeutic target in neurodegeneration and neuroinflammation. PubMed DOI PMC

Fang Y., Eglen R. M. (2017). Three-dimensional cell cultures in drug discovery and development. PubMed DOI PMC

Faul M., Coronado V. (2015). Epidemiology of traumatic brain injury. PubMed DOI

Fedor M., Berman R. F., Muizelaar J. P., Lyeth B. G. (2010). Hippocampal theta dysfunction after lateral fluid percussion injury. PubMed DOI PMC

Feeney D. M., Boyeson M. G., Linn R. T., Murray H. M., Dail W. G. (1981). Responses to cortical injury: I. Methodology and local effects of contusions in the rat. PubMed DOI

Feng X., Jopson T. D., Paladini M. S., Liu S., West B. L., Gupta N., et al. (2016). Colony-stimulating factor 1 receptor blockade prevents fractionated whole-brain irradiation-induced memory deficits. PubMed DOI PMC

Fernandez-Gajardo R., Matamala J. M., Carrasco R., Gutierrez R., Melo R., Rodrigo R. (2014). Novel therapeutic strategies for traumatic brain injury: acute antioxidant reinforcement. PubMed DOI

Fidan E., Lewis J., Kline A. E., Garman R. H., Alexander H., Cheng J. P., et al. (2016). Repetitive mild traumatic brain injury in the developing brain: effects on long-term functional outcome and neuropathology. PubMed DOI PMC

Fielder E., von Zglinicki T., Jurk D. (2017). The DNA damage response in neurons: Die by apoptosis or survive in a senescence-like state? PubMed DOI

Filipi T., Hermanova Z., Tureckova J., Vanatko O., Anderova M. (2020). Glial Cells-The Strategic Targets in Amyotrophic Lateral Sclerosis Treatment. PubMed DOI PMC

Filipi T., Matusova Z., Abaffy P., Vanatko O., Tureckova J., Benesova S., et al. (2023). Cortical glia in SOD1(G93A) mice are subtly affected by ALS-like pathology. PubMed DOI PMC

Fisher E. M. C., Greensmith L., Malaspina A., Fratta P., Hanna M. G., Schiavo G., et al. (2023). Opinion: more mouse models and more translation needed for ALS. PubMed DOI PMC

Fitzgerald J., Houle S., Cotter C., Zimomra Z., Martens K. M., Vonder Haar C., et al. (2022). Lateral fluid percussion injury causes sex-specific deficits in anterograde but not retrograde memory. PubMed DOI PMC

Fleminger S., Oliver D. L., Lovestone S., Rabe-Hesketh S., Giora A. (2003). Head injury as a risk factor for Alzheimer’s disease: the evidence 10 years on; a partial replication. PubMed DOI PMC

Floyd C. L., Golden K. M., Black R. T., Hamm R. J., Lyeth B. G. (2002). Craniectomy position affects morris water maze performance and hippocampal cell loss after parasagittal fluid percussion. PubMed DOI

Flygt J., Gumucio A., Ingelsson M., Skoglund K., Holm J., Alafuzoff I., et al. (2016). Human traumatic brain injury results in oligodendrocyte death and increases the number of oligodendrocyte progenitor cells. PubMed DOI

Flygt J., Ruscher K., Norberg A., Mir A., Gram H., Clausen F., et al. (2018). Neutralization of interleukin-1beta following diffuse traumatic brain injury in the mouse attenuates the loss of mature oligodendrocytes. PubMed DOI PMC

Fox G. B., Fan L., Levasseur R. A., Faden A. I. (1998). Sustained sensory/motor and cognitive deficits with neuronal apoptosis following controlled cortical impact brain injury in the mouse. PubMed DOI

Fridovich I. (2013). Oxygen: how do we stand it? PubMed DOI PMC

Fronczak K. M., Roberts A., Svirsky S., Parry M., Holets E., Henchir J., et al. (2022). Assessment of behavioral, neuroinflammatory, and histological responses in a model of rat repetitive mild fluid percussion injury at 2 weeks post-injury. PubMed DOI PMC

Fujimoto S. T., Longhi L., Saatman K. E., Conte V., Stocchetti N., McIntosh T. K. (2004). Motor and cognitive function evaluation following experimental traumatic brain injury. PubMed DOI

Galgano M., Toshkezi G., Qiu X., Russell T., Chin L., Zhao L. R. (2017). Traumatic brain injury: Current treatment strategies and future endeavors. PubMed DOI PMC

Gao W., Guo L., Yang Y., Wang Y., Xia S., Gong H., et al. (2021). Dissecting the crosstalk between Nrf2 and Nf-kappab response pathways in drug-induced toxicity. PubMed DOI PMC

Gao Z., Zhu Q., Zhang Y., Zhao Y., Cai L., Shields C. B., et al. (2013). Reciprocal modulation between microglia and astrocyte in reactive gliosis following the CNS injury. PubMed DOI PMC

Gardner R. C., Byers A. L., Barnes D. E., Li Y., Boscardin J., Yaffe K. (2018). Mild TBI and risk of Parkinson disease: A chronic effects of neurotrauma consortium study. PubMed DOI PMC

Garza R., Sharma Y., Atacho D. A. M., Thiruvalluvan A., Abu Hamdeh S., Jonsson M. E., et al. (2023). Single-cell transcriptomics of human traumatic brain injury reveals activation of endogenous retroviruses in oligodendroglia. PubMed DOI

Gerzanich V., Stokum J. A., Ivanova S., Woo S. K., Tsymbalyuk O., Sharma A., et al. (2019). Sulfonylurea receptor 1, transient receptor potential cation channel subfamily m member 4, and KIR6.2: Role in hemorrhagic progression of contusion. PubMed DOI PMC

Goldman S. M., Tanner C. M., Oakes D., Bhudhikanok G. S., Gupta A., Langston J. W. (2006). Head injury and Parkinson’s disease risk in twins. PubMed DOI

Goodrich J. A., Kim J. H., Situ R., Taylor W., Westmoreland T., Du F., et al. (2016). Neuronal and glial changes in the brain resulting from explosive blast in an experimental model. PubMed DOI PMC

Gorgoraptis N., Zaw-Linn J., Feeney C., Tenorio-Jimenez C., Niemi M., Malik A., et al. (2019). Cognitive impairment and health-related quality of life following traumatic brain injury. PubMed DOI

Grande A., Sumiyoshi K., Lopez-Juarez A., Howard J., Sakthivel B., Aronow B., et al. (2013). Environmental impact on direct neuronal reprogramming PubMed DOI PMC

Green R. E., Colella B., Maller J. J., Bayley M., Glazer J., Mikulis D. J. (2014). Scale and pattern of atrophy in the chronic stages of moderate-severe TBI. PubMed DOI PMC

Gu D., Ou S., Liu G. (2022). Traumatic brain injury and risk of dementia and Alzheimer’s disease: A systematic review and meta-analysis. PubMed DOI

Guan B., Anderson D. B., Chen L., Feng S., Zhou H. (2023). Global, regional and national burden of traumatic brain injury and spinal cord injury, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. PubMed DOI PMC

Guo Z., Zhang L., Wu Z., Chen Y., Wang F., Chen G. (2014). PubMed DOI PMC

Gupte R., Brooks W., Vukas R., Pierce J., Harris J. (2019). Sex Differences in Traumatic Brain Injury: What We Know and What We Should Know. PubMed DOI PMC

Gyoneva S., Ransohoff R. M. (2015). Inflammatory reaction after traumatic brain injury: therapeutic potential of targeting cell-cell communication by chemokines. PubMed DOI PMC

Hackett A. R., Yahn S. L., Lyapichev K., Dajnoki A., Lee D. H., Rodriguez M., et al. (2018). Injury type-dependent differentiation of NG2 glia into heterogeneous astrocytes. PubMed DOI PMC

Hakiminia B., Alikiaii B., Khorvash F., Mousavi S. (2022). Oxidative stress and mitochondrial dysfunction following traumatic brain injury: From mechanistic view to targeted therapeutic opportunities. PubMed DOI

Hamm R. J., Dixon C. E., Gbadebo D. M., Singha A. K., Jenkins L. W., Lyeth B. G., et al. (1992). Cognitive deficits following traumatic brain injury produced by controlled cortical impact. PubMed DOI

Hamm R. J., Pike B. R., Odell D. M., Lyeth B. G., Jenkins L. W. (1994). The Rotarod Test - an Evaluation of Its Effectiveness in Assessing Motor Deficits Following Traumatic Brain Injury. PubMed DOI

Hassan S. S. U., Samanta S., Dash R., Karpinski T. M., Habibi E., Sadiq A., et al. (2022). The neuroprotective effects of fisetin, a natural flavonoid in neurodegenerative diseases: Focus on the role of oxidative stress. PubMed DOI PMC

Head D., Buckner R. L., Shimony J. S., Williams L. E., Akbudak E., Conturo T. E., et al. (2004). Differential vulnerability of anterior white matter in non-demented aging with minimal acceleration in dementia of the Alzheimer type: evidence from diffusion tensor imaging. PubMed DOI

Heinrich C., Bergami M., Gascon S., Lepier A., Vigano F., Dimou L., et al. (2014). Sox2-mediated conversion of NG2 glia into induced neurons in the injured adult cerebral cortex. PubMed DOI PMC

Heinrich C., Blum R., Gascon S., Masserdotti G., Tripathi P., Sanchez R., et al. (2010). Directing astroglia from the cerebral cortex into subtype specific functional neurons. PubMed DOI PMC

Henry C. J., Huang Y., Wynne A. M., Godbout J. P. (2009). Peripheral lipopolysaccharide (LPS) challenge promotes microglial hyperactivity in aged mice that is associated with exaggerated induction of both pro-inflammatory IL-1beta and anti-inflammatory IL-10 cytokines. PubMed DOI PMC

Henry R. J., Ritzel R. M., Barrett J. P., Doran S. J., Jiao Y., Leach J. B., et al. (2020). Microglial Depletion with CSF1R Inhibitor During Chronic Phase of Experimental Traumatic Brain Injury Reduces Neurodegeneration and Neurological Deficits. PubMed DOI PMC

Hentig J., Cloghessy K., Lahne M., Jung Y. J., Petersen R. A., Morris A. C., et al. (2021). Zebrafish Blunt-Force TBI induces heterogenous injury pathologies that mimic human TBI and responds with sonic hedgehog-dependent cell proliferation across the neuroaxis. PubMed DOI PMC

Hernandez A., Tan C., Plattner F., Logsdon A. F., Pozo K., Yousuf M. A., et al. (2018). Exposure to mild blast forces induces neuropathological effects, neurophysiological deficits and biochemical changes. PubMed DOI PMC

Hernandez I. H., Villa-Gonzalez M., Martin G., Soto M., Perez-Alvarez M. J. (2021). Glial cells as therapeutic approaches in brain ischemia-reperfusion injury. PubMed DOI PMC

Hiebert J. B., Shen Q., Thimmesch A. R., Pierce J. D. (2015). Traumatic brain injury and mitochondrial dysfunction. PubMed DOI

Higgins G. C., Beart P. M., Shin Y. S., Chen M. J., Cheung N. S., Nagley P. (2010). Oxidative stress: emerging mitochondrial and cellular themes and variations in neuronal injury. PubMed DOI

