Reactive gliosis in traumatic brain injury: a comprehensive review
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article, Review
PubMed
38481632
PubMed Central
PMC10933082
DOI
10.3389/fncel.2024.1335849
Knihovny.cz E-resources
- Keywords
- experimental models, glia, intercellular signaling, neurodegeneration, neuroinflammation, traumatic brain injury,
- Publication type
- Journal Article MeSH
- Review MeSH
Traumatic brain injury (TBI) is one of the most common pathological conditions impacting the central nervous system (CNS). A neurological deficit associated with TBI results from a complex of pathogenetic mechanisms including glutamate excitotoxicity, inflammation, demyelination, programmed cell death, or the development of edema. The critical components contributing to CNS response, damage control, and regeneration after TBI are glial cells-in reaction to tissue damage, their activation, hypertrophy, and proliferation occur, followed by the formation of a glial scar. The glial scar creates a barrier in damaged tissue and helps protect the CNS in the acute phase post-injury. However, this process prevents complete tissue recovery in the late/chronic phase by producing permanent scarring, which significantly impacts brain function. Various glial cell types participate in the scar formation, but this process is mostly attributed to reactive astrocytes and microglia, which play important roles in several brain pathologies. Novel technologies including whole-genome transcriptomic and epigenomic analyses, and unbiased proteomics, show that both astrocytes and microglia represent groups of heterogenic cell subpopulations with different genomic and functional characteristics, that are responsible for their role in neurodegeneration, neuroprotection and regeneration. Depending on the representation of distinct glia subpopulations, the tissue damage as well as the regenerative processes or delayed neurodegeneration after TBI may thus differ in nearby or remote areas or in different brain structures. This review summarizes TBI as a complex process, where the resultant effect is severity-, region- and time-dependent and determined by the model of the CNS injury and the distance of the explored area from the lesion site. Here, we also discuss findings concerning intercellular signaling, long-term impacts of TBI and the possibilities of novel therapeutical approaches. We believe that a comprehensive study with an emphasis on glial cells, involved in tissue post-injury processes, may be helpful for further research of TBI and be the decisive factor when choosing a TBI model.
See more in PubMed
Aalinkeel R., Mahajan S. D. (2016). Neuroprotective role of galectin-1 in central nervous system pathophysiology. Neural Regen. Res. 11 896–897. 10.4103/1673-5374.184455 PubMed DOI PMC
Abdul-Muneer P. M., Long M., Conte A. A., Santhakumar V., Pfister B. J. (2017). High Ca(2 +) influx during traumatic brain injury leads to caspase-1-dependent neuroinflammation and cell death. Mol Neurobiol. 54 3964–3975. 10.1007/s12035-016-9949-4 PubMed DOI PMC
Abe N., Choudhury M. E., Watanabe M., Kawasaki S., Nishihara T., Yano H., et al. (2018). Comparison of the detrimental features of microglia and infiltrated macrophages in traumatic brain injury: A study using a hypnotic bromovalerylurea. Glia 66 2158–2173. 10.1002/glia.23469 PubMed DOI
Acaz-Fonseca E., Duran J. C., Carrero P., Garcia-Segura L. M., Arevalo M. A. (2015). Sex differences in glia reactivity after cortical brain injury. Glia 63 1966–1981. 10.1002/glia.22867 PubMed DOI
Adams K. L., Gallo V. (2018). The diversity and disparity of the glial scar. Nat. Neurosci. 21 9–15. 10.1038/s41593-017-0033-9 PubMed DOI PMC
Ahmed F., Gyorgy A., Kamnaksh A., Ling G., Tong L., Parks S., et al. (2012). Time-dependent changes of protein biomarker levels in the cerebrospinal fluid after blast traumatic brain injury. Electrophoresis 33 3705–3711. 10.1002/elps.201200299 PubMed DOI
Ahmed M. E., Selvakumar G. P., Kempuraj D., Raikwar S. P., Thangavel R., Bazley K., et al. (2020). Glia Maturation Factor (GMF) regulates microglial expression phenotypes and the associated neurological deficits in a mouse model of traumatic brain injury. Mol. Neurobiol. 57 4438–4450. 10.1007/s12035-020-02040-y PubMed DOI
Akay L. A., Effenberger A. H., Tsai L. H. (2021). Cell of all trades: oligodendrocyte precursor cells in synaptic, vascular, and immune function. Genes Dev. 35 180–198. 10.1101/gad.344218.120 PubMed DOI PMC
Alibhai J. D., Diack A. B., Manson J. C. (2018). Unravelling the glial response in the pathogenesis of Alzheimer’s disease. FASEB J. 32 5766–5777. 10.1096/fj.201801360R PubMed DOI
Allen G. V., Gerami D., Esser M. J. (2000). Conditioning effects of repetitive mild neurotrauma on motor function in an animal model of focal brain injury. Neuroscience 99 93–105. 10.1016/s0306-4522(00)00185-8 PubMed DOI
Amiry-Moghaddam M., Frydenlund D. S., Ottersen O. P. (2004). Anchoring of aquaporin-4 in brain: Molecular mechanisms and implications for the physiology and pathophysiology of water transport. Neuroscience 129 999–1010. 10.1016/j.neuroscience.2004.08.049 PubMed DOI
Amorini A. M., Lazzarino G., Di Pietro V., Signoretti S., Lazzarino G., Belli A., et al. (2017). Severity of experimental traumatic brain injury modulates changes in concentrations of cerebral free amino acids. J. Cell Mol. Med. 21 530–542. 10.1111/jcmm.12998 PubMed DOI PMC
