Cortical glia in SOD1(G93A) mice are subtly affected by ALS-like pathology
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37085528
PubMed Central
PMC10121704
DOI
10.1038/s41598-023-33608-y
PII: 10.1038/s41598-023-33608-y
Knihovny.cz E-zdroje
- MeSH
- amyotrofická laterální skleróza * genetika patologie MeSH
- mícha patologie MeSH
- modely nemocí na zvířatech MeSH
- motorické neurony patologie MeSH
- myši transgenní MeSH
- myši MeSH
- neuroglie * patologie MeSH
- superoxid dismutáza 1 * genetika MeSH
- superoxiddismutasa genetika MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- superoxid dismutáza 1 * MeSH
- superoxiddismutasa MeSH
The role of glia in amyotrophic lateral sclerosis (ALS) is undeniable. Their disease-related activity has been extensively studied in the spinal cord, but only partly in the brain. We present herein a comprehensive study of glia in the cortex of SOD1(G93A) mice-a widely used model of ALS. Using single-cell RNA sequencing (scRNA-seq) and immunohistochemistry, we inspected astrocytes, microglia, and oligodendrocytes, in four stages of the disease, respecting the factor of sex. We report minimal changes of glia throughout the disease progression and regardless of sex. Pseudobulk and single-cell analyses revealed subtle disease-related transcriptional alterations at the end-stage in microglia and oligodendrocytes, which were supported by immunohistochemistry. Therefore, our data support the hypothesis that the SOD1(G93A) mouse cortex does not recapitulate the disease in patients, and we recommend the use of a different model for future studies of the cortical ALS pathology.
2nd Faculty of Medicine Charles University 5 Uvalu 84 15006 Prague Czech Republic
Faculty of Science Charles University Albertov 6 12800 Prague Czech Republic
Zobrazit více v PubMed
Baufeld C, O'Loughlin E, Calcagno N, Madore C, Butovsky O. Differential contribution of microglia and monocytes in neurodegenerative diseases. J. Neural Transm. (Vienna) 2018;125:809–826. doi: 10.1007/s00702-017-1795-7. PubMed DOI PMC
Maniatis S, et al. Spatiotemporal dynamics of molecular pathology in amyotrophic lateral sclerosis. Science. 2019;364:89–93. doi: 10.1126/science.aav9776. PubMed DOI
Keren-Shaul H, et al. A Unique microglia type associated with restricting development of Alzheimer's disease. Cell. 2017;169:1276–1290 e1217. doi: 10.1016/j.cell.2017.05.018. PubMed DOI
Sala Frigerio C, et al. The major risk factors for Alzheimer's disease: Age, sex, and genes modulate the microglia response to aβ plaques. Cell Rep. 2019;27:1293–1306 e1296. doi: 10.1016/j.celrep.2019.03.099. PubMed DOI PMC
Habib N, et al. Disease-associated astrocytes in Alzheimer's disease and aging. Nat. Neurosci. 2020;23:701–706. doi: 10.1038/s41593-020-0624-8. PubMed DOI PMC
Falcao AM, et al. Disease-specific oligodendrocyte lineage cells arise in multiple sclerosis. Nat. Med. 2018;24:1837–1844. doi: 10.1038/s41591-018-0236-y. PubMed DOI PMC
Floriddia EM, et al. Distinct oligodendrocyte populations have spatial preference and different responses to spinal cord injury. Nat. Commun. 2020;11:5860. doi: 10.1038/s41467-020-19453-x. PubMed DOI PMC
Kang SH, et al. Degeneration and impaired regeneration of gray matter oligodendrocytes in amyotrophic lateral sclerosis. Nat. Neurosci. 2013;16:571–579. doi: 10.1038/nn.3357. PubMed DOI PMC
Philips T, et al. Oligodendrocyte dysfunction in the pathogenesis of amyotrophic lateral sclerosis. Brain. 2013;136:471–482. doi: 10.1093/brain/aws339. PubMed DOI PMC
Zürcher NR, et al. Increased in vivo glial activation in patients with amyotrophic lateral sclerosis: Assessed with [(11)C]-PBR28. Neuroimage Clin. 2015;7:409–414. doi: 10.1016/j.nicl.2015.01.009. PubMed DOI PMC