Hill R. A., Patel K. D., Goncalves C. M., Grutzendler J., Nishiyama A. (2014). Modulation of oligodendrocyte generation during a critical temporal window after NG2 cell division. PubMed DOI PMC

Hiskens M. I., Angoa-Perez M., Schneiders A. G., Vella R. K., Fenning A. S. (2019). Modeling sports-related mild traumatic brain injury in animals-A systematic review. PubMed DOI

Hoffman A. N., Watson S. L., Makridis A. S., Patel A. Y., Gonzalez S. T., Ferguson L., et al. (2020). Sex Differences in Behavioral Sensitivities After Traumatic Brain Injury. PubMed DOI PMC

Honsa P., Valny M., Kriska J., Matuskova H., Harantova L., Kirdajova D., et al. (2016). Generation of reactive astrocytes from NG2 cells is regulated by sonic hedgehog. PubMed DOI

Hotta N., Aoyama M., Inagaki M., Ishihara M., Miura Y., Tada T., et al. (2005). Expression of glia maturation factor beta after cryogenic brain injury. PubMed DOI

Huber B. R., Meabon J. S., Hoffer Z. S., Zhang J., Hoekstra J. G., Pagulayan K. F., et al. (2016). Blast exposure causes dynamic microglial/macrophage responses and microdomains of brain microvessel dysfunction. PubMed DOI PMC

Huber B. R., Meabon J. S., Martin T. J., Mourad P. D., Bennett R., Kraemer B. C., et al. (2013). Blast exposure causes early and persistent aberrant phospho- and cleaved-tau expression in a murine model of mild blast-induced traumatic brain injury. PubMed DOI PMC

Hughes E. G., Kang S. H., Fukaya M., Bergles D. E. (2013). Oligodendrocyte progenitors balance growth with self-repulsion to achieve homeostasis in the adult brain. PubMed DOI PMC

Hughes E. G., Maguire J. L., McMinn M. T., Scholz R. E., Sutherland M. L. (2004). Loss of glial fibrillary acidic protein results in decreased glutamate transport and inhibition of PKA-induced EAAT2 cell surface trafficking. PubMed DOI

Hussain S. F., Raza Z., Cash A. T. G., Zampieri T., Mazzoli R. A., Kardon R. H., et al. (2021). Traumatic brain injury and sight loss in military and veteran populations- a review. PubMed DOI PMC

Hyder A. A., Wunderlich C. A., Puvanachandra P., Gururaj G., Kobusingye O. C. (2007). The impact of traumatic brain injuries: a global perspective. PubMed

Iaccarino C., Carretta A., Nicolosi F., Morselli C. (2018). Epidemiology of severe traumatic brain injury. PubMed DOI

Igarashi T., Potts M. B., Noble-Haeusslein L. J. (2007). Injury severity determines Purkinje cell loss and microglial activation in the cerebellum after cortical contusion injury. PubMed DOI

Ikeda K., Kundu R. K., Ikeda S., Kobara M., Matsubara H., Quertermous T. (2006). Glia maturation factor-gamma is preferentially expressed in microvascular endothelial and inflammatory cells and modulates actin cytoskeleton reorganization. PubMed DOI

Illarionova N. B., Gunnarson E., Li Y., Brismar H., Bondar A., Zelenin S., et al. (2010). Functional and molecular interactions between aquaporins and Na,K-ATPase. PubMed DOI

Irvine K. A., Blakemore W. F. (2008). Remyelination protects axons from demyelination-associated axon degeneration. PubMed DOI

Izzy S., Liu Q., Fang Z., Lule S., Wu L., Chung J. Y., et al. (2019). Time-dependent changes in microglia transcriptional networks following traumatic brain injury. PubMed DOI PMC

Jafari S., Etminan M., Aminzadeh F., Samii A. (2013). Head injury and risk of Parkinson disease: a systematic review and meta-analysis. PubMed DOI

Jain M., Singh M. K., Shyam H., Mishra A., Kumar S., Kumar A., et al. (2021). Role of JAK/STAT in the neuroinflammation and its association with neurological disorders. PubMed DOI PMC

Jain S., Iverson L. M. (2022). “Glasgow coma scale,” in PubMed

Jantti H., Sitnikova V., Ishchenko Y., Shakirzyanova A., Giudice L., Ugidos I. F., et al. (2022). Microglial amyloid beta clearance is driven by PIEZO1 channels. PubMed DOI PMC

Jassam Y. N., Izzy S., Whalen M., McGavern D. B., El Khoury J. (2017). Neuroimmunology of Traumatic Brain Injury: Time for a Paradigm Shift. PubMed DOI PMC

Jayakumar A. R., Panickar K. S., Curtis K. M., Tong X. Y., Moriyama M., Norenberg M. D. (2011). Na-K-Cl cotransporter-1 in the mechanism of cell swelling in cultured astrocytes after fluid percussion injury. PubMed DOI

Jayakumar A. R., Tong X. Y., Ruiz-Cordero R., Bregy A., Bethea J. R., Bramlett H. M., et al. (2014). Activation of NF-kappaB mediates astrocyte swelling and brain edema in traumatic brain injury. PubMed DOI PMC

Jeter C. B., Hergenroeder G. W., Ward N. H., III, Moore A. N., Dash P. K. (2012). Human traumatic brain injury alters circulating L-arginine and its metabolite levels: possible link to cerebral blood flow, extracellular matrix remodeling, and energy status. PubMed DOI

Jha R. M., Bell J., Citerio G., Hemphill J. C., Kimberly W. T., Narayan R. K., et al. (2020). Role of Sulfonylurea Receptor 1 and Glibenclamide in Traumatic Brain Injury: A Review of the Evidence. PubMed DOI PMC

Jha R. M., Rani A., Desai S. M., Raikwar S., Mihaljevic S., Munoz-Casabella A., et al. (2021). Sulfonylurea Receptor 1 in Central Nervous System Injury: An Updated Review. PubMed DOI PMC

Jiang H., Wang Y., Liang X., Xing X., Xu X., Zhou C. (2018). Toll-Like Receptor 4 Knockdown Attenuates Brain Damage and Neuroinflammation After Traumatic Brain Injury via Inhibiting Neuronal Autophagy and Astrocyte Activation. PubMed DOI PMC

Johann S., Beyer C. (2013). Neuroprotection by gonadal steroid hormones in acute brain damage requires cooperation with astroglia and microglia. PubMed DOI

Johnson N. H., de Rivero Vaccari J. P., Bramlett H. M., Keane R. W., Dietrich W. D. (2023). Inflammasome activation in traumatic brain injury and Alzheimer’s disease. PubMed DOI PMC

Johnson V. E., Stewart J. E., Begbie F. D., Trojanowski J. Q., Smith D. H., Stewart W. (2013a). Inflammation and white matter degeneration persist for years after a single traumatic brain injury. PubMed DOI PMC

Johnson V. E., Stewart W., Smith D. H. (2013b). Axonal pathology in traumatic brain injury. PubMed DOI PMC

Kalluri R., LeBleu V. S. (2020). The biology, function, and biomedical applications of exosomes. PubMed DOI PMC

Kang S. H., Fukaya M., Yang J. K., Rothstein J. D., Bergles D. E. (2010). NG2 + CNS glial progenitors remain committed to the oligodendrocyte lineage in postnatal life and following neurodegeneration. PubMed DOI PMC

Kapoor S., Kim S. M., Farook J. M., Mir S., Saha R., Sen N. (2013). Foxo3a transcriptionally upregulates AQP4 and induces cerebral edema following traumatic brain injury. PubMed DOI PMC

Karlander M., Ljungqvist J., Zelano J. (2021). Post-traumatic epilepsy in adults: a nationwide register-based study. PubMed DOI PMC

Karve I. P., Taylor J. M., Crack P. J. (2016). The contribution of astrocytes and microglia to traumatic brain injury. PubMed DOI PMC

Katzenberger R. J., Loewen C. A., Wassarman D. R., Petersen A. J., Ganetzky B., Wassarman D. A. (2013). A Drosophila model of closed head traumatic brain injury. PubMed DOI PMC

Kelley N., Jeltema D., Duan Y., He Y. (2019). The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation. PubMed DOI PMC

Kernie S. G., Erwin T. M., Parada L. F. (2001). Brain remodeling due to neuronal and astrocytic proliferation after controlled cortical injury in mice. PubMed DOI

Khayatan D., Razavi S. M., Arab Z. N., Niknejad A. H., Nouri K., Momtaz S., et al. (2022). Protective effects of curcumin against traumatic brain injury. PubMed DOI

Kim Y., Park J., Choi Y. K. (2019). The role of astrocytes in the central nervous system focused on BK channel and heme oxygenase metabolites: A review. PubMed DOI PMC

Kim Y. S., Jung H. M., Yoon B. E. (2018). Exploring glia to better understand Alzheimer’s disease. PubMed DOI PMC

King Z. A., Sheth K. N., Kimberly W. T., Simard J. M. (2018). Profile of intravenous glyburide for the prevention of cerebral edema following large hemispheric infarction: evidence to date. PubMed DOI PMC

Kinney J. W., Bemiller S. M., Murtishaw A. S., Leisgang A. M., Salazar A. M., Lamb B. T. (2018). Inflammation as a central mechanism in Alzheimer’s disease. PubMed DOI PMC

Kitchen P., Salman M. M., Halsey A. M., Clarke-Bland C., MacDonald J. A., Ishida H., et al. (2020). Targeting Aquaporin-4 Subcellular Localization to Treat Central Nervous System Edema. PubMed DOI PMC

Kochanek P. M., Wallisch J. S., Bayir H., Clark R. S. B. (2017). Pre-clinical models in pediatric traumatic brain injury-challenges and lessons learned. PubMed DOI PMC

Kodali M., Madhu L. N., Reger R. L., Milutinovic B., Upadhya R., Gonzalez J. J., et al. (2023). Intranasally administered human MSC-derived extracellular vesicles inhibit NLRP3-p38/MAPK signaling after TBI and prevent chronic brain dysfunction. PubMed DOI PMC

Kofler B., Bulleyment A., Humphries A., Carter D. A. (2002). Id-1 expression defines a subset of vimentin/S-100beta-positive. GFAP-negative astrocytes in the adult rat pineal gland. PubMed DOI

Kohanbash G., Okada H. (2012). MicroRNAs and STAT interplay. PubMed DOI PMC

Kong L. Z., Zhang R. L., Hu S. H., Lai J. B. (2022). Military traumatic brain injury: a challenge straddling neurology and psychiatry. PubMed DOI PMC

Korbecki J., Bobinski R., Dutka M. (2019). Self-regulation of the inflammatory response by peroxisome proliferator-activated receptors. PubMed DOI PMC

Kosari-Nasab M., Shokouhi G., Ghorbanihaghjo A., Mesgari-Abbasi M., Salari A. A. (2019). Quercetin mitigates anxiety-like behavior and normalizes hypothalamus-pituitary-adrenal axis function in a mouse model of mild traumatic brain injury. PubMed DOI

Kovac S., Angelova P. R., Holmstrom K. M., Zhang Y., Dinkova-Kostova A. T., Abramov A. Y. (2015). Nrf2 regulates ROS production by mitochondria and NADPH oxidase. PubMed DOI PMC