Anderson M. A., Burda J. E., Ren Y., Ao Y., O’Shea T. M., Kawaguchi R., et al. (2016). Astrocyte scar formation aids central nervous system axon regeneration. Nature 532 195–200. 10.1038/nature17623 PubMed DOI PMC
Androvic P., Kirdajova D., Tureckova J., Zucha D., Rohlova E., Abaffy P., et al. (2020). Decoding the transcriptional response to ischemic stroke in young and aged mouse brain. Cell Rep. 31:107777. 10.1016/j.celrep.2020.107777 PubMed DOI
Angeloni C., Prata C., Dalla Sega F. V., Piperno R., Hrelia S. (2015). Traumatic brain injury and NADPH oxidase: a deep relationship. Oxid. Med. Cell Longev. 2015:370312. 10.1155/2015/370312 PubMed DOI PMC
Antunes A., Martins-de-Souza D. (2023). Single-Cell RNA sequencing and its applications in the study of psychiatric disorders. Biol. Psychiatry Glob. Open Sci. 3 329–339. 10.1016/j.bpsgos.2022.03.013 PubMed DOI PMC
Araki T., Yokota H., Morita A. (2017). Pediatric traumatic brain injury: characteristic features, diagnosis, and management. Neurol. Med. Chir. 57 82–93. 10.2176/nmc.ra.2016-0191 PubMed DOI PMC
Arevalo M. A., Santos-Galindo M., Bellini M. J., Azcoitia I., Garcia-Segura L. M. (2010). Actions of estrogens on glial cells: Implications for neuroprotection. Biochim. Biophys. Acta 1800 1106–1112. 10.1016/j.bbagen.2009.10.002 PubMed DOI
Armand E. J., Li J., Xie F., Luo C., Mukamel E. A. (2021). Single-cell sequencing of brain cell transcriptomes and epigenomes. Neuron 109 11–26. 10.1016/j.neuron.2020.12.010 PubMed DOI PMC
Arneson D., Zhang G., Ahn I. S., Ying Z., Diamante G., Cely I., et al. (2022). Systems spatiotemporal dynamics of traumatic brain injury at single-cell resolution reveals humanin as a therapeutic target. Cell Mol. Life Sci. 79:480. 10.1007/s00018-022-04495-9 PubMed DOI PMC
Arneson D., Zhang G., Ying Z., Zhuang Y., Byun H. R., Ahn I. S., et al. (2018). Single cell molecular alterations reveal target cells and pathways of concussive brain injury. Nat. Commun. 9:3894. 10.1038/s41467-018-06222-0 PubMed DOI PMC
Arun P., Rossetti F., Wilder D. M., Sajja S., Van Albert S. A., Wang Y., et al. (2020). Blast exposure leads to accelerated cellular senescence in the rat brain. Front. Neurol. 11:438. 10.3389/fneur.2020.00438 PubMed DOI PMC
Asadi-Pooya A. A., Farazdaghi M. (2021). Is severe head injury associated with functional (psychogenic) seizures? Seizure 89 38–40. 10.1016/j.seizure.2021.04.018 PubMed DOI
Asher R. A., Morgenstern D. A., Moon L. D., Fawcett J. W. (2001). Chondroitin sulphate proteoglycans: inhibitory components of the glial scar. Prog. Brain Res. 132 611–619. 10.1016/S0079-6123(01)32106-4 PubMed DOI
Asher R. A., Morgenstern D. A., Shearer M. C., Adcock K. H., Pesheva P., Fawcett J. W. (2002). Versican is upregulated in CNS injury and is a product of oligodendrocyte lineage cells. J. Neurosci. 22 2225–2236. 10.1523/jneurosci.22-06-02225.2002 PubMed DOI PMC
Atif H., Hicks S. D. (2019). A Review of MicroRNA Biomarkers in Traumatic Brain Injury. J. Exp. Neurosci. 13:1179069519832286. 10.1177/1179069519832286 PubMed DOI PMC
Aungst S. L., Kabadi S. V., Thompson S. M., Stoica B. A., Faden A. I. (2014). Repeated mild traumatic brain injury causes chronic neuroinflammation, changes in hippocampal synaptic plasticity, and associated cognitive deficits. J. Cereb. Blood Flow Metab. 34 1223–1232. 10.1038/jcbfm.2014.75 PubMed DOI PMC
Bachstetter A. D., Rowe R. K., Kaneko M., Goulding D., Lifshitz J., Van Eldik L. J. (2013). The p38alpha MAPK regulates microglial responsiveness to diffuse traumatic brain injury. J. Neurosci. 33 6143–6153. 10.1523/JNEUROSCI.5399-12.2013 PubMed DOI PMC
Bachstetter A. D., Xing B., de Almeida L., Dimayuga E. R., Watterson D. M., Van Eldik L. J. (2011). Microglial p38alpha MAPK is a key regulator of proinflammatory cytokine up-regulation induced by toll-like receptor (TLR) ligands or beta-amyloid (Abeta). J. Neuroinflammation 8:79. 10.1186/1742-2094-8-79 PubMed DOI PMC
Baker D. J., Petersen R. C. (2018). Cellular senescence in brain aging and neurodegenerative diseases: evidence and perspectives. J. Clin. Invest. 128 1208–1216. 10.1172/JCI95145 PubMed DOI PMC
Barnes C. A. (1979). Memory deficits associated with senescence: a neurophysiological and behavioral study in the rat. J. Comp. Physiol. Psychol. 93 74–104. 10.1037/h0077579 PubMed DOI
Barnett A. M., Crews F. T., Coleman L. G. (2021). Microglial depletion and repopulation: a new era of regenerative medicine? Neural Regen. Res. 16 1204–1205. 10.4103/1673-5374.300439 PubMed DOI PMC
Bashir A., Abebe Z. A., McInnes K. A., Button E. B., Tatarnikov I., Cheng W. H., et al. (2020). Increased severity of the CHIMERA model induces acute vascular injury, sub-acute deficits in memory recall, and chronic white matter gliosis. Exp. Neurol. 324:113116. 10.1016/j.expneurol.2019.113116 PubMed DOI
Basurco L., Abellanas M. A., Ayerra L., Conde E., Vinueza-Gavilanes R., Luquin E., et al. (2023). Microglia and astrocyte activation is region-dependent in the alpha-synuclein mouse model of Parkinson’s disease. Glia 71 571–587. 10.1002/glia.24295 PubMed DOI PMC
Bellezza I., Giambanco I., Minelli A., Donato R. (2018). Nrf2-Keap1 signaling in oxidative and reductive stress. Biochim. Biophys. Acta Mol. Cell Res. 1865 721–733. 10.1016/j.bbamcr.2018.02.010 PubMed DOI
Bellver-Landete V., Bretheau F., Mailhot B., Vallieres N., Lessard M., Janelle M. E., et al. (2019). Microglia are an essential component of the neuroprotective scar that forms after spinal cord injury. Nat. Commun. 10:518. 10.1038/s41467-019-08446-0 PubMed DOI PMC