Nolan M, et al. Quantitative patterns of motor cortex proteinopathy across ALS genotypes. Acta Neuropathol. Commun. 2020;8:98. doi: 10.1186/s40478-020-00961-2. PubMed DOI PMC
Gurney ME, et al. Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science. 1994;264:1772–1775. doi: 10.1126/science.8209258. PubMed DOI
Miller SJ, Zhang PW, Glatzer J, Rothstein JD. Astroglial transcriptome dysregulation in early disease of an ALS mutant SOD1 mouse model. J. Neurogenet. 2017;31:37–48. doi: 10.1080/01677063.2016.1260128. PubMed DOI
Guttenplan KA, et al. Knockout of reactive astrocyte activating factors slows disease progression in an ALS mouse model. Nat. Commun. 2020;11:3753. doi: 10.1038/s41467-020-17514-9. PubMed DOI PMC
Liu W, et al. Single-cell RNA-seq analysis of the brainstem of mutant SOD1 mice reveals perturbed cell types and pathways of amyotrophic lateral sclerosis. Neurobiol. Dis. 2020;141:104877. doi: 10.1016/j.nbd.2020.104877. PubMed DOI PMC
MacLean M, Lopez-Diez R, Vasquez C, Gugger PF, Schmidt AM. Neuronal-glial communication perturbations in murine SOD1(G93A) spinal cord. Commun. Biol. 2022;5:177. doi: 10.1038/s42003-022-03128-y. PubMed DOI PMC
Özdinler PH, et al. Corticospinal motor neurons and related subcerebral projection neurons undergo early and specific neurodegeneration in hSOD1G(9)(3)A transgenic ALS mice. J. Neurosci. 2011;31:4166–4177. doi: 10.1523/JNEUROSCI.4184-10.2011. PubMed DOI PMC
Miller SJ, Glatzer JC, Hsieh YC, Rothstein JD. Cortical astroglia undergo transcriptomic dysregulation in the G93A SOD1 ALS mouse model. J. Neurogenet. 2018;32:322–335. doi: 10.1080/01677063.2018.1513508. PubMed DOI PMC
Gomes C, et al. Cortical neurotoxic astrocytes with early ALS pathology and miR-146a deficit replicate gliosis markers of symptomatic SOD1G93A mouse model. Mol. Neurobiol. 2019;56:2137–2158. doi: 10.1007/s12035-018-1220-8. PubMed DOI
Migliarini S, et al. Microglia morphological changes in the motor cortex of hSOD1(G93A) transgenic ALS mice. Brain Sci. 2021 doi: 10.3390/brainsci11060807. PubMed DOI PMC
Niessen HG, et al. In vivo quantification of spinal and bulbar motor neuron degeneration in the G93A-SOD1 transgenic mouse model of ALS by T2 relaxation time and apparent diffusion coefficient. Exp. Neurol. 2006;201:293–300. doi: 10.1016/j.expneurol.2006.04.007. PubMed DOI
Schindelin J, et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Ferreira TA, et al. Neuronal morphometry directly from bitmap images. Nat. Methods. 2014;11:982–984. doi: 10.1038/nmeth.3125. PubMed DOI PMC
Wu YE, Pan L, Zuo Y, Li X, Hong W. Detecting activated cell populations using single-cell RNA-seq. Neuron. 2017;96:313–329 e316. doi: 10.1016/j.neuron.2017.09.026. PubMed DOI
Kantzer CG, et al. Anti-ACSA-2 defines a novel monoclonal antibody for prospective isolation of living neonatal and adult astrocytes. Glia. 2017;65:990–1004. doi: 10.1002/glia.23140. PubMed DOI
Dobin A, et al. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. doi: 10.1093/bioinformatics/bts635. PubMed DOI PMC
Lun ATL, et al. EmptyDrops: Distinguishing cells from empty droplets in droplet-based single-cell RNA sequencing data. Genome Biol. 2019;20:63. doi: 10.1186/s13059-019-1662-y. PubMed DOI PMC
Hao Y, et al. Integrated analysis of multimodal single-cell data. Cell. 2021;184:3573–3587 e3529. doi: 10.1016/j.cell.2021.04.048. PubMed DOI PMC
McGinnis CS, Murrow LM, Gartner ZJ. DoubletFinder: Doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 2019;8:329–337 e324. doi: 10.1016/j.cels.2019.03.003. PubMed DOI PMC
Marsh, S. E. et al. Single cell sequencing reveals glial specific responses to tissue processing & enzymatic dissociation in mice and humans. Preprint at: https://www.biorxiv.org/content/10.1101/2020.1112.1103.408542v408541 (2020).