Kramer-Albers E. M., Bretz N., Tenzer S., Winterstein C., Mobius W., Berger H., et al. (2007). Oligodendrocytes secrete exosomes containing major myelin and stress-protective proteins: Trophic support for axons? PubMed DOI

Krieg J. L., Leonard A. V., Tuner R. J., Corrigan F. (2023). Characterization of Traumatic Brain Injury in a Gyrencephalic Ferret Model Using the Novel Closed Head Injury Model of Engineered Rotational Acceleration (CHIMERA). PubMed DOI PMC

Kritsilis M. S. V. R., Koutsoudaki P. N., Evangelou K., Gorgoulis V. G., Papadopoulos D. (2018). Ageing, Cellular Senescence and Neurodegenerative Disease. PubMed DOI PMC

Kumar A., Stoica B. A., Loane D. J., Yang M., Abulwerdi G., Khan N., et al. (2017). Microglial-derived microparticles mediate neuroinflammation after traumatic brain injury. PubMed DOI PMC

Kumar A., Stoica B. A., Sabirzhanov B., Burns M. P., Faden A. I., Loane D. J. (2013). Traumatic brain injury in aged animals increases lesion size and chronically alters microglial/macrophage classical and alternative activation states. PubMed DOI PMC

Kumar R. G., Diamond M. L., Boles J. A., Berger R. P., Tisherman S. A., Kochanek P. M., et al. (2015). Acute CSF interleukin-6 trajectories after TBI: associations with neuroinflammation, polytrauma, and outcome. PubMed DOI

Kumari M., Arora P., Sharma P., Hasija Y., Rana P., D’Souza M. M., et al. (2023). Acute metabolic alterations in the hippocampus are associated with decreased acetylation after blast induced TBI. PubMed DOI

Laird M. D., Shields J. S., Sukumari-Ramesh S., Kimbler D. E., Fessler R. D., Shakir B., et al. (2014). High mobility group box protein-1 promotes cerebral edema after traumatic brain injury via activation of toll-like receptor 4. PubMed DOI PMC

Lan Y. L., Wang X., Zou Y. J., Xing J. S., Lou J. C., Zou S., et al. (2019). Bazedoxifene protects cerebral autoregulation after traumatic brain injury and attenuates impairments in blood-brain barrier damage: involvement of anti-inflammatory pathways by blocking MAPK signaling. PubMed DOI

Lang B., Liu H. L., Liu R., Feng G. D., Jiao X. Y., Ju G. (2004). Astrocytes in injured adult rat spinal cord may acquire the potential of neural stem cells. PubMed DOI

Langlois J. A., Rutland-Brown W., Wald M. M. (2006). The epidemiology and impact of traumatic brain injury: a brief overview. PubMed DOI

LaPak K. M., Burd C. E. (2014). The molecular balancing act of p16(INK4a) in cancer and aging. PubMed DOI PMC

Lee C. Y., Landreth G. E. (2010). The role of microglia in amyloid clearance from the AD brain. PubMed DOI PMC

Lehmann C., Bette S., Engele J. (2009). High extracellular glutamate modulates expression of glutamate transporters and glutamine synthetase in cultured astrocytes. PubMed DOI

Lei P., Li Y., Chen X., Yang S., Zhang J. (2009). Microarray based analysis of microRNA expression in rat cerebral cortex after traumatic brain injury. PubMed DOI

Leng Y., Byers A. L., Barnes D. E., Peltz C. B., Li Y., Yaffe K. (2021). Traumatic Brain Injury and Incidence Risk of Sleep Disorders in Nearly 200,000 US Veterans. PubMed DOI PMC

Leo P., McCrea M. (2016). “Epidemiology,” in PubMed

Lerouet D., Marchand-Leroux C., Besson V. C. (2021). Neuropharmacology in traumatic brain injury: from preclinical to clinical neuroprotection? PubMed DOI PMC

Levine J. M. (1994). Increased expression of the NG2 chondroitin-sulfate proteoglycan after brain injury. PubMed DOI PMC

Lewen A., Matz P., Chan P. H. (2000). Free radical pathways in CNS injury. PubMed DOI

Li D., Huang B., Liu J., Li L., Li X. (2013). Decreased brain K(ATP) channel contributes to exacerbating ischemic brain injury and the failure of neuroprotection by sevoflurane post-conditioning in diabetic rats. PubMed DOI PMC

Li G., Duan L., Yang F., Yang L., Deng Y., Yu Y., et al. (2022a). Curcumin suppress inflammatory response in traumatic brain injury via p38/MAPK signaling pathway. PubMed DOI

Li Y. F., Ren X., Zhang L., Wang Y. H., Chen T. (2022b). Microglial polarization in TBI: Signaling pathways and influencing pharmaceuticals. PubMed DOI PMC

Li W., He Y., Zhang R., Zheng G., Zhou D. (2019). The curcumin analog EF24 is a novel senolytic agent. PubMed DOI PMC

Li X., Wang H., Gao Y., Li L., Tang C., Wen G., et al. (2016). Protective Effects of Quercetin on Mitochondrial Biogenesis in Experimental Traumatic Brain Injury via the Nrf2 Signaling Pathway. PubMed DOI PMC

Li Y., Li Y., Li X., Zhang S., Zhao J., Zhu X., et al. (2017). Head Injury as a Risk Factor for Dementia and Alzheimer’s Disease: A Systematic Review and Meta-Analysis of 32 Observational Studies. PubMed DOI PMC

Lian L., Liu M., Cui L., Guan Y., Liu T., Cui B., et al. (2019). Environmental risk factors and amyotrophic lateral sclerosis (ALS): A case-control study of ALS in China. PubMed DOI

Liddelow S. A., Barres B. A. (2017). Reactive astrocytes: Production, function, and therapeutic potential. PubMed DOI

Liddelow S. A., Guttenplan K. A., Clarke L. E., Bennett F. C., Bohlen C. J., Schirmer L., et al. (2017). Neurotoxic reactive astrocytes are induced by activated microglia. PubMed DOI PMC

Lim R., Zaheer A. (1996). PubMed DOI

Limbad C., Oron T. R., Alimirah F., Davalos A. R., Tracy T. E., Gan L., et al. (2020). Astrocyte senescence promotes glutamate toxicity in cortical neurons. PubMed DOI PMC

Lindner M. D., Plone M. A., Cain C. K., Frydel B., Francis J. M., Emerich D. F., et al. (1998). Dissociable long-term cognitive deficits after frontal versus sensorimotor cortical contusions. PubMed DOI

Litwiniuk A., Juszczak G. R., Stankiewicz A. M., Urbanska K. (2023). The role of glial autophagy in Alzheimer’s disease. PubMed DOI

Liu Y., Miao Q., Yuan J., Han S., Zhang P., Li S., et al. (2015). Ascl1 Converts Dorsal Midbrain Astrocytes into Functional Neurons PubMed DOI PMC

Loane D. J., Kumar A., Stoica B. A., Cabatbat R., Faden A. I. (2014). Progressive neurodegeneration after experimental brain trauma: association with chronic microglial activation. PubMed DOI PMC

Loboda A., Damulewicz M., Pyza E., Jozkowicz A., Dulak J. (2016). Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. PubMed DOI PMC

Logsdon A. F., Meabon J. S., Cline M. M., Bullock K. M., Raskind M. A., Peskind E. R., et al. (2018). Blast exposure elicits blood-brain barrier disruption and repair mediated by tight junction integrity and nitric oxide dependent processes. PubMed DOI PMC

Logsdon A. F., Schindler A. G., Meabon J. S., Yagi M., Herbert M. J., Banks W. A., et al. (2020). Nitric oxide synthase mediates cerebellar dysfunction in mice exposed to repetitive blast-induced mild traumatic brain injury. PubMed DOI PMC

Logsdon A. F., Turner R. C., Lucke-Wold B. P., Robson M. J., Naser Z. J., Smith K. E., et al. (2014). Altering endoplasmic reticulum stress in a model of blast-induced traumatic brain injury controls cellular fate and ameliorates neuropsychiatric symptoms. PubMed DOI PMC

Long J. B., Gordon J., Bettencourt J. A., Bolt S. L. (1996). Laser-Doppler flowmetry measurements of subcortical blood flow changes after fluid percussion brain injury in rats. PubMed DOI

Lotocki G., de Rivero Vaccari J., Alonso O., Molano J. S., Nixon R., Dietrich W. D., et al. (2011). Oligodendrocyte Vulnerability Following Traumatic Brain Injury in Rats: Effect of Moderate Hypothermia. PubMed DOI PMC

Lu Y. C., Liu S., Gong Q. Z., Hamm R. J., Lyeth B. G. (1997). Inhibition of nitric oxide synthase potentiates hypertension and increases mortality in traumatically brain-injured rats. PubMed DOI

Lucci E. B. (2006). Civilian preparedness and counter-terrorism: conventional weapons. PubMed DOI

Lund H., Pieber M., Parsa R., Han J., Grommisch D., Ewing E., et al. (2018). Competitive repopulation of an empty microglial niche yields functionally distinct subsets of microglia-like cells. PubMed DOI PMC

Lund S. B., Gjeilo K. H., Moen K. G., Schirmer-Mikalsen K., Skandsen T., Vik A. (2016). Moderate traumatic brain injury, acute phase course and deviations in physiological variables: an observational study. PubMed DOI PMC

Luo J., Nguyen A., Villeda S., Zhang H., Ding Z., Lindsey D., et al. (2014). Long-term cognitive impairments and pathological alterations in a mouse model of repetitive mild traumatic brain injury. PubMed DOI PMC

Ma X., Aravind A., Pfister B. J., Chandra N., Haorah J. (2019). Animal models of traumatic brain injury and assessment of injury severity. PubMed DOI

Madan S., Kron B., Jin Z., Al Shamy G., Campeau P. M., Sun Q., et al. (2018). Arginase overexpression in neurons and its effect on traumatic brain injury. PubMed DOI PMC

Mader M. M., Czorlich P. (2022). The role of L-arginine metabolism in neurocritical care patients. PubMed DOI PMC

Madhok D. Y., Rodriguez R. M., Barber J., Temkin N. R., Markowitz A. J., Kreitzer N., et al. (2022). Outcomes in patients with mild traumatic brain injury without acute intracranial traumatic injury. PubMed DOI PMC

Mahoney S. O., Chowdhury N. F., Ngo V., Imms P., Irimia A. (2022). Mild traumatic brain injury results in significant and lasting cortical demyelination. PubMed DOI PMC

Manivannan S., Wales E., Zaben M. (2021). The Role of HMGB1 in Traumatic Brain Injury-Bridging the Gap Between the Laboratory and Clinical Studies. PubMed DOI

Maragakis N. J., Rothstein J. D. (2006). Mechanisms of Disease: astrocytes in neurodegenerative disease. PubMed DOI

Margulies S. S., Thibault K. L. (2000). Infant skull and suture properties: measurements and implications for mechanisms of pediatric brain injury. PubMed DOI

Marmarou A., Foda M. A., van den Brink W., Campbell J., Kita H., Demetriadou K. (1994). A new model of diffuse brain injury in rats. Part I: Pathophysiology and biomechanics. PubMed DOI