Benfenati V., Caprini M., Dovizio M., Mylonakou M. N., Ferroni S., Ottersen O. P., et al. (2011). An aquaporin-4/transient receptor potential vanilloid 4 (AQP4/TRPV4) complex is essential for cell-volume control in astrocytes. Proc. Natl. Acad. Sci. U. S. A. 108 2563–2568. 10.1073/pnas.1012867108 PubMed DOI PMC
Bennett I. J., Madden D. J., Vaidya C. J., Howard D. V., Howard J. H., Jr. (2010). Age-related differences in multiple measures of white matter integrity: A diffusion tensor imaging study of healthy aging. Hum. Brain Mapp. 31 378–390. 10.1002/hbm.20872 PubMed DOI PMC
Bennett R. E., Mac Donald C. L., Brody D. L. (2012). Diffusion tensor imaging detects axonal injury in a mouse model of repetitive closed-skull traumatic brain injury. Neurosci. Lett. 513 160–165. 10.1016/j.neulet.2012.02.024 PubMed DOI PMC
Beschorner R., Dietz K., Schauer N., Mittelbronn M., Schluesener H. J., Trautmann K., et al. (2007). Expression of EAAT1 reflects a possible neuroprotective function of reactive astrocytes and activated microglia following human traumatic brain injury. Histol. Histopathol. 22 515–526. 10.14670/HH-22.515 PubMed DOI
Beltzig L., Frumkina A., Schwarzenbach C., Kaina B. (2021). Cytotoxic, Genotoxic and Senolytic Potential of Native and Micellar Curcumin. Nutrients 13. 10.3390/nu13072385 PubMed DOI PMC
Bhalala O. G., Pan L., Sahni V., McGuire T. L., Gruner K., Tourtellotte W. G., et al. (2012). microRNA-21 regulates astrocytic response following spinal cord injury. J. Neurosci. 32 17935–17947. 10.1523/JNEUROSCI.3860-12.2012 PubMed DOI PMC
Biegon A. (2021). Considering Biological Sex in Traumatic Brain Injury. Front. Neurol. 12:576366. 10.3389/fneur.2021.576366 PubMed DOI PMC
Bodnar C. N., Roberts K. N., Higgins E. K., Bachstetter A. D. (2019). A systematic review of closed head injury models of mild traumatic brain injury in mice and rats. J. Neurotrauma 36 1683–1706. 10.1089/neu.2018.6127 PubMed DOI PMC
Bolton A. N., Saatman K. E. (2014). Regional neurodegeneration and gliosis are amplified by mild traumatic brain injury repeated at 24-hour intervals. J. Neuropathol. Exp. Neurol. 73 933–947. 10.1097/NEN.0000000000000115 PubMed DOI PMC
Bonifacino T., Zerbo R. A., Balbi M., Torazza C., Frumento G., Fedele E., et al. (2021). Nearly 30 years of animal models to study amyotrophic lateral sclerosis: A historical overview and future perspectives. Int. J. Mol. Sci. 22:12236. 10.3390/ijms222212236 PubMed DOI PMC
Bonnier C., Mesples B., Gressens P. (2004). Animal models of shaken baby syndrome: revisiting the pathophysiology of this devastating injury. Pediatr. Rehabil. 7 165–171. 10.1080/13638490410001703325 PubMed DOI
Borst K., Dumas A. A., Prinz M. (2021). Microglia: Immune and non-immune functions. Immunity 54 2194–2208. 10.1016/j.immuni.2021.09.014 PubMed DOI
Boutin C., Hardt O., de Chevigny A., Core N., Goebbels S., Seidenfaden R., et al. (2010). NeuroD1 induces terminal neuronal differentiation in olfactory neurogenesis. Proc. Natl. Acad. Sci. U. S. A. 107 1201–1206. 10.1073/pnas.0909015107 PubMed DOI PMC
Boza-Serrano A., Reyes J. F., Rey N. L., Leffler H., Bousset L., Nilsson U., et al. (2014). The role of Galectin-3 in alpha-synuclein-induced microglial activation. Acta Neuropathol. Commun. 2:156. 10.1186/s40478-014-0156-0 PubMed DOI PMC
Brambrink A. M., Back S. A., Riddle A., Gong X., Moravec M. D., Dissen G. A., et al. (2012). Isoflurane-induced apoptosis of oligodendrocytes in the neonatal primate brain. Ann. Neurol. 72 525–535. 10.1002/ana.23652 PubMed DOI PMC
Bramlett H. M., Dietrich W. D. (2001). Neuropathological protection after traumatic brain injury in intact female rats versus males or ovariectomized females. J. Neurotrauma 18 891–900. 10.1089/089771501750451811 PubMed DOI
Brazinova A., Rehorcikova V., Taylor M. S., Buckova V., Majdan M., Psota M., et al. (2021). Epidemiology of traumatic brain injury in europe: A living systematic review. J. Neurotrauma 38 1411–1440. 10.1089/neu.2015.4126 PubMed DOI PMC
Brett B. L., Gardner R. C., Godbout J., Dams-O’Connor K., Keene C. D. (2022). Traumatic Brain Injury and Risk of Neurodegenerative Disorder. Biol. Psychiatry 91 498–507. 10.1016/j.biopsych.2021.05.025 PubMed DOI PMC
Briggs D. I., Angoa-Perez M., Kuhn D. M. (2016). Prolonged Repetitive Head Trauma Induces a Singular Chronic Traumatic Encephalopathy-Like Pathology in White Matter Despite Transient Behavioral Abnormalities. Am. J. Pathol. 186 2869–2886. 10.1016/j.ajpath.2016.07.013 PubMed DOI
Browne K. D., Chen X. H., Meaney D. F., Smith D. H. (2011). Mild traumatic brain injury and diffuse axonal injury in swine. J. Neurotrauma 28 1747–1755. 10.1089/neu.2011.1913 PubMed DOI PMC
Bryden D. W., Tilghman J. I., Hinds S. R., II (2019). Blast-Related Traumatic Brain Injury: Current Concepts and Research Considerations. J. Exp. Neurosci. 13:1179069519872213. 10.1177/1179069519872213 PubMed DOI PMC
Bugay V., Bozdemir E., Vigil F. A., Chun S. H., Holstein D. M., Elliott W. R., et al. (2020). A mouse model of repetitive blast traumatic brain injury reveals post-trauma seizures and increased neuronal excitability. J. Neurotrauma 37, 248–261. 10.1089/neu.2018.6333 PubMed DOI PMC
Buffo A., Rite I., Tripathi P., Lepier A., Colak D., Horn A. P., et al. (2008). Origin and progeny of reactive gliosis: A source of multipotent cells in the injured brain. Proc. Natl. Acad. Sci. U. S. A. 105 3581–3586. 10.1073/pnas.0709002105 PubMed DOI PMC