Young MD, Behjati S. SoupX removes ambient RNA contamination from droplet-based single-cell RNA sequencing data. Gigascience. 2020 doi: 10.1093/gigascience/giaa151. PubMed DOI PMC
Subramanian A, et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A. 2005;102:15545–15550. doi: 10.1073/pnas.0506580102. PubMed DOI PMC
Yu G, Wang LG, Yan GR, He QY. DOSE: An R/Bioconductor package for disease ontology semantic and enrichment analysis. Bioinformatics. 2015;31:608–609. doi: 10.1093/bioinformatics/btu684. PubMed DOI
Wu T, et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation (N Y) 2021;2:100141. doi: 10.1016/j.xinn.2021.100141. PubMed DOI PMC
Marques S, et al. Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system. Science. 2016;352:1326–1329. doi: 10.1126/science.aaf6463. PubMed DOI PMC
Mathys H, et al. Temporal tracking of microglia activation in neurodegeneration at single-cell resolution. Cell Rep. 2017;21:366–380. doi: 10.1016/j.celrep.2017.09.039. PubMed DOI PMC
Butovsky O, Weiner HL. Microglial signatures and their role in health and disease. Nat. Rev. Neurosci. 2018;19:622–635. doi: 10.1038/s41583-018-0057-5. PubMed DOI PMC
McCombe PA, Henderson RD. Effects of gender in amyotrophic lateral sclerosis. Gend. Med. 2010;7:557–570. doi: 10.1016/j.genm.2010.11.010. PubMed DOI
Ziff OJ, et al. Meta-analysis of human and mouse ALS astrocytes reveals multi-omic signatures of inflammatory reactive states. Genome Res. 2022;32:71–84. doi: 10.1101/gr.275939.121. PubMed DOI PMC
Loda A, Heard E. Xist RNA in action: Past, present, and future. PLoS Genet. 2019;15:e1008333. doi: 10.1371/journal.pgen.1008333. PubMed DOI PMC
Ashburner M, et al. Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 2000;25:25–29. doi: 10.1038/75556. PubMed DOI PMC
Gene Ontology Consortium The gene ontology resource: Enriching a GOld mine. Nucleic Acids Res. 2021;49:D325–D334. doi: 10.1093/nar/gkaa1113. PubMed DOI PMC
Jankovic M, et al. Current concepts on genetic aspects of mitochondrial dysfunction in amyotrophic lateral sclerosis. Int. J. Mol. Sci. 2021 doi: 10.3390/ijms22189832. PubMed DOI PMC
Krasemann S, et al. The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity. 2017;47:566–581 e569. doi: 10.1016/j.immuni.2017.08.008. PubMed DOI PMC
Doretto S, et al. Oligodendrocytes as regulators of neuronal networks during early postnatal development. PLoS One. 2011;6:e19849. doi: 10.1371/journal.pone.0019849. PubMed DOI PMC
Su X, Vasilkovska T, Frohlich N, Garaschuk O. Characterization of cell type-specific S100B expression in the mouse olfactory bulb. Cell Calcium. 2021;94:102334. doi: 10.1016/j.ceca.2020.102334. PubMed DOI
Sun Y, et al. Therapeutic opportunities of interleukin-33 in the central nervous system. Front Immunol. 2021;12:654626. doi: 10.3389/fimmu.2021.654626. PubMed DOI PMC
Kenigsbuch M, et al. A shared disease-associated oligodendrocyte signature among multiple CNS pathologies. Nat. Neurosci. 2022;25:876–886. doi: 10.1038/s41593-022-01104-7. PubMed DOI PMC
Lee SH, et al. TREM2-independent oligodendrocyte, astrocyte, and T cell responses to tau and amyloid pathology in mouse models of Alzheimer disease. Cell Rep. 2021;37:110158. doi: 10.1016/j.celrep.2021.110158. PubMed DOI
Jäkel S, et al. Altered human oligodendrocyte heterogeneity in multiple sclerosis. Nature. 2019;566:543–547. doi: 10.1038/s41586-019-0903-2. PubMed DOI PMC
Berghoff SA, et al. Neuronal cholesterol synthesis is essential for repair of chronically demyelinated lesions in mice. Cell Rep. 2021;37:109889. doi: 10.1016/j.celrep.2021.109889. PubMed DOI
Cain, A. et al. Multi-cellular communities are perturbed in the aging human brain and with Alzheimer’s disease. Preprint at: https://www.biorxiv.org/content/10.1101/2020.1112.1122.424084v424081 (2020). PubMed PMC
Davalos D, et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci. 2005;8:752–758. doi: 10.1038/nn1472. PubMed DOI
Vucic S, Pavey N, Haidar M, Turner BJ, Kiernan MC. Cortical hyperexcitability: Diagnostic and pathogenic biomarker of ALS. Neurosci. Lett. 2021;759:136039. doi: 10.1016/j.neulet.2021.136039. PubMed DOI
Jara JH, et al. Evidence for an early innate immune response in the motor cortex of ALS. J. Neuroinflamm. 2017;14:129. doi: 10.1186/s12974-017-0896-4. PubMed DOI PMC
Dols-Icardo O, et al. Motor cortex transcriptome reveals microglial key events in amyotrophic lateral sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2020 doi: 10.1212/NXI.0000000000000829. PubMed DOI PMC
Limone, F. et al. Single-nucleus sequencing reveals enriched expression of genetic risk factors sensitises motor neurons to degeneration in ALS. Preprint at: https://www.biorxiv.org/content/10.1101/2021.1107.1112.452054v452051 (2021). PubMed PMC
Gomes C, et al. Astrocyte regional diversity in ALS includes distinct aberrant phenotypes with common and causal pathological processes. Exp. Cell Res. 2020;395:112209. doi: 10.1016/j.yexcr.2020.112209. PubMed DOI
van den Bos MAJ, Geevasinga N, Higashihara M, Menon P, Vucic S. Pathophysiology and diagnosis of ALS: Insights from advances in neurophysiological techniques. Int. J. Mol. Sci. 2019 doi: 10.3390/ijms20112818. PubMed DOI PMC
Burg T, et al. Absence of subcerebral projection neurons is beneficial in a mouse model of amyotrophic lateral sclerosis. Ann. Neurol. 2020;88:688–702. doi: 10.1002/ana.25833. PubMed DOI PMC
Phatnani HP, et al. Intricate interplay between astrocytes and motor neurons in ALS. Proc. Natl. Acad. Sci. U. S. A. 2013;110:E756–765. doi: 10.1073/pnas.1222361110. PubMed DOI PMC
Matson, K. J. E. et al. A single cell atlas of spared tissue below a spinal cord injury reveals cellular mechanisms of repair. Preprint at: https://www.biorxiv.org/content/10.1101/2021.1104.1128.441862v441861 (2021).