Marmarou A., Signoretti S., Fatouros P. P., Portella G., Aygok G. A., Bullock M. R. (2006). Predominance of cellular edema in traumatic brain swelling in patients with severe head injuries. PubMed DOI

Martinez-Coria H., Arrieta-Cruz I., Gutierrez-Juarez R., Lopez-Valdes H. E. (2023). Anti-inflammatory effects of flavonoids in common neurological disorders associated with aging. PubMed DOI PMC

Martinez-Valverde T., Vidal-Jorge M., Martinez-Saez E., Castro L., Arikan F., Cordero E., et al. (2015). Sulfonylurea receptor 1 in humans with post-traumatic brain contusions. PubMed DOI PMC

Matias I., Morgado J., Gomes F. C. A. (2019). Astrocyte Heterogeneity: Impact to Brain Aging and Disease. PubMed DOI PMC

Mattugini N., Merl-Pham J., Petrozziello E., Schindler L., Bernhagen J., Hauck S. M., et al. (2018). Influence of white matter injury on gray matter reactive gliosis upon stab wound in the adult murine cerebral cortex. PubMed DOI

Mautes A. E., Fukuda K., Noble L. J. (1996). Cellular response in the cerebellum after midline traumatic brain injury in the rat. PubMed DOI

Mayer S., Khakipoor S., Dromer M., Cozetto D. (2019). Single-cell RNA-Sequencing in Neuroscience. DOI

McDonald B. Z., Gee C. C., Kievit F. M. (2021). The nanotheranostic researcher’s guide for use of animal models of traumatic brain injury. PubMed DOI PMC

McKee A. C., Alosco M. L., Huber B. R. (2016). Repetitive Head Impacts and Chronic Traumatic Encephalopathy. PubMed DOI PMC

McKee A. C., Cantu R. C., Nowinski C. J., Hedley-Whyte E. T., Gavett B. E., Budson A. E., et al. (2009). Chronic traumatic encephalopathy in athletes: progressive tauopathy after repetitive head injury. PubMed DOI PMC

McKee A. C., Daneshvar D. H., Alvarez V. E., Stein T. D. (2014). The neuropathology of sport. PubMed DOI PMC

McKee A. C., Robinson M. E. (2014). Military-related traumatic brain injury and neurodegeneration. PubMed DOI PMC

McNamara E. H., Grillakis A. A., Tucker L. B., McCabe J. T. (2020). The closed-head impact model of engineered rotational acceleration (CHIMERA) as an application for traumatic brain injury pre-clinical research: A status report. PubMed DOI

Mendes Arent A., de Souza L. F., Walz R., Dafre A. L. (2014). Perspectives on molecular biomarkers of oxidative stress and antioxidant strategies in traumatic brain injury. PubMed DOI PMC

Menzies F. M., Henriquez F. L., Alexander J., Roberts C. W. (2011). Selective inhibition and augmentation of alternative macrophage activation by progesterone. PubMed DOI PMC

Mesa Suarez P., Santotoribio J. D., Ramos Ramos V., Gonzalez Garcia M. A., Perez Ramos S., Portilla Huertas D., et al. (2016). [Brain damage after general anesthesia]. PubMed DOI

Michinaga S., Koyama Y. (2021). Pathophysiological Responses and Roles of Astrocytes in Traumatic Brain Injury. PubMed DOI PMC

Mielke M. M., Ransom J. E., Mandrekar J., Turcano P., Savica R., Brown A. W. (2022). Traumatic Brain Injury and Risk of Alzheimer’s Disease and Related Dementias in the Population. PubMed DOI PMC

Miller G. F., DePadilla L., Xu L. (2021). Costs of non-fatal traumatic brain injury in the United States, 2016. PubMed DOI PMC

Mills C. D., Kincaid K., Alt J. M., Heilman M. J., Hill A. M. (2000). M-1/M-2 macrophages and the Th1/Th2 paradigm. PubMed DOI

Mira R. G., Lira M., Cerpa W. (2021). Traumatic Brain Injury: Mechanisms of Glial Response. PubMed DOI PMC

Miron V. E., Boyd A., Zhao J. W., Yuen T. J., Ruckh J. M., Shadrach J. L., et al. (2013). M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. PubMed DOI PMC

Mishra V., Skotak M., Schuetz H., Heller A., Haorah J., Chandra N. (2016). Primary blast causes mild, moderate, severe and lethal TBI with increasing blast overpressures: Experimental rat injury model. PubMed DOI PMC

Miyamoto A., Wake H., Moorhouse A. J., Nabekura J. (2013). Microglia and synapse interactions: fine tuning neural circuits and candidate molecules. PubMed DOI PMC

Miyazawa N., Diksic M., Yamamoto Y. (1995). Chronological study of peripheral benzodiazepine binding sites in the rat brain stab wounds using [3H] PK-11195 as a marker for gliosis. PubMed DOI

Morgan M. J., Liu Z. G. (2011). Crosstalk of reactive oxygen species and NF-kappaB signaling. PubMed DOI PMC

Morganti J. M., Goulding D. S., Van Eldik L. J. (2019). Deletion of p38alpha MAPK in microglia blunts trauma-induced inflammatory responses in mice. PubMed DOI PMC

Mori T., Wang X., Jung J. C., Sumii T., Singhal A. B., Fini M. E., et al. (2002). Mitogen-activated protein kinase inhibition in traumatic brain injury: PubMed DOI

Morita A., Jullienne A., Salehi A., Hamer M., Javadi E., Alsarraj Y., et al. (2020). Temporal evolution of heme oxygenase-1 expression in reactive astrocytes and microglia in response to traumatic brain injury. DOI

Moro N., Ghavim S. S., Sutton R. L. (2021). Massive efflux of adenosine triphosphate into the extracellular space immediately after experimental traumatic brain injury. PubMed DOI PMC

Morris R. (1984). Developments of a water-maze procedure for studying spatial learning in the rat. PubMed DOI

Morrison G., Fraser D. D., Cepinskas G. (2013). Mechanisms and consequences of acquired brain injury during development. PubMed DOI

Mukherjee S., Arisi G. M., Mims K., Hollingsworth G., O’Neil K., Shapiro L. A. (2020). Neuroinflammatory mechanisms of post-traumatic epilepsy. PubMed DOI PMC

Murray H. C., Osterman C., Bell P., Vinnell L., Curtis M. A. (2022). Neuropathology in chronic traumatic encephalopathy: a systematic review of comparative post-mortem histology literature. PubMed DOI PMC

Musi N., Valentine J. M., Sickora K. R., Baeuerle E., Thompson C. S., Shen Q., et al. (2018). Tau protein aggregation is associated with cellular senescence in the brain. PubMed DOI PMC

Mychasiuk R., Hehar H., Candy S., Ma I., Esser M. J. (2016). The direction of the acceleration and rotational forces associated with mild traumatic brain injury in rodents effect behavioural and molecular outcomes. PubMed DOI

Nakano M., Tamura Y., Yamato M., Kume S., Eguchi A., Takata K., et al. (2017). NG2 glial cells regulate neuroimmunological responses to maintain neuronal function and survival. PubMed DOI PMC

Namjoshi D. R., Cheng W. H., McInnes K. A., Martens K. M., Carr M., Wilkinson A., et al. (2014). Merging pathology with biomechanics using CHIMERA (Closed-Head Impact Model of Engineered Rotational Acceleration): a novel, surgery-free model of traumatic brain injury. PubMed DOI PMC

Nascimento G. C., Bortolanza M., Bribian A., Leal-Luiz G. C., Raisman-Vozari R., Lopez-Mascaraque L., et al. (2023). Dynamic Involvement of Striatal NG2-glia in L-DOPA Induced Dyskinesia in Parkinsonian Rats: Effects of Doxycycline. PubMed DOI PMC

Natale J. E., Ahmed F., Cernak I., Stoica B., Faden A. I. (2003). Gene expression profile changes are commonly modulated across models and species after traumatic brain injury. PubMed DOI

Neely J. D., Amiry-Moghaddam M., Ottersen O. P., Froehner S. C., Agre P., Adams M. E. (2001). Syntrophin-dependent expression and localization of Aquaporin-4 water channel protein. PubMed DOI PMC

Network B. I. C. C. (2021). A multimodal cell census and atlas of the mammalian primary motor cortex. PubMed DOI PMC

Neusch C., Bahr M., Schneider-Gold C. (2007). Glia cells in amyotrophic lateral sclerosis: new clues to understanding an old disease? PubMed DOI

Ng S. Y., Lee A. Y. W. (2019). Traumatic Brain Injuries: Pathophysiology and Potential Therapeutic Targets. PubMed DOI PMC

Ngo V., Duennwald M. L. (2022). Nrf2 and Oxidative Stress: A General Overview of Mechanisms and Implications in Human Disease. PubMed DOI PMC

Nichols N. R., Day J. R., Laping N. J., Johnson S. A., Finch C. E. (1993). GFAP mRNA increases with age in rat and human brain. PubMed DOI

Nielsen H. M., Ek D., Avdic U., Orbjorn C., Hansson O., Netherlands Brain B., et al. (2013). NG2 cells, a new trail for Alzheimer’s disease mechanisms? PubMed DOI PMC

Niu W., Zang T., Zou Y., Fang S., Smith D. K., Bachoo R., et al. (2013). PubMed DOI PMC

Nordengen K., Kirsebom B. E., Henjum K., Selnes P., Gisladottir B., Wettergreen M., et al. (2019). Glial activation and inflammation along the Alzheimer’s disease continuum. PubMed DOI PMC

Norris C., Weatherbee J., Murphy S. F., VandeVord P. J. (2023). Quantifying acute changes in neurometabolism following blast-induced traumatic brain injury. PubMed DOI

Nwafor D. C., Brichacek A. L., Foster C. H., Lucke-Wold B. P., Ali A., Colantonio M. A., et al. (2022). Pediatric traumatic brain injury: An update on preclinical models, clinical biomarkers, and the implications of cerebrovascular dysfunction. PubMed DOI PMC

Obenaus A., Rodriguez-Grande B., Lee J. B., Dubois C. J., Fournier M. L., Cador M., et al. (2023). A single mild juvenile TBI in male mice leads to regional brain tissue abnormalities at 12 months of age that correlate with cognitive impairment at the middle age. PubMed DOI PMC

O’Brien W. T., Pham L., Symons G. F., Monif M., Shultz S. R., McDonald S. J. (2020). The NLRP3 inflammasome in traumatic brain injury: potential as a biomarker and therapeutic target. PubMed DOI PMC

Ojha R. P., Rastogi M., Devi B. P., Agrawal A., Dubey G. P. (2012). Neuroprotective effect of curcuminoids against inflammation-mediated dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease. PubMed DOI

Okuma Y., Liu K., Wake H., Zhang J., Maruo T., Date I., et al. (2012). Anti-high mobility group box-1 antibody therapy for traumatic brain injury. PubMed DOI

Ooi S. Z. Y., Spencer R. J., Hodgson M., Mehta S., Phillips N. L., Preest G., et al. (2022). Interleukin-6 as a prognostic biomarker of clinical outcomes after traumatic brain injury: a systematic review. PubMed DOI PMC

Ortega F. J., Jolkkonen J., Rodriguez M. J. (2013). Microglia is an active player in how glibenclamide improves stroke outcome. PubMed DOI PMC