Burda J. E., Sofroniew M. V. (2014). Reactive gliosis and the multicellular response to CNS damage and disease. Neuron 81 229–248. 10.1016/j.neuron.2013.12.034 PubMed DOI PMC
Burguillos M. A., Svensson M., Schulte T., Boza-Serrano A., Garcia-Quintanilla A., Kavanagh E., et al. (2015). Microglia-Secreted Galectin-3 Acts as a Toll-like Receptor 4 Ligand and Contributes to Microglial Activation. Cell Rep. 10 1626–1638. 10.1016/j.celrep.2015.02.012 PubMed DOI
Butt A. M., De La Rocha I. C., Rivera A. (2019). Oligodendroglial Cells in Alzheimer’s Disease. Adv. Exp. Med. Biol. 1175 325–333. 10.1007/978-981-13-9913-8_12 PubMed DOI
Cai W., Yang T., Liu H., Han L., Zhang K., Hu X., et al. (2018). Peroxisome proliferator-activated receptor gamma (PPARgamma): A master gatekeeper in CNS injury and repair. Prog. Neurobiol. 16 27–58. 10.1016/j.pneurobio.2017.10.002 PubMed DOI PMC
Calabresi P., Mechelli A., Natale G., Volpicelli-Daley L., Di Lazzaro G., Ghiglieri V. (2023). Alpha-synuclein in Parkinson’s disease and other synucleinopathies: from overt neurodegeneration back to early synaptic dysfunction. Cell Death Dis. 14:176. 10.1038/s41419-023-05672-9 PubMed DOI PMC
Calafatti M., Cocozza G., Limatola C., Garofalo S. (2023). Microglial crosstalk with astrocytes and immune cells in amyotrophic lateral sclerosis. Front. Immunol. 14:1223096. 10.3389/fimmu.2023.1223096 PubMed DOI PMC
Camacho-Soto A., Warden M. N., Searles Nielsen S., Salter A., Brody D. L., Prather H., et al. (2017). Traumatic brain injury in the prodromal period of Parkinson’s disease: A large epidemiological study using medicare data. Ann. Neurol. 82 744–754. 10.1002/ana.25074 PubMed DOI PMC
Campolo M., Crupi R., Cordaro M., Cardali S. M., Ardizzone A., Casili G., et al. (2021). Co-Ultra PEALut enhances endogenous repair response following moderate traumatic brain injury. Int. J. Mol. Sci. 22:8717. 10.3390/ijms22168717 PubMed DOI PMC
Campos-Pires R., Koziakova M., Yonis A., Pau A., Macdonald W., Harris K., et al. (2018). Xenon protects against blast-induced traumatic brain injury in an in vitro model. J. Neurotrauma 35 1037–1044. 10.1089/neu.2017.5360 PubMed DOI PMC
Campos-Pires R., Ong B. E., Koziakova M., Ujvari E., Fuller I., Boyles C., et al. (2023). Repetitive, but not single, mild blast TBI causes persistent neurological impairments and selective cortical neuronal loss in rats. Brain Sci. 13:1298. 10.3390/brainsci13091298 PubMed DOI PMC
Capizzi A., Woo J., Verduzco-Gutierrez M. (2020). Traumatic brain injury: An overview of epidemiology, pathophysiology, and medical management. Med. Clin. North Am. 104 213–238. 10.1016/j.mcna.2019.11.001 PubMed DOI
Caplan H. W., Cardenas F., Gudenkauf F., Zelnick P., Xue H., Cox C. S., et al. (2020). Spatiotemporal distribution of microglia after traumatic brain injury in male mice. ASN Neuro. 12:1759091420911770. 10.1177/1759091420911770 PubMed DOI PMC
Cargnello M., Roux P. P. (2011). Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol. Mol. Biol. Rev. 75 50–83. 10.1128/MMBR.00031-10 PubMed DOI PMC
Castejon O. J. (1998). Morphological astrocytic changes in complicated human brain trauma. A light and electron microscopic study. Brain Inj. 12 409–427. 10.1080/026990598122539 PubMed DOI
Castro L., Noelia M., Vidal-Jorge M., Sanchez-Ortiz D., Gandara D., Martinez-Saez E., et al. (2019). Kir6.2, the pore-forming subunit of ATP-Sensitive K(+) channels, is overexpressed in human posttraumatic brain contusions. J. Neurotrauma 36 165–175. 10.1089/neu.2017.5619 PubMed DOI PMC
Chamoun R., Suki D., Gopinath S. P., Goodman J. C., Robertson C. (2010). Role of extracellular glutamate measured by cerebral microdialysis in severe traumatic brain injury. J. Neurosurg. 113 564–570. 10.3171/2009.12.JNS09689 PubMed DOI PMC
Chanti-Ketterl M., Pieper C. F., Yaffe K., Plassman B. L. (2023). Associations between traumatic brain injury and cognitive decline among older male veterans: A twin study. Neurology 101 e1761–e1770. 10.1212/WNL.0000000000207819 PubMed DOI PMC
Chapman J., Fielder E., Passos J. F. (2019). Mitochondrial dysfunction and cell senescence: deciphering a complex relationship. FEBS Lett. 593 1566–1579. 10.1002/1873-3468.13498 PubMed DOI
Chen M., Dong Y., Simard J. M. (2003). Functional coupling between sulfonylurea receptor type 1 and a non-selective cation channel in reactive astrocytes from adult rat brain. J. Neurosci. 23 8568–8577. 10.1523/JNEUROSCI.23-24-08568.2003 PubMed DOI PMC
Chen M., Simard J. M. (2001). Cell swelling and a non-selective cation channel regulated by internal Ca2 + and ATP in native reactive astrocytes from adult rat brain. J. Neurosci. 21 6512–6521. 10.1523/JNEUROSCI.21-17-06512.2001 PubMed DOI PMC
Chen Y. C., Ma N. X., Pei Z. F., Wu Z., Do-Monte F. H., Keefe S., et al. (2020). A NeuroD1 AAV-based gene therapy for functional brain repair after ischemic injury through in vivo astrocyte-to-neuron conversion. Mol. Ther. 28 217–234. 10.1016/j.ymthe.2019.09.003 PubMed DOI PMC
Chen Z., Tortella F. C., Dave J. R., Marshall V. S., Clarke D. L., Sing G., et al. (2009). Human amnion-derived multipotent progenitor cell treatment alleviates traumatic brain injury-induced axonal degeneration. J. Neurotrauma 26 1987–1997. 10.1089/neu.2008.0863 PubMed DOI
Chen Z. J., Negra M., Levine A., Ughrin Y., Levine J. M. (2002). Oligodendrocyte precursor cells: reactive cells that inhibit axon growth and regeneration. J. Neurocytol. 31 481–495. 10.1023/a:1025791614468 PubMed DOI