Kaya, T. et al. T cells induce interferon-responsive oligodendrocytes during white matter aging. Preprint at: https://www.biorxiv.org/content/10.1101/2022.1103.1126.485917v485911.full (2022). PubMed PMC
Edgar R, Domrachev M, Lash AE. Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30:207–210. doi: 10.1093/nar/30.1.207. PubMed DOI PMC
Ferraiuolo L, et al. Dysregulation of astrocyte-motoneuron cross-talk in mutant superoxide dismutase 1-related amyotrophic lateral sclerosis. Brain. 2011;134:2627–2641. doi: 10.1093/brain/awr193. PubMed DOI PMC
Sun S, et al. Translational profiling identifies a cascade of damage initiated in motor neurons and spreading to glia in mutant SOD1-mediated ALS. Proc. Natl. Acad. Sci. U. S. A. 2015;112:E6993–7002. doi: 10.1073/pnas.1520639112. PubMed DOI PMC
Butovsky O, et al. Modulating inflammatory monocytes with a unique microRNA gene signature ameliorates murine ALS. J. Clin. Invest. 2012;122:3063–3087. doi: 10.1172/JCI62636. PubMed DOI PMC
Butovsky O, et al. Targeting miR-155 restores abnormal microglia and attenuates disease in SOD1 mice. Ann. Neurol. 2015;77:75–99. doi: 10.1002/ana.24304. PubMed DOI PMC
Fukada Y, et al. Gene expression analysis of the murine model of amyotrophic lateral sclerosis: Studies of the Leu126delTT mutation in SOD1. Brain Res. 2007;1160:1–10. doi: 10.1016/j.brainres.2007.05.044. PubMed DOI
Yoshihara T, et al. Differential expression of inflammation- and apoptosis-related genes in spinal cords of a mutant SOD1 transgenic mouse model of familial amyotrophic lateral sclerosis. J. Neurochem. 2002;80:158–167. doi: 10.1046/j.0022-3042.2001.00683.x. PubMed DOI
Kudo LC, et al. Integrative gene-tissue microarray-based approach for identification of human disease biomarkers: Application to amyotrophic lateral sclerosis. Hum. Mol. Genet. 2010;19:3233–3253. doi: 10.1093/hmg/ddq232. PubMed DOI
Chen H, et al. Differential expression and alternative splicing of genes in lumbar spinal cord of an amyotrophic lateral sclerosis mouse model. Brain Res. 2010;1340:52–69. doi: 10.1016/j.brainres.2010.03.075. PubMed DOI
Wang R, Yang B, Zhang D. Activation of interferon signaling pathways in spinal cord astrocytes from an ALS mouse model. Glia. 2011;59:946–958. doi: 10.1002/glia.21167. PubMed DOI PMC
D'Arrigo A, et al. Transcriptional profiling in the lumbar spinal cord of a mouse model of amyotrophic lateral sclerosis: A role for wild-type superoxide dismutase 1 in sporadic disease? J. Mol. Neurosci. 2010;41:404–415. doi: 10.1007/s12031-010-9332-2. PubMed DOI
Baker DJ, et al. Lysosomal and phagocytic activity is increased in astrocytes during disease progression in the SOD1 (G93A) mouse model of amyotrophic lateral sclerosis. Front. Cell Neurosci. 2015;9:410. doi: 10.3389/fncel.2015.00410. PubMed DOI PMC
ALS-like pathology diminishes swelling of spinal astrocytes in the SOD1 animal model
Reactive gliosis in traumatic brain injury: a comprehensive review