Osier N., Dixon C. E. (2016). The controlled cortical impact model of experimental brain trauma: overview. Research applications, and protocol. PubMed DOI PMC

Otani N., Nawashiro H., Fukui S., Nomura N., Shima K. (2002). Temporal and spatial profile of phosphorylated mitogen-activated protein kinase pathways after lateral fluid percussion injury in the cortex of the rat brain. PubMed DOI

Otani N., Nawashiro H., Nagatani K., Takeuchi S., Kobayashi H., Shima K. (2011). Mitogen-Activated Protein Kinase Pathways Following Traumatic Brain Injury. DOI

Palmer A. M., Marion D. W., Botscheller M. L., Swedlow P. E., Styren S. D., DeKosky S. T. (1993). Traumatic brain injury-induced excitotoxicity assessed in a controlled cortical impact model. PubMed DOI

Paolicelli R. C., Sierra A., Stevens B., Tremblay M. E., Aguzzi A., Ajami B., et al. (2022). Microglia states and nomenclature: A field at its crossroads. PubMed DOI PMC

Paredes I., Navarro B., Lagares A. (2021). Sleep disorders in traumatic brain injury. PubMed DOI

Park E., McKnight S., Ai J., Baker A. J. (2006). Purkinje cell vulnerability to mild and severe forebrain head trauma. PubMed DOI

Pang Z. P., Yang N., Vierbuchen T., Ostermeier A., Fuentes D. R., Yang T. Q., et al. (2011). Induction of human neuronal cells by defined transcription factors. PubMed DOI PMC

Paudel Y. N., Angelopoulou E., Piperi C., Othman I., Shaikh M. F. (2020). HMGB1-Mediated Neuroinflammatory Responses in Brain Injuries: Potential Mechanisms and Therapeutic Opportunities. PubMed DOI PMC

Paudel Y. N., Shaikh M. F., Chakraborti A., Kumari Y., Aledo-Serrano A., Aleksovska K., et al. (2018). HMGB1: A common biomarker and potential target for TBI, neuroinflammation, epilepsy, and cognitive dysfunction. PubMed DOI PMC

Pedersen T. J., Keil S. A., Han W., Wang M. X., Iliff J. J. (2023). The effect of aquaporin-4 mis-localization on Abeta deposition in mice. PubMed DOI

Peeters W., van den Brande R., Polinder S., Brazinova A., Steyerberg E. W., Lingsma H. F., et al. (2015). Epidemiology of traumatic brain injury in Europe. PubMed DOI PMC

Pekny M., Pekna M. (2016). Reactive gliosis in the pathogenesis of CNS diseases. PubMed DOI

Penkowa M., Giralt M., Lago N., Camats J., Carrasco J., Hernandez J., et al. (2003). Astrocyte-targeted expression of IL-6 protects the CNS against a focal brain injury. PubMed DOI

Perry V. H., Nicoll J. A., Holmes C. (2010). Microglia in neurodegenerative disease. PubMed DOI

Philips T., Rothstein J. D. (2014). Glial cells in amyotrophic lateral sclerosis. PubMed DOI PMC

Pierce J. E., Smith D. H., Trojanowski J. Q., McIntosh T. K. (1998). Enduring cognitive, neurobehavioral and histopathological changes persist for up to one year following severe experimental brain injury in rats. PubMed DOI

Pinchi E., Frati P., Arcangeli M., Volonnino G., Tomassi R., Santoro P., et al. (2020). MicroRNAs: The New Challenge for Traumatic Brain Injury Diagnosis. PubMed PMC

Piwecka M., Rajewsky N., Rybak-Wolf A. (2023). Single-cell and spatial transcriptomics: deciphering brain complexity in health and disease. PubMed DOI PMC

Plantman S., Ng K. C., Lu J., Davidsson J., Risling M. (2012). Characterization of a novel rat model of penetrating traumatic brain injury. PubMed DOI

Plassman B. L., Havlik R. J., Steffens D. C., Helms M. J., Newman T. N., Drosdick D., et al. (2000). Documented head injury in early adulthood and risk of Alzheimer’s disease and other dementias. PubMed DOI

Pluta R., Furmaga-Jablonska W., Januszewski S., Czuczwar S. J. (2022). Post-ischemic brain neurodegeneration in the form of Alzheimer’s disease proteinopathy: possible therapeutic role of curcumin. PubMed DOI PMC

Popkirov S., Carson A. J., Stone J. (2018). Scared or scarred: Could ‘dissociogenic’ lesions predispose to non-epileptic seizures after head trauma? PubMed DOI

Poprac P., Jomova K., Simunkova M., Kollar V., Rhodes C. J., Valko M. (2017). Targeting Free Radicals in Oxidative Stress-Related Human Diseases. PubMed DOI

Porchet R., Probst A., Bouras C., Draberova E., Draber P., Riederer B. M. (2003). Analysis of glial acidic fibrillary protein in the human entorhinal cortex during aging and in Alzheimer’s disease. PubMed DOI

Porebska N., Pozniak M., Matynia A., Zukowska D., Zakrzewska M., Otlewski J., et al. (2021). Galectins as modulators of receptor tyrosine kinases signaling in health and disease. PubMed DOI

Potolicchio I., Carven G. J., Xu X., Stipp C., Riese R. J., Stern L. J., et al. (2005). Proteomic analysis of microglia-derived exosomes: metabolic role of the aminopeptidase CD13 in neuropeptide catabolism. PubMed DOI

Pozojevic J., Spielmann M. (2023). Single-Cell Sequencing in Neurodegenerative Disorders. PubMed DOI PMC

Qi L., Jacob A., Wang P., Wu R. (2010). Peroxisome proliferator activated receptor-gamma and traumatic brain injury. PubMed PMC

Qian X., Song H., Ming G. L. (2019). Brain organoids: advances, applications and challenges. PubMed DOI PMC

Qin Q., Teng Z., Liu C., Li Q., Yin Y., Tang Y. (2021). TREM2, microglia, and Alzheimer’s disease. PubMed DOI

Qiu X., Guo Y., Liu M. F., Zhang B., Li J., Wei J. F., et al. (2023). Single-cell RNA-sequencing analysis reveals enhanced non-canonical neurotrophic factor signaling in the subacute phase of traumatic brain injury. PubMed DOI PMC

Qu Z., Zheng N., Wei Y., Chen Y., Zhang Y., Zhang M., et al. (2019). Effect of cornel iridoid glycoside on microglia activation through suppression of the JAK/STAT signalling pathway. PubMed DOI

Ralay Ranaivo H., Wainwright M. S. (2010). Albumin activates astrocytes and microglia through mitogen-activated protein kinase pathways. PubMed DOI PMC

Ramos-Cejudo J., Wisniewski T., Marmar C., Zetterberg H., Blennow K., de Leon M. J., et al. (2018). Traumatic Brain Injury and Alzheimer’s Disease: The Cerebrovascular Link. PubMed DOI PMC

Rane S. G., Reddy E. P. (2000). Janus kinases: components of multiple signaling pathways. PubMed DOI

Rao V. L., Baskaya M. K., Dogan A., Rothstein J. D., Dempsey R. J. (1998). Traumatic brain injury down-regulates glial glutamate transporter (GLT-1 and GLAST) proteins in rat brain. PubMed DOI

Redell J. B., Liu Y., Dash P. K. (2009). Traumatic brain injury alters expression of hippocampal microRNAs: potential regulators of multiple pathophysiological processes. PubMed DOI PMC

Reiffurth C., Berndt N., Gonzalez Lopez A., Schoknecht K., Kovacs R., Maechler M., et al. (2023). Deep Isoflurane Anesthesia Is Associated with Alterations in Ion Homeostasis and Specific Na + /K + -ATPase Impairment in the Rat Brain. PubMed DOI

Reiter R. J., Rosales-Corral S., Tan D. X., Jou M. J., Galano A., Xu B. (2017). Melatonin as a mitochondria-targeted antioxidant: one of evolution’s best ideas. PubMed DOI PMC

Reynaert N. L., Ckless K., Korn S. H., Vos N., Guala A. S., Wouters E. F., et al. (2004). Nitric oxide represses inhibitory kappaB kinase through S-nitrosylation. PubMed DOI PMC

Rice R. A., Spangenberg E. E., Yamate-Morgan H., Lee R. J., Arora R. P., Hernandez M. X., et al. (2015). Elimination of Microglia Improves Functional Outcomes Following Extensive Neuronal Loss in the Hippocampus. PubMed DOI PMC

Ritzel R. M., Doran S. J., Glaser E. P., Meadows V. E., Faden A. I., Stoica B. A., et al. (2019). Old age increases microglial senescence, exacerbates secondary neuroinflammation, and worsens neurological outcomes after acute traumatic brain injury in mice. PubMed DOI PMC

Robinson C., Apgar C., Shapiro L. A. (2016). Astrocyte Hypertrophy Contributes to Aberrant Neurogenesis after Traumatic Brain Injury. PubMed DOI PMC

Rochfort K. D., Cummins P. M. (2015). The blood-brain barrier endothelium: a target for pro-inflammatory cytokines. PubMed DOI

Rodriguez-Grande B., Obenaus A., Ichkova A., Aussudre J., Bessy T., Barse E., et al. (2018). Gliovascular changes precede white matter damage and long-term disorders in juvenile mild closed head injury. PubMed DOI

Romine J., Gao X., Chen J. (2014). Controlled cortical impact model for traumatic brain injury. PubMed DOI PMC

Roof R. L., Duvdevani R., Braswell L., Stein D. G. (1994). Progesterone facilitates cognitive recovery and reduces secondary neuronal loss caused by cortical contusion injury in male rats. PubMed DOI

Rosenfeld C. S., Ferguson S. A. (2014). Barnes maze testing strategies with small and large rodent models. PubMed DOI PMC

Rosenfeld J. V., McFarlane A. C., Bragge P., Armonda R. A., Grimes J. B., Ling G. S. (2013). Blast-related traumatic brain injury. PubMed DOI

Roux P. P., Blenis J. (2004). ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. PubMed DOI PMC

Rubiano A. M., Carney N., Chesnut R., Puyana J. C. (2015). Global neurotrauma research challenges and opportunities. PubMed DOI

Rubovitch V., Ten-Bosch M., Zohar O., Harrison C. R., Tempel-Brami C., Stein E., et al. (2011). A mouse model of blast-induced mild traumatic brain injury. PubMed DOI PMC

Saadoun S., Papadopoulos M. C., Watanabe H., Yan D., Manley G. T., Verkman A. S. (2005). Involvement of aquaporin-4 in astroglial cell migration and glial scar formation. PubMed DOI

Sahni V., Mukhopadhyay A., Tysseling V., Hebert A., Birch D., McGuire T. L., et al. (2010). BMPR1a and BMPR1b signaling exert opposing effects on gliosis after spinal cord injury. PubMed DOI PMC

Salminen A., Ojala J., Kaarniranta K., Haapasalo A., Hiltunen M., Soininen H. (2011). Astrocytes in the aging brain express characteristics of senescence-associated secretory phenotype. PubMed DOI

Sanchez-Gonzalez R., Koupourtidou C., Lepko T., Zambusi A., Novoselc K. T., Durovic T., et al. (2022). Innate immune pathways promote oligodendrocyte progenitor cell recruitment to the injury site in adult zebrafish brain. PubMed DOI PMC