Cherian L., Hlatky R., Robertson C. S. (2004). Nitric oxide in traumatic brain injury. Brain Pathol. 14 195–201. 10.1111/j.1750-3639.2004.tb00053.x PubMed DOI PMC
Cherry J. D., Tripodis Y., Alvarez V. E., Huber B., Kiernan P. T., Daneshvar D. H., et al. (2016). Microglial neuroinflammation contributes to tau accumulation in chronic traumatic encephalopathy. Acta Neuropathol. Commun. 4:112. 10.1186/s40478-016-0382-8 PubMed DOI PMC
Chini C., Hogan K. A., Warner G. M., Tarrago M. G., Peclat T. R., Tchkonia T., et al. (2019). The NADase CD38 is induced by factors secreted from senescent cells providing a potential link between senescence and age-related cellular NAD(+) decline. Biochem Biophys. Res. Commun. 513 486–493. 10.1016/j.bbrc.2019.03.199 PubMed DOI PMC
Chmelova M., Sucha P., Bochin M., Vorisek I., Pivonkova H., Hermanova Z., et al. (2019). The role of aquaporin-4 and transient receptor potential vaniloid isoform 4 channels in the development of cytotoxic edema and associated extracellular diffusion parameter changes. Eur. J. Neurosci. 50 1685–1699. 10.1111/ejn.14338 PubMed DOI
Chopra S., Shaw M., Shaw T., Sachdev P. S., Anstey K. J., Cherbuin N. (2018). More highly myelinated white matter tracts are associated with faster processing speed in healthy adults. Neuroimage 171 332–340. 10.1016/j.neuroimage.2017.12.069 PubMed DOI
Clark R. S., Chen J., Watkins S. C., Kochanek P. M., Chen M., Stetler R. A., et al. (1997). Apoptosis-suppressor gene bcl-2 expression after traumatic brain injury in rats. J. Neurosci. 17 9172–9182. 10.1523/JNEUROSCI.17-23-09172.1997 PubMed DOI PMC
Clark R. S., Kochanek P. M., Watkins S. C., Chen M., Dixon C. E., Seidberg N. A., et al. (2000). Caspase-3 mediated neuronal death after traumatic brain injury in rats. J. Neurochem. 74 740–753. 10.1046/j.1471-4159.2000.740740.x PubMed DOI
Clarke L. E., Liddelow S. A., Chakraborty C., Munch A. E., Heiman M., Barres B. A. (2018). Normal aging induces A1-like astrocyte reactivity. Proc. Natl. Acad. Sci. U. S. A. 115 E1896–E1905. 10.1073/pnas.1800165115 PubMed DOI PMC
Clausen F., Hanell A., Israelsson C., Hedin J., Ebendal T., Mir A. K., et al. (2011). Neutralization of interleukin-1beta reduces cerebral edema and tissue loss and improves late cognitive outcome following traumatic brain injury in mice. Eur. J. Neurosci. 34 110–123. 10.1111/j.1460-9568.2011.07723.x PubMed DOI
Cohen J., Torres C. (2019). Astrocyte senescence: Evidence and significance. Aging Cell 18 e12937. 10.1111/acel.12937 PubMed DOI PMC
Conti A. C., Raghupathi R., Trojanowski J. Q., McIntosh T. K. (1998). Experimental brain injury induces regionally distinct apoptosis during the acute and delayed post-traumatic period. J. Neurosci. 18 5663–5672. 10.1523/JNEUROSCI.18-15-05663.1998 PubMed DOI PMC
Cornelius C., Crupi R., Calabrese V., Graziano A., Milone P., Pennisi G., et al. (2013). Traumatic brain injury: oxidative stress and neuroprotection. Antioxid. Redox Signal 19 836–853. 10.1089/ars.2012.4981 PubMed DOI
Corrigan F., Wee I. C., Collins-Praino L. E. (2023). Chronic motor performance following different traumatic brain injury severity-A systematic review. Front. Neurol. 14:1180353. 10.3389/fneur.2023.1180353 PubMed DOI PMC
Cuenda A., Rousseau S. (2007). p38 MAP-kinases pathway regulation, function and role in human diseases. Biochim. Biophys. Acta 1773 1358–1375. 10.1016/j.bbamcr.2007.03.010 PubMed DOI
Culley D. J., Cotran E. K., Karlsson E., Palanisamy A., Boyd J. D., Xie Z., et al. (2013). Isoflurane affects the cytoskeleton but not survival, proliferation, or synaptogenic properties of rat astrocytes in vitro. Br. J. Anaesth. 110 Suppl i19–i28. 10.1093/bja/aet169 PubMed DOI PMC
Dagher N. N., Najafi A. R., Kayala K. M., Elmore M. R., White T. E., Medeiros R., et al. (2015). Colony-stimulating factor 1 receptor inhibition prevents microglial plaque association and improves cognition in 3xTg-AD mice. J. Neuroinflammation 12:139. 10.1186/s12974-015-0366-9 PubMed DOI PMC
Davalos D., Grutzendler J., Yang G., Kim J. V., Zuo Y., Jung S., et al. (2005). ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci. 8 752–758. 10.1038/nn1472 PubMed DOI
de Boer E. M. J., Orie V. K., Williams T., Baker M. R., De Oliveira H. M., Polvikoski T., et al. (2020). TDP-43 proteinopathies: a new wave of neurodegenerative diseases. J. Neurol. Neurosurg. Psychiatry 92 86–95. 10.1136/jnnp-2020-322983 PubMed DOI PMC
Delic V., Beck K. D., Pang K. C. H., Citron B. A. (2020). Biological links between traumatic brain injury and Parkinson’s disease. Acta Neuropathol. Commun. 8:45. 10.1186/s40478-020-00924-7 PubMed DOI PMC
Deng Y., Jiang X., Deng X., Chen H., Xu J., Zhang Z., et al. (2020). Pioglitazone ameliorates neuronal damage after traumatic brain injury via the PPARgamma/NF-kappaB/IL-6 signaling pathway. Genes Dis. 7 253–265. 10.1016/j.gendis.2019.05.002 PubMed DOI PMC
Dent K. A., Christie K. J., Bye N., Basrai H. S., Turbic A., Habgood M., et al. (2015). Oligodendrocyte birth and death following traumatic brain injury in adult mice. PLoS One 10:e0121541. 10.1371/journal.pone.0121541 PubMed DOI PMC
Deshetty U. M., Periyasamy P. (2023). Potential biomarkers in experimental animal models for traumatic brain injury. J. Clin. Med. 12:3923. 10.3390/jcm12123923 PubMed DOI PMC
Dewan M. C., Rattani A., Gupta S., Baticulon R. E., Hung Y. C., Punchak M., et al. (2018). Estimating the global incidence of traumatic brain injury. J. Neurosurg 130 1080–1097. 10.3171/2017.10.JNS17352 PubMed DOI
DeWitt D. S., Hawkins B. E., Dixon C. E., Kochanek P. M., Armstead W., Bass C. R., et al. (2018). Pre-clinical testing of therapies for traumatic brain injury. J. Neurotrauma 35 2737–2754. 10.1089/neu.2018.5778 PubMed DOI PMC
Dickerson M. R., Bailey Z. S., Murphy S. F., Urban M. J., VandeVord P. J. (2020). Glial activation in the thalamus contributes to vestibulomotor deficits following blast-induced neurotrauma. Front. Neurol. 11:618. 10.3389/fneur.2020.00618 PubMed DOI PMC
Dimou L., Gallo V. (2015). NG2-glia and their functions in the central nervous system. Glia 63 1429–1451. 10.1002/glia.22859 PubMed DOI PMC
Dixon C. E., Kochanek P. M., Yan H. Q., Schiding J. K., Griffith R. G., Baum E., et al. (1999). One-year study of spatial memory performance, brain morphology, and cholinergic markers after moderate controlled cortical impact in rats. J. Neurotrauma 16 109–122. 10.1089/neu.1999.16.109 PubMed DOI
Dixon C. E., Lyeth B. G., Povlishock J. T., Findling R. L., Hamm R. J., Marmarou A., et al. (1987). A fluid percussion model of experimental brain injury in the rat. J. Neurosurg. 67 110–119. 10.3171/jns.1987.67.1.0110 PubMed DOI
Dong H., Zhang Y., Huang Y., Deng H. (2022). Pathophysiology of RAGE in inflammatory diseases. Front. Immunol. 13:931473. 10.3389/fimmu.2022.931473 PubMed DOI PMC
Dong X. X., Wang Y., Qin Z. H. (2009). Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol. Sin. 30 379–387. 10.1038/aps.2009.24 PubMed DOI PMC
Dong Y. X., Zhang H. Y., Li H. Y., Liu P. H., Sui Y., Sun X. H. (2018). Association between Alzheimer’s disease pathogenesis and early demyelination and oligodendrocyte dysfunction. Neural Regen. Res. 13 908–914. 10.4103/1673-5374.232486 PubMed DOI PMC
Donkin J. J., Vink R. (2010). Mechanisms of cerebral edema in traumatic brain injury: therapeutic developments. Curr. Opin. Neurol. 23 293–299. 10.1097/WCO.0b013e328337f451 PubMed DOI
Droge W. (2002). Free radicals in the physiological control of cell function. Physiol. Rev. 82 47–95. 10.1152/physrev.00018.2001 PubMed DOI
Dyck S. M., Karimi-Abdolrezaee S. (2015). Chondroitin sulfate proteoglycans: Key modulators in the developing and pathologic central nervous system. Exp. Neurol. 269 169–187. 10.1016/j.expneurol.2015.04.006 PubMed DOI
Eakin K., Rowe R. K., Lifshitz J. (2015). “Modeling Fluid Percussion Injury: Relevance to Human Traumatic Brain Injury,” in Brain Neurotrauma: Molecular, Neuropsychological, and Rehabilitation Aspects, ed. Kobeissy F. H. (Boca Raton, FL: Taylor and Francis; ). PubMed
Early A. N., Gorman A. A., Van Eldik L. J., Bachstetter A. D., Morganti J. M. (2020). Effects of advanced age upon astrocyte-specific responses to acute traumatic brain injury in mice. J. Neuroinflammation 17:115. 10.1186/s12974-020-01800-w PubMed DOI PMC
Edwards K. A., Gill J. M., Pattinson C. L., Lai C., Briere M., Rogers N. J., et al. (2020). Interleukin-6 is associated with acute concussion in military combat personnel. BMC Neurol. 20:209. 10.1186/s12883-020-01760-x PubMed DOI PMC
Eikelenboom P., van Exel E., Hoozemans J. J., Veerhuis R., Rozemuller A. J., van Gool W. A. (2010). Neuroinflammation - an early event in both the history and pathogenesis of Alzheimer’s disease. Neurodegener. Dis. 7 38–41. 10.1159/000283480 PubMed DOI
Escartin C., Galea E., Lakatos A., O’Callaghan J. P., Petzold G. C., Serrano-Pozo A., et al. (2021). Reactive astrocyte nomenclature, definitions, and future directions. Nat. Neurosci. 24 312–325. 10.1038/s41593-020-00783-4 PubMed DOI PMC
Fan H., Tang H. B., Chen Z., Wang H. Q., Zhang L., Jiang Y., et al. (2020). Inhibiting HMGB1-RAGE axis prevents pro-inflammatory macrophages/microglia polarization and affords neuroprotection after spinal cord injury. J. Neuroinflammation 17:295. 10.1186/s12974-020-01973-4 PubMed DOI PMC
Fan J., Fong T., Chen X., Chen C., Luo P., Xie H. (2018). Glia maturation factor-beta: a potential therapeutic target in neurodegeneration and neuroinflammation. Neuropsychiatr. Dis. Treat. 14 495–504. 10.2147/NDT.S157099 PubMed DOI PMC
Fang Y., Eglen R. M. (2017). Three-dimensional cell cultures in drug discovery and development. SLAS Discov 22 456–472. 10.1177/1087057117696795 PubMed DOI PMC
Faul M., Coronado V. (2015). Epidemiology of traumatic brain injury. Handb. Clin. Neurol. 127 3–13. 10.1016/B978-0-444-52892-6.00001-5 PubMed DOI
Fedor M., Berman R. F., Muizelaar J. P., Lyeth B. G. (2010). Hippocampal theta dysfunction after lateral fluid percussion injury. J. Neurotrauma 27 1605–1615. 10.1089/neu.2010.1370 PubMed DOI PMC
Feeney D. M., Boyeson M. G., Linn R. T., Murray H. M., Dail W. G. (1981). Responses to cortical injury: I. Methodology and local effects of contusions in the rat. Brain Res 211 67–77. 10.1016/0006-8993(81)90067-6 PubMed DOI
Feng X., Jopson T. D., Paladini M. S., Liu S., West B. L., Gupta N., et al. (2016). Colony-stimulating factor 1 receptor blockade prevents fractionated whole-brain irradiation-induced memory deficits. J. Neuroinflammation 13:215. 10.1186/s12974-016-0671-y PubMed DOI PMC
Fernandez-Gajardo R., Matamala J. M., Carrasco R., Gutierrez R., Melo R., Rodrigo R. (2014). Novel therapeutic strategies for traumatic brain injury: acute antioxidant reinforcement. CNS Drugs 28 229–248. 10.1007/s40263-013-0138-y PubMed DOI