Sanders M. J., Dietrich W. D., Green E. J. (1999). Cognitive function following traumatic brain injury: effects of injury severity and recovery period in a parasagittal fluid-percussive injury model. PubMed DOI

Sandhir R., Onyszchuk G., Berman N. E. (2008). Exacerbated glial response in the aged mouse hippocampus following controlled cortical impact injury. PubMed DOI PMC

Schafer M. J., White T. A., Iijima K., Haak A. J., Ligresti G., Atkinson E. J., et al. (2017). Cellular senescence mediates fibrotic pulmonary disease. PubMed DOI PMC

Schiweck J., Murk K., Ledderose J., Munster-Wandowski A., Ornaghi M., Vida I., et al. (2021). Drebrin controls scar formation and astrocyte reactivity upon traumatic brain injury by regulating membrane trafficking. PubMed DOI PMC

Schlett J. S., Mettang M., Skaf A., Schweizer P., Errerd A., Mulugeta E. A., et al. (2023). NF-kappaB is a critical mediator of post-mitotic senescence in oligodendrocytes and subsequent white matter loss. PubMed DOI PMC

Schwab N., Grenier K., Hazrati L. N. (2019). DNA repair deficiency and senescence in concussed professional athletes involved in contact sports. PubMed DOI PMC

Schwab N., Ju Y., Hazrati L. N. (2021). Early onset senescence and cognitive impairment in a murine model of repeated mTBI. PubMed DOI PMC

Schwab N., Taskina D., Leung E., Innes B. T., Bader G. D., Hazrati L. N. (2022). Neurons and glial cells acquire a senescent signature after repeated mild traumatic brain injury in a sex-dependent manner. PubMed DOI PMC

Seabury S. A., Gaudette E., Goldman D. P., Markowitz A. J., Brooks J., McCrea M. A., et al. (2018). Assessment of Follow-up Care After Emergency Department Presentation for Mild Traumatic Brain Injury and Concussion: Results From the TRACK-TBI Study. PubMed DOI PMC

Sedarous M., Keramaris E., O’Hare M., Melloni E., Slack R. S., Elce J. S., et al. (2003). Calpains mediate p53 activation and neuronal death evoked by DNA damage. PubMed DOI

Selvakumar G. P., Ahmed M. E., Iyer S. S., Thangavel R., Kempuraj D., Raikwar S. P., et al. (2020). Absence of glia maturation factor protects from axonal injury and motor behavioral impairments after traumatic brain injury. PubMed DOI PMC

Sephton C. F., Cenik C., Kucukural A., Dammer E. B., Cenik B., Han Y., et al. (2011). Identification of neuronal RNA targets of TDP-43-containing ribonucleoprotein complexes. PubMed DOI PMC

Setoguchi T., Nakashima K., Takizawa T., Yanagisawa M., Ochiai W., Okabe M., et al. (2004). Treatment of spinal cord injury by transplantation of fetal neural precursor cells engineered to express BMP inhibitor. PubMed DOI

Shandra O., Winemiller A. R., Heithoff B. P., Munoz-Ballester C., George K. K., Benko M. J., et al. (2019). Repetitive diffuse mild traumatic brain injury causes an atypical astrocyte response and spontaneous recurrent seizures. PubMed DOI PMC

Shapira Y., Shohami E., Sidi A., Soffer D., Freeman S., Cotev S. (1988). Experimental closed head injury in rats: mechanical, pathophysiologic, and neurologic properties. PubMed DOI

Sharma S., Tiarks G., Haight J., Bassuk A. G. (2021). Neuropathophysiological Mechanisms and Treatment Strategies for Post-traumatic Epilepsy. PubMed DOI PMC

Shear D. A., Williams A. J., Sharrow K., Lu X. C., Tortella F. C. (2009). Neuroprotective profile of dextromethorphan in an experimental model of penetrating ballistic-like brain injury. PubMed DOI

Shen Y. F., Yu W. H., Dong X. Q., Du Q., Yang D. B., Wu G. Q., et al. (2016). The change of plasma galectin-3 concentrations after traumatic brain injury. PubMed DOI

Shields D. C., Haque A., Banik N. L. (2020). Neuroinflammatory responses of microglia in central nervous system trauma. PubMed PMC

Shimada I. S., LeComte M. D., Granger J. C., Quinlan N. J., Spees J. L. (2012). Self-renewal and differentiation of reactive astrocyte-derived neural stem/progenitor cells isolated from the cortical peri-infarct area after stroke. PubMed DOI PMC

Shiokawa R., Otani N., Kajimoto R., Igarashi T., Moro N., Suma T., et al. (2022). Glibenclamide attenuates brain edema associated with microglia activation after intracerebral hemorrhage. PubMed DOI

Shitaka Y., Tran H. T., Bennett R. E., Sanchez L., Levy M. A., Dikranian K., et al. (2011). Repetitive closed-skull traumatic brain injury in mice causes persistent multifocal axonal injury and microglial reactivity. PubMed DOI PMC

Shultz S. R., Bao F., Weaver L. C., Cain D. P., Brown A. (2013). Treatment with an anti-CD11d integrin antibody reduces neuroinflammation and improves outcome in a rat model of repeated concussion. PubMed DOI PMC

Shultz S. R., McDonald S. J., Corrigan F., Semple B. D., Salberg S., Zamani A., et al. (2020). Clinical relevance of behavior testing in animal models of traumatic brain injury. PubMed DOI

Silver J., Miller J. H. (2004). Regeneration beyond the glial scar. PubMed DOI

Sim F. J., Zhao C., Penderis J., Franklin R. J. (2002). The age-related decrease in CNS remyelination efficiency is attributable to an impairment of both oligodendrocyte progenitor recruitment and differentiation. PubMed DOI PMC

Simard J. M., Geng Z., Woo S. K., Ivanova S., Tosun C., Melnichenko L., et al. (2009). Glibenclamide reduces inflammation, vasogenic edema, and caspase-3 activation after subarachnoid hemorrhage. PubMed DOI PMC

Simard J. M., Woo S. K., Schwartzbauer G. T., Gerzanich V. (2012). Sulfonylurea receptor 1 in central nervous system injury: a focused review. PubMed DOI PMC

Simon C., Gotz M., Dimou L. (2011). Progenitors in the adult cerebral cortex: cell cycle properties and regulation by physiological stimuli and injury. PubMed DOI

Simon M., Wang M. X., Ismail O., Braun M., Schindler A. G., Reemmer J., et al. (2022). Loss of perivascular aquaporin-4 localization impairs glymphatic exchange and promotes amyloid beta plaque formation in mice. PubMed DOI PMC

Simpson J. E., Ince P. G., Higham C. E., Gelsthorpe C. H., Fernando M. S., Matthews F., et al. (2007). Microglial activation in white matter lesions and non-lesional white matter of ageing brains. PubMed DOI

Skandsen T., Kvistad K. A., Solheim O., Strand I. H., Folvik M., Vik A. (2010). Prevalence and impact of diffuse axonal injury in patients with moderate and severe head injury: a cohort study of early magnetic resonance imaging findings and 1-year outcome. PubMed DOI

Snapper D. M., Reginauld B., Liaudanskaya V., Fitzpatrick V., Kim Y., Georgakoudi I., et al. (2023). Development of a novel bioengineered 3D brain-like tissue for studying primary blast-induced traumatic brain injury. PubMed DOI

Soares L. C., Al-Dalahmah O., Hillis J., Young C. C., Asbed I., Sakaguchi M., et al. (2021). Novel Galectin-3 roles in neurogenesis, inflammation and neurological diseases. PubMed DOI PMC

Sofroniew M. V. (2020). Astrocyte Reactivity: Subtypes, States, and Functions in CNS Innate Immunity. PubMed DOI PMC

Song S., Hasan M. N., Yu L., Paruchuri S. S., Bielanin J. P., Metwally S., et al. (2022). Microglial-oligodendrocyte interactions in myelination and neurological function recovery after traumatic brain injury. PubMed DOI PMC

Sowers J. L., Sowers M. L., Shavkunov A. S., Hawkins B. E., Wu P., DeWitt D. S., et al. (2021). Traumatic brain injury induces region-specific glutamate metabolism changes as measured by multiple mass spectrometry methods. PubMed DOI PMC

Spanos G. K., Wilde E. A., Bigler E. D., Cleavinger H. B., Fearing M. A., Levin H. S., et al. (2007). cerebellar atrophy after moderate-to-severe pediatric traumatic brain injury. PubMed PMC

Stahel P. F., Smith W. R., Bruchis J., Rabb C. H. (2008). Peroxisome proliferator-activated receptors: “key” regulators of neuroinflammation after traumatic brain injury. PubMed DOI PMC

Stokum J. A., Kwon M. S., Woo S. K., Tsymbalyuk O., Vennekens R., Gerzanich V., et al. (2018). SUR1-TRPM4 and AQP4 form a heteromultimeric complex that amplifies ion/water osmotic coupling and drives astrocyte swelling. PubMed DOI PMC

Streit W. J., Sammons N. W., Kuhns A. J., Sparks D. L. (2004). Dystrophic microglia in the aging human brain. PubMed DOI

Sucha P., Hermanova Z., Chmelova M., Kirdajova D., Camacho Garcia S., Marchetti V., et al. (2022). The absence of AQP4/TRPV4 complex substantially reduces acute cytotoxic edema following ischemic injury. PubMed DOI PMC

Sun G., Miao Z., Ye Y., Zhao P., Fan L., Bao Z., et al. (2020). Curcumin alleviates neuroinflammation, enhances hippocampal neurogenesis, and improves spatial memory after traumatic brain injury. PubMed DOI

Sun P., Liu D. Z., Jickling G. C., Sharp F. R., Yin K. J. (2018). MicroRNA-based therapeutics in central nervous system injuries. PubMed PMC

Sun W., Suzuki K., Toptunov D., Stoyanov S., Yuzaki M., Khiroug L., et al. (2019). PubMed DOI PMC

Taib T., Leconte C., Van Steenwinckel J., Cho A. H., Palmier B., Torsello E., et al. (2017). Neuroinflammation, myelin and behavior: Temporal patterns following mild traumatic brain injury in mice. PubMed DOI PMC

Tan A. M., Zhang W., Levine J. M. (2005). NG2: a component of the glial scar that inhibits axon growth. PubMed DOI PMC

Tan S. W., Zhao Y., Li P., Ning Y. L., Huang Z. Z., Yang N., et al. (2021). HMGB1 mediates cognitive impairment caused by the NLRP3 inflammasome in the late stage of traumatic brain injury. PubMed DOI PMC

Tanaka T., Kai S., Matsuyama T., Adachi T., Fukuda K., Hirota K. (2013). General anesthetics inhibit LPS-induced IL-1beta expression in glial cells. PubMed DOI PMC

Tchkonia T., Zhu Y., van Deursen J., Campisi J., Kirkland J. L. (2013). Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. PubMed DOI PMC

Terpolilli N. A., Kim S. W., Thal S. C., Kuebler W. M., Plesnila N. (2013). Inhaled nitric oxide reduces secondary brain damage after traumatic brain injury in mice. PubMed DOI PMC