Fidan E., Lewis J., Kline A. E., Garman R. H., Alexander H., Cheng J. P., et al. (2016). Repetitive mild traumatic brain injury in the developing brain: effects on long-term functional outcome and neuropathology. J. Neurotrauma 33 641–651. 10.1089/neu.2015.3958 PubMed DOI PMC
Fielder E., von Zglinicki T., Jurk D. (2017). The DNA damage response in neurons: Die by apoptosis or survive in a senescence-like state? J. Alzheimers Dis. 60 S107–S131. 10.3233/JAD-161221 PubMed DOI
Filipi T., Hermanova Z., Tureckova J., Vanatko O., Anderova M. (2020). Glial Cells-The Strategic Targets in Amyotrophic Lateral Sclerosis Treatment. J. Clin. Med. 9:261. 10.3390/jcm9010261 PubMed DOI PMC
Filipi T., Matusova Z., Abaffy P., Vanatko O., Tureckova J., Benesova S., et al. (2023). Cortical glia in SOD1(G93A) mice are subtly affected by ALS-like pathology. Sci. Rep. 13:6538. 10.1038/s41598-023-33608-y PubMed DOI PMC
Fisher E. M. C., Greensmith L., Malaspina A., Fratta P., Hanna M. G., Schiavo G., et al. (2023). Opinion: more mouse models and more translation needed for ALS. Mol Neurodegener. 18:30. 10.1186/s13024-023-00619-2 PubMed DOI PMC
Fitzgerald J., Houle S., Cotter C., Zimomra Z., Martens K. M., Vonder Haar C., et al. (2022). Lateral fluid percussion injury causes sex-specific deficits in anterograde but not retrograde memory. Front. Behav. Neurosci. 16:806598. 10.3389/fnbeh.2022.806598 PubMed DOI PMC
Fleminger S., Oliver D. L., Lovestone S., Rabe-Hesketh S., Giora A. (2003). Head injury as a risk factor for Alzheimer’s disease: the evidence 10 years on; a partial replication. J. Neurol. Neurosurg. Psychiatry 74 857–862. 10.1136/jnnp.74.7.857 PubMed DOI PMC
Floyd C. L., Golden K. M., Black R. T., Hamm R. J., Lyeth B. G. (2002). Craniectomy position affects morris water maze performance and hippocampal cell loss after parasagittal fluid percussion. J. Neurotrauma 19 303–316. 10.1089/089771502753594873 PubMed DOI
Flygt J., Gumucio A., Ingelsson M., Skoglund K., Holm J., Alafuzoff I., et al. (2016). Human traumatic brain injury results in oligodendrocyte death and increases the number of oligodendrocyte progenitor cells. J. Neuropathol. Exp. Neurol. 75 503–515. 10.1093/jnen/nlw025 PubMed DOI
Flygt J., Ruscher K., Norberg A., Mir A., Gram H., Clausen F., et al. (2018). Neutralization of interleukin-1beta following diffuse traumatic brain injury in the mouse attenuates the loss of mature oligodendrocytes. J. Neurotrauma 35 2837–2849. 10.1089/neu.2018.5660 PubMed DOI PMC
Fox G. B., Fan L., Levasseur R. A., Faden A. I. (1998). Sustained sensory/motor and cognitive deficits with neuronal apoptosis following controlled cortical impact brain injury in the mouse. J. Neurotrauma 15 599–614. 10.1089/neu.1998.15.599 PubMed DOI
Fridovich I. (2013). Oxygen: how do we stand it? Med. Princ. Pract. 22 131–137. 10.1159/000339212 PubMed DOI PMC
Fronczak K. M., Roberts A., Svirsky S., Parry M., Holets E., Henchir J., et al. (2022). Assessment of behavioral, neuroinflammatory, and histological responses in a model of rat repetitive mild fluid percussion injury at 2 weeks post-injury. Front. Neurol. 13:945735. 10.3389/fneur.2022.945735 PubMed DOI PMC
Fujimoto S. T., Longhi L., Saatman K. E., Conte V., Stocchetti N., McIntosh T. K. (2004). Motor and cognitive function evaluation following experimental traumatic brain injury. Neurosci. Biobehav. Rev 28 365–378. 10.1016/j.neubiorev.2004.06.002 PubMed DOI
Galgano M., Toshkezi G., Qiu X., Russell T., Chin L., Zhao L. R. (2017). Traumatic brain injury: Current treatment strategies and future endeavors. Cell Transplant 26 1118–1130. 10.1177/0963689717714102 PubMed DOI PMC
Gao W., Guo L., Yang Y., Wang Y., Xia S., Gong H., et al. (2021). Dissecting the crosstalk between Nrf2 and Nf-kappab response pathways in drug-induced toxicity. Front. Cell Dev. Biol. 9:809952. 10.3389/fcell.2021.809952 PubMed DOI PMC
Gao Z., Zhu Q., Zhang Y., Zhao Y., Cai L., Shields C. B., et al. (2013). Reciprocal modulation between microglia and astrocyte in reactive gliosis following the CNS injury. Mol. Neurobiol. 48 690–701. 10.1007/s12035-013-8460-4 PubMed DOI PMC
Gardner R. C., Byers A. L., Barnes D. E., Li Y., Boscardin J., Yaffe K. (2018). Mild TBI and risk of Parkinson disease: A chronic effects of neurotrauma consortium study. Neurology 90 e1771–e1779. 10.1212/WNL.0000000000005522 PubMed DOI PMC
Garza R., Sharma Y., Atacho D. A. M., Thiruvalluvan A., Abu Hamdeh S., Jonsson M. E., et al. (2023). Single-cell transcriptomics of human traumatic brain injury reveals activation of endogenous retroviruses in oligodendroglia. Cell Rep. 42:113395. 10.1016/j.celrep.2023.113395 PubMed DOI
Gerzanich V., Stokum J. A., Ivanova S., Woo S. K., Tsymbalyuk O., Sharma A., et al. (2019). Sulfonylurea receptor 1, transient receptor potential cation channel subfamily m member 4, and KIR6.2: Role in hemorrhagic progression of contusion. J. Neurotrauma 36 1060–1079. 10.1089/neu.2018.5986 PubMed DOI PMC
Goldman S. M., Tanner C. M., Oakes D., Bhudhikanok G. S., Gupta A., Langston J. W. (2006). Head injury and Parkinson’s disease risk in twins. Ann. Neurol. 60 65–72. 10.1002/ana.20882 PubMed DOI
Goodrich J. A., Kim J. H., Situ R., Taylor W., Westmoreland T., Du F., et al. (2016). Neuronal and glial changes in the brain resulting from explosive blast in an experimental model. Acta Neuropathol. Commun. 4:124. 10.1186/s40478-016-0395-3 PubMed DOI PMC
Gorgoraptis N., Zaw-Linn J., Feeney C., Tenorio-Jimenez C., Niemi M., Malik A., et al. (2019). Cognitive impairment and health-related quality of life following traumatic brain injury. NeuroRehabilitation 44 321–331. 10.3233/NRE-182618 PubMed DOI