Terpolilli N. A., Zweckberger K., Trabold R., Schilling L., Schinzel R., Tegtmeier F., et al. (2009). The novel nitric oxide synthase inhibitor 4-amino-tetrahydro-L-biopterine prevents brain edema formation and intracranial hypertension following traumatic brain injury in mice. PubMed DOI

Theadom A., Mahon S., Barker-Collo S., McPherson K., Rush E., Vandal A. C., et al. (2013). Enzogenol for cognitive functioning in traumatic brain injury: a pilot placebo-controlled RCT. PubMed DOI

Thompson A. G., Gray E., Heman-Ackah S. M., Mager I., Talbot K., Andaloussi S. E., et al. (2016). Extracellular vesicles in neurodegenerative disease - pathogenesis to biomarkers. PubMed DOI

Tisdall M. M., Rejdak K., Kitchen N. D., Smith M., Petzold A. (2013). The prognostic value of brain extracellular fluid nitric oxide metabolites after traumatic brain injury. PubMed DOI

Tjalkens R. B., Popichak K. A., Kirkley K. A. (2017). Inflammatory Activation of Microglia and Astrocytes in Manganese Neurotoxicity. PubMed DOI PMC

Tominaga T., Shimada R., Okada Y., Kawamata T., Kibayashi K. (2019). Senescence-associated-beta-galactosidase staining following traumatic brain injury in the mouse cerebrum. PubMed DOI PMC

Torper O., Ottosson D. R., Pereira M., Lau S., Cardoso T., Grealish S., et al. (2015). PubMed DOI PMC

Toshkezi G., Kyle M., Longo S. L., Chin L. S., Zhao L. R. (2018). Brain repair by hematopoietic growth factors in the subacute phase of traumatic brain injury. PubMed DOI

Tsai C. P., Hu C., Lee C. T. (2019). Finding diseases associated with amyotrophic lateral sclerosis: a total population-based case-control study. PubMed DOI

Tucker L. B., Velosky A. G., McCabe J. T. (2018). Applications of the Morris water maze in translational traumatic brain injury research. PubMed DOI

Uddin M. S., Lim L. W. (2022). Glial cells in Alzheimer’s disease: From neuropathological changes to therapeutic implications. PubMed DOI

Uryu K., Laurer H., McIntosh T., Pratico D., Martinez D., Leight S., et al. (2002). Repetitive mild brain trauma accelerates Abeta deposition, lipid peroxidation, and cognitive impairment in a transgenic mouse model of Alzheimer amyloidosis. PubMed DOI PMC

Valko M., Leibfritz D., Moncol J., Cronin M. T., Mazur M., Telser J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. PubMed DOI

van Landeghem F. K., Stover J. F., Bechmann I., Bruck W., Unterberg A., Buhrer C., et al. (2001). Early expression of glutamate transporter proteins in ramified microglia after controlled cortical impact injury in the rat. PubMed DOI

van Landeghem F. K., Weiss T., Oehmichen M., von Deimling A. (2006). Decreased expression of glutamate transporters in astrocytes after human traumatic brain injury. PubMed DOI

VanGuilder H. D., Bixler G. V., Brucklacher R. M., Farley J. A., Yan H., Warrington J. P., et al. (2011). Concurrent hippocampal induction of MHC II pathway components and glial activation with advanced aging is not correlated with cognitive impairment. PubMed DOI PMC

Venkatesan C., Chrzaszcz M., Choi N., Wainwright M. S. (2010). Chronic upregulation of activated microglia immunoreactive for galectin-3/Mac-2 and nerve growth factor following diffuse axonal injury. PubMed DOI PMC

Vergara D., Nigro A., Romano A., De Domenico S., Damato M., Franck J., et al. (2019). Distinct Protein Expression Networks are Activated in Microglia Cells after Stimulation with IFN-gamma and IL-4. PubMed DOI PMC

Verkerke M., Hol E. M., Middeldorp J. (2021). Physiological and Pathological Ageing of Astrocytes in the Human Brain. PubMed DOI PMC

Villapol S., Loane D. J., Burns M. P. (2017). Sexual dimorphism in the inflammatory response to traumatic brain injury. PubMed DOI PMC

Villapol S., Yaszemski A. K., Logan T. T., Sanchez-Lemus E., Saavedra J. M., Symes A. J. (2012). Candesartan, an angiotensin II AT(1)-receptor blocker and PPAR-gamma agonist, reduces lesion volume and improves motor and memory function after traumatic brain injury in mice. PubMed DOI PMC

Viney T. J., Sarkany B., Ozdemir A. T., Hartwich K., Schweimer J., Bannerman D., et al. (2022). Spread of pathological human Tau from neurons to oligodendrocytes and loss of high-firing pyramidal neurons in aging mice. PubMed DOI PMC

von Streitberg A., Jakel S., Eugenin von Bernhardi J., Straube C., Buggenthin F., Marr C., et al. (2021). NG2-Glia Transiently Overcome Their Homeostatic Network and Contribute to Wound Closure After Brain Injury. PubMed DOI PMC

Wada K., Chatzipanteli K., Busto R., Dietrich W. D. (1999). Effects of L-NAME and 7-NI on NOS catalytic activity and behavioral outcome after traumatic brain injury in the rat. PubMed DOI

Wake H., Moorhouse A. J., Jinno S., Kohsaka S., Nabekura J. (2009). Resting microglia directly monitor the functional state of synapses PubMed DOI PMC

Walker M. G. (2003). Gene expression versus sequence for predicting function: Glia Maturation Factor gamma is not a glia maturation factor. PubMed DOI PMC

Waller R., Baxter L., Fillingham D. J., Coelho S., Pozo J. M., Mozumder M., et al. (2019). Iba-1-/CD68 + microglia are a prominent feature of age-associated deep subcortical white matter lesions. PubMed DOI PMC

Walter A., Finelli K., Bai X., Arnett P., Bream T., Seidenberg P., et al. (2017). Effect of Enzogenol(R) Supplementation on Cognitive. Executive, and Vestibular/Balance Functioning in Chronic Phase of Concussion. PubMed DOI

Walter T. J., Suter R. K., Ayad N. G. (2023). An overview of human single-cell RNA sequencing studies in neurobiological disease. PubMed DOI PMC

Walz W. (2000). Controversy surrounding the existence of discrete functional classes of astrocytes in adult gray matter. PubMed

Walz W., Lang M. K. (1998). Immunocytochemical evidence for a distinct GFAP-negative subpopulation of astrocytes in the adult rat hippocampus. PubMed DOI

Wang C., Ouyang S., Zhu X., Jiang Y., Lu Z., Gong P. (2023). Myricetin suppresses traumatic brain injury-induced inflammatory response via EGFR/AKT/STAT pathway. PubMed DOI PMC

Wang J., Lu Y., Carr C., Dhandapani K. M., Brann D. W. (2023). Senolytic therapy is neuroprotective and improves functional outcome long-term after traumatic brain injury in mice. PubMed DOI PMC

Wang C. F., Zhao C. C., Liu W. L., Huang X. J., Deng Y. F., Jiang J. Y., et al. (2020). Depletion of Microglia Attenuates Dendritic Spine Loss and Neuronal Apoptosis in the Acute Stage of Moderate Traumatic Brain Injury in Mice. PubMed DOI

Wang J., Hou Y., Zhang L., Liu M., Zhao J., Zhang Z., et al. (2021). Estrogen Attenuates Traumatic Brain Injury by Inhibiting the Activation of Microglia and Astrocyte-Mediated Neuroinflammatory Responses. PubMed DOI

Wanner I. B., Anderson M. A., Song B., Levine J., Fernandez A., Gray-Thompson Z., et al. (2013). Glial scar borders are formed by newly proliferated, elongated astrocytes that interact to corral inflammatory and fibrotic cells via STAT3-dependent mechanisms after spinal cord injury. PubMed DOI PMC

Washington P. M., Forcelli P. A., Wilkins T., Zapple D. N., Parsadanian M., Burns M. P. (2012). The effect of injury severity on behavior: a phenotypic study of cognitive and emotional deficits after mild, moderate, and severe controlled cortical impact injury in mice. PubMed DOI PMC

Webster K. M., Sun M., Crack P. J., O’Brien T. J., Shultz S. R., Semple B. D. (2019). Age-dependent release of high-mobility group box protein-1 and cellular neuroinflammation after traumatic brain injury in mice. PubMed DOI

Wesley U. V., Vemuganti R., Ayvaci E. R., Dempsey R. J. (2013). Galectin-3 enhances angiogenic and migratory potential of microglial cells via modulation of integrin linked kinase signaling. PubMed DOI PMC

White D. L., Kunik M. E., Yu H., Lin H. L., Richardson P. A., Moore S., et al. (2020). Post-Traumatic Stress Disorder is Associated with further Increased Parkinson’s Disease Risk in Veterans with Traumatic Brain Injury. PubMed DOI

Wicher G., Wallenquist U., Lei Y., Enoksson M., Li X., Fuchs B., et al. (2017). Interleukin-33 Promotes Recruitment of Microglia/Macrophages in Response to Traumatic Brain Injury. PubMed DOI

Wilhelmsson U., Li L., Pekna M., Berthold C. H., Blom S., Eliasson C., et al. (2004). Absence of glial fibrillary acidic protein and vimentin prevents hypertrophy of astrocytic processes and improves post-traumatic regeneration. PubMed DOI PMC

Wilk J. E., Herrell R. K., Wynn G. H., Riviere L. A., Hoge C. W. (2012). Mild traumatic brain injury (concussion), posttraumatic stress disorder, and depression in U.S. soldiers involved in combat deployments: association with postdeployment symptoms. PubMed DOI

Williams A. J., Hartings J. A., Lu X. C., Rolli M. L., Dave J. R., Tortella F. C. (2005). Characterization of a new rat model of penetrating ballistic brain injury. PubMed DOI

Williams A. J., Ling G. S., Tortella F. C. (2006). Severity level and injury track determine outcome following a penetrating ballistic-like brain injury in the rat. PubMed DOI

Williams A. J., Wei H. H., Dave J. R., Tortella F. C. (2007). Acute and delayed neuroinflammatory response following experimental penetrating ballistic brain injury in the rat. PubMed DOI PMC

Willis E. F., MacDonald K. P. A., Nguyen Q. H., Garrido A. L., Gillespie E. R., Harley S. B. R., et al. (2020). Repopulating Microglia Promote Brain Repair in an IL-6-Dependent Manner. PubMed DOI

Woo S. K., Tsymbalyuk N., Tsymbalyuk O., Ivanova S., Gerzanich V., Simard J. M. (2020). SUR1-TRPM4 channels, not K(ATP), mediate brain swelling following cerebral ischemia. PubMed DOI PMC

Wu A. G., Yong Y. Y., Pan Y. R., Zhang L., Wu J. M., Zhang Y., et al. (2022). Targeting Nrf2-Mediated Oxidative Stress Response in Traumatic Brain Injury: Therapeutic Perspectives of Phytochemicals. PubMed DOI PMC

Wu L., Zhao H., Weng H., Ma D. (2019). Lasting effects of general anesthetics on the brain in the young and elderly: “mixed picture” of neurotoxicity, neuroprotection and cognitive impairment. PubMed DOI PMC

Wu Y., Zhang J., Feng X., Jiao W. (2023). Omega-3 polyunsaturated fatty acids alleviate early brain injury after traumatic brain injury by inhibiting neuroinflammation and necroptosis. PubMed DOI PMC

Xin P., Xu X., Deng C., Liu S., Wang Y., Zhou X., et al. (2020). The role of JAK/STAT signaling pathway and its inhibitors in diseases. PubMed DOI

Xiong Y., Mahmood A., Chopp M. (2013). Animal models of traumatic brain injury. PubMed DOI PMC

Xiong Y., Mahmood A., Chopp M. (2017). Emerging potential of exosomes for treatment of traumatic brain injury. PubMed DOI PMC

Xu B., Yu D. M., Liu F. S. (2014). Effect of siRNA-induced inhibition of IL-6 expression in rat cerebral gliocytes on cerebral edema following traumatic brain injury. PubMed DOI

Xu F., Han L., Wang Y., Deng D., Ding Y., Zhao S., et al. (2023). Prolonged anesthesia induces neuroinflammation and complement-mediated microglial synaptic elimination involved in neurocognitive dysfunction and anxiety-like behaviors. PubMed DOI PMC

Xu H., Wang Z., Li J., Wu H., Peng Y., Fan L., et al. (2017). The Polarization States of Microglia in TBI: A New Paradigm for Pharmacological Intervention. PubMed DOI PMC

Xu J. (2018). New Insights into GFAP Negative Astrocytes in Calbindin D28k Immunoreactive Astrocytes. PubMed DOI PMC

Xu L., Nguyen J. V., Lehar M., Menon A., Rha E., Arena J., et al. (2016). Repetitive mild traumatic brain injury with impact acceleration in the mouse: Multifocal axonopathy, neuroinflammation, and neurodegeneration in the visual system. PubMed DOI

Xu M., Pirtskhalava T., Farr J. N., Weigand B. M., Palmer A. K., Weivoda M. M., et al. (2018). Senolytics improve physical function and increase lifespan in old age. PubMed DOI PMC

Yakovlev A. G., Knoblach S. M., Fan L., Fox G. B., Goodnight R., Faden A. I. (1997). Activation of CPP32-like caspases contributes to neuronal apoptosis and neurological dysfunction after traumatic brain injury. PubMed DOI PMC

Yamada K., Inagaki N. (2005). Neuroprotection by KATP channels. PubMed DOI

Yamaki T., Murakami N., Iwamoto Y., Sakakibara T., Kobori N., Ueda S., et al. (1998). Cognitive dysfunction and histological findings in rats with chronic-stage contusion and diffuse axonal injury. PubMed DOI

Yang L., Wang F., Yang L., Yuan Y., Chen Y., Zhang G., et al. (2018). HMGB1 a-Box Reverses Brain Edema and Deterioration of Neurological Function in a Traumatic Brain Injury Mouse Model. PubMed DOI

Yang T., Kong B., Gu J. W., Kuang Y. Q., Cheng L., Yang W. T., et al. (2014). Anti-apoptotic and anti-oxidative roles of quercetin after traumatic brain injury. PubMed DOI PMC

Yang Y., Gao L., Fu J., Zhang J., Li Y., Yin B., et al. (2013). Apparent diffusion coefficient evaluation for secondary changes in the cerebellum of rats after middle cerebral artery occlusion. PubMed DOI PMC

Yang Z., Suzuki R., Daniels S. B., Brunquell C. B., Sala C. J., Nishiyama A. (2006). NG2 glial cells provide a favorable substrate for growing axons. PubMed DOI PMC

Yao Z., van Velthoven C. T. J., Kunst M., Zhang M., McMillen D., Lee C., et al. (2023). A high-resolution transcriptomic and spatial atlas of cell types in the whole mouse brain. PubMed DOI PMC

Yee G., Jain A. (2023). PubMed

Yi J. H., Pow D. V., Hazell A. S. (2005). Early loss of the glutamate transporter splice-variant GLT-1v in rat cerebral cortex following lateral fluid-percussion injury. PubMed DOI

Yin G., Du M., Li R., Li K., Huang X., Duan D., et al. (2018). Glia maturation factor beta is required for reactive gliosis after traumatic brain injury in zebrafish. PubMed DOI

Yip P. K., Carrillo-Jimenez A., King P., Vilalta A., Nomura K., Chau C. C., et al. (2017). Galectin-3 released in response to traumatic brain injury acts as an alarmin orchestrating brain immune response and promoting neurodegeneration. PubMed DOI PMC

You J., Youssef M. M. M., Santos J. R., Lee J., Park J. (2023). Microglia and astrocytes in amyotrophic lateral sclerosis: Disease-associated states, pathological roles, and therapeutic potential. PubMed DOI PMC

Yu F., Shukla D. K., Armstrong R. C., Marion C. M., Radomski K. L., Selwyn R. G., et al. (2017). Repetitive Model of Mild Traumatic Brain Injury Produces Cortical Abnormalities Detectable by Magnetic Resonance Diffusion Imaging, Histopathology, and Behavior. PubMed DOI PMC

Zahedi H., Hosseinzadeh-Attar M. J., Shadnoush M., Sahebkar A., Barkhidarian B., Sadeghi O., et al. (2021). Effects of curcuminoids on inflammatory and oxidative stress biomarkers and clinical outcomes in critically ill patients: A randomized double-blind placebo-controlled trial. PubMed DOI

Zaheer A., Lim R. (1996). PubMed DOI

Zaheer A., Lim R. (1998). Overexpression of glia maturation factor (GMF) in PC12 pheochromocytoma cells activates p38 MAP kinase, MAPKAP kinase-2, and tyrosine hydroxylase. PubMed DOI

Zaheer A., Yorek M. A., Lim R. (2001). Effects of glia maturation factor overexpression in primary astrocytes on MAP kinase activation, transcription factor activation, and neurotrophin secretion. PubMed DOI

Zaheer A., Zaheer S., Sahu S. K., Knight S., Khosravi H., Mathur S. N., et al. (2007). A novel role of glia maturation factor: induction of granulocyte-macrophage colony-stimulating factor and pro-inflammatory cytokines. PubMed DOI

Zeppenfeld D. M., Simon M., Haswell J. D., D’Abreo D., Murchison C., Quinn J. F., et al. (2017). Association of perivascular localization of aquaporin-4 with cognition and Alzheimer disease in aging brains. PubMed DOI

Zhang C., Kang J., Zhang X., Zhang Y., Huang N., Ning B. (2022a). Spatiotemporal dynamics of the cellular components involved in glial scar formation following spinal cord injury. PubMed DOI

Zhang X., Zhang R., Nisa Awan M. U., Bai J. (2022b). The mechanism and function of glia in Parkinson’s disease. PubMed DOI PMC

Zhang L., Wang H., Zhou Y., Zhu Y., Fei M. (2018). Fisetin alleviates oxidative stress after traumatic brain injury via the Nrf2-ARE pathway. PubMed DOI

Zhang M., Pan X., Jung W., Halpern A. R., Eichhorn S. W., Lei Z., et al. (2023). Molecularly defined and spatially resolved cell atlas of the whole mouse brain. PubMed DOI PMC

Zhang S. Z., Wang Q. Q., Yang Q. Q., Gu H. Y., Yin Y. Q., Li Y. D., et al. (2019). NG2 glia regulate brain innate immunity via TGF-beta2/TGFBR2 axis. PubMed DOI PMC

Zhang X., Chen J., Graham S. H., Du L., Kochanek P. M., Draviam R., et al. (2002). Intranuclear localization of apoptosis-inducing factor (AIF) and large scale DNA fragmentation after traumatic brain injury in rats and in neuronal cultures exposed to peroxynitrite. PubMed DOI

Zhang Y., Chopp M., Liu X. S., Katakowski M., Wang X., Tian X., et al. (2017a). Exosomes derived from mesenchymal stromal cells promote axonal growth of cortical neurons. PubMed DOI PMC

Zhang Y., Chopp M., Zhang Z. G., Katakowski M., Xin H., Qu C., et al. (2017b). Systemic administration of cell-free exosomes generated by human bone marrow derived mesenchymal stem cells cultured under 2D and 3D conditions improves functional recovery in rats after traumatic brain injury. PubMed DOI PMC

Zhang Y., Chopp M., Meng Y., Katakowski M., Xin H., Mahmood A., et al. (2015). Effect of exosomes derived from multipluripotent mesenchymal stromal cells on functional recovery and neurovascular plasticity in rats after traumatic brain injury. PubMed DOI PMC

Zhang Y. P., Cai J., Shields L. B., Liu N., Xu X. M., Shields C. B. (2014). Traumatic brain injury using mouse models. PubMed DOI

Zhao J., Wang B., Huang T., Guo X., Yang Z., Song J., et al. (2019). Glial response in early stages of traumatic brain injury. PubMed DOI

Zhao J. B., Zhang Y., Li G. Z., Su X. F., Hang C. H. (2011). Activation of JAK2/STAT pathway in cerebral cortex after experimental traumatic brain injury of rats. PubMed DOI

Zhao Z., Loane D. J., Murray M. G., II, Stoica B. A., Faden A. I. (2012). Comparing the predictive value of multiple cognitive, affective, and motor tasks after rodent traumatic brain injury. PubMed DOI PMC

Zhao Z. A., Li P., Ye S. Y., Ning Y. L., Wang H., Peng Y., et al. (2017). Perivascular AQP4 dysregulation in the hippocampal CA1 area after traumatic brain injury is alleviated by adenosine A(2A) receptor inactivation. PubMed DOI PMC

Zheng F., Zhou Y. T., Feng D. D., Li P. F., Tang T., Luo J. K., et al. (2020). Metabolomics analysis of the hippocampus in a rat model of traumatic brain injury during the acute phase. PubMed DOI PMC

Zhou Z. L., Xie H., Tian X. B., Xu H. L., Li W., Yao S., et al. (2023). Microglial depletion impairs glial scar formation and aggravates inflammation partly by inhibiting STAT3 phosphorylation in astrocytes after spinal cord injury. PubMed DOI PMC

Zhu X., Bergles D. E., Nishiyama A. (2008). NG2 cells generate both oligodendrocytes and gray matter astrocytes. PubMed DOI

Zhu Y., Doornebal E. J., Pirtskhalava T., Giorgadze N., Wentworth M., Fuhrmann-Stroissnigg H., et al. (2017). New agents that target senescent cells: the flavone, fisetin, and the BCL-X(L) inhibitors, A1331852 and A1155463. PubMed DOI PMC

Ziebell J. M., Morganti-Kossmann M. C. (2010). Involvement of pro- and anti-inflammatory cytokines and chemokines in the pathophysiology of traumatic brain injury. PubMed DOI PMC

Ziebell J. M., Taylor S. E., Cao T., Harrison J. L., Lifshitz J. (2012). Rod microglia: elongation, alignment, and coupling to form trains across the somatosensory cortex after experimental diffuse brain injury. PubMed DOI PMC

Zusman B. E., Kochanek P. M., Jha R. M. (2020). Cerebral edema in traumatic brain injury: a historical framework for current therapy. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

ALS-like pathology diminishes swelling of spinal astrocytes in the SOD1 animal model

. 2024 ; 18 () : 1472374. [epub] 20241010

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...