Grande A., Sumiyoshi K., Lopez-Juarez A., Howard J., Sakthivel B., Aronow B., et al. (2013). Environmental impact on direct neuronal reprogramming in vivo in the adult brain. Nat. Commun. 4:2373. 10.1038/ncomms3373 PubMed DOI PMC
Green R. E., Colella B., Maller J. J., Bayley M., Glazer J., Mikulis D. J. (2014). Scale and pattern of atrophy in the chronic stages of moderate-severe TBI. Front. Hum. Neurosci. 8:67. 10.3389/fnhum.2014.00067 PubMed DOI PMC
Gu D., Ou S., Liu G. (2022). Traumatic brain injury and risk of dementia and Alzheimer’s disease: A systematic review and meta-analysis. Neuroepidemiology 56 4–16. 10.1159/000520966 PubMed DOI
Guan B., Anderson D. B., Chen L., Feng S., Zhou H. (2023). Global, regional and national burden of traumatic brain injury and spinal cord injury, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. BMJ Open 13 e075049. 10.1136/bmjopen-2023-075049 PubMed DOI PMC
Guo Z., Zhang L., Wu Z., Chen Y., Wang F., Chen G. (2014). In vivo direct reprogramming of reactive glial cells into functional neurons after brain injury and in an Alzheimer’s disease model. Cell Stem Cell 14 188–202. 10.1016/j.stem.2013.12.001 PubMed DOI PMC
Gupte R., Brooks W., Vukas R., Pierce J., Harris J. (2019). Sex Differences in Traumatic Brain Injury: What We Know and What We Should Know. J. Neurotrauma 36 3063–3091. 10.1089/neu.2018.6171 PubMed DOI PMC
Gyoneva S., Ransohoff R. M. (2015). Inflammatory reaction after traumatic brain injury: therapeutic potential of targeting cell-cell communication by chemokines. Trends Pharmacol. Sci. 36 471–480. 10.1016/j.tips.2015.04.003 PubMed DOI PMC
Hackett A. R., Yahn S. L., Lyapichev K., Dajnoki A., Lee D. H., Rodriguez M., et al. (2018). Injury type-dependent differentiation of NG2 glia into heterogeneous astrocytes. Exp. Neurol. 308 72–79. 10.1016/j.expneurol.2018.07.001 PubMed DOI PMC
Hakiminia B., Alikiaii B., Khorvash F., Mousavi S. (2022). Oxidative stress and mitochondrial dysfunction following traumatic brain injury: From mechanistic view to targeted therapeutic opportunities. Fundam Clin. Pharmacol. 36 612–662. 10.1111/fcp.12767 PubMed DOI
Hamm R. J., Dixon C. E., Gbadebo D. M., Singha A. K., Jenkins L. W., Lyeth B. G., et al. (1992). Cognitive deficits following traumatic brain injury produced by controlled cortical impact. J. Neurotrauma 9 11–20. 10.1089/neu.1992.9.11 PubMed DOI
Hamm R. J., Pike B. R., Odell D. M., Lyeth B. G., Jenkins L. W. (1994). The Rotarod Test - an Evaluation of Its Effectiveness in Assessing Motor Deficits Following Traumatic Brain Injury. J. Neurotrauma 11 187–196. 10.1089/neu.1994.11.187 PubMed DOI
Hassan S. S. U., Samanta S., Dash R., Karpinski T. M., Habibi E., Sadiq A., et al. (2022). The neuroprotective effects of fisetin, a natural flavonoid in neurodegenerative diseases: Focus on the role of oxidative stress. Front. Pharmacol. 13:1015835. 10.3389/fphar.2022.1015835 PubMed DOI PMC
Head D., Buckner R. L., Shimony J. S., Williams L. E., Akbudak E., Conturo T. E., et al. (2004). Differential vulnerability of anterior white matter in non-demented aging with minimal acceleration in dementia of the Alzheimer type: evidence from diffusion tensor imaging. Cereb. Cortex 14 410–423. 10.1093/cercor/bhh003 PubMed DOI
Heinrich C., Bergami M., Gascon S., Lepier A., Vigano F., Dimou L., et al. (2014). Sox2-mediated conversion of NG2 glia into induced neurons in the injured adult cerebral cortex. Stem Cell Rep. 3 1000–1014. 10.1016/j.stemcr.2014.10.007 PubMed DOI PMC
Heinrich C., Blum R., Gascon S., Masserdotti G., Tripathi P., Sanchez R., et al. (2010). Directing astroglia from the cerebral cortex into subtype specific functional neurons. PLoS Biol. 8:e1000373. 10.1371/journal.pbio.1000373 PubMed DOI PMC
Henry C. J., Huang Y., Wynne A. M., Godbout J. P. (2009). Peripheral lipopolysaccharide (LPS) challenge promotes microglial hyperactivity in aged mice that is associated with exaggerated induction of both pro-inflammatory IL-1beta and anti-inflammatory IL-10 cytokines. Brain Behav. Immun. 23 309–317. 10.1016/j.bbi.2008.09.002 PubMed DOI PMC
Henry R. J., Ritzel R. M., Barrett J. P., Doran S. J., Jiao Y., Leach J. B., et al. (2020). Microglial Depletion with CSF1R Inhibitor During Chronic Phase of Experimental Traumatic Brain Injury Reduces Neurodegeneration and Neurological Deficits. J. Neurosci. 40 2960–2974. 10.1523/JNEUROSCI.2402-19.2020 PubMed DOI PMC
Hentig J., Cloghessy K., Lahne M., Jung Y. J., Petersen R. A., Morris A. C., et al. (2021). Zebrafish Blunt-Force TBI induces heterogenous injury pathologies that mimic human TBI and responds with sonic hedgehog-dependent cell proliferation across the neuroaxis. Biomedicines 9:861. 10.3390/biomedicines9080861 PubMed DOI PMC
Hernandez A., Tan C., Plattner F., Logsdon A. F., Pozo K., Yousuf M. A., et al. (2018). Exposure to mild blast forces induces neuropathological effects, neurophysiological deficits and biochemical changes. Mol. Brain 11:64. 10.1186/s13041-018-0408-1 PubMed DOI PMC
Hernandez I. H., Villa-Gonzalez M., Martin G., Soto M., Perez-Alvarez M. J. (2021). Glial cells as therapeutic approaches in brain ischemia-reperfusion injury. Cells 10:1639. 10.3390/cells10071639 PubMed DOI PMC
Hiebert J. B., Shen Q., Thimmesch A. R., Pierce J. D. (2015). Traumatic brain injury and mitochondrial dysfunction. Am. J. Med. Sci. 350 132–138. 10.1097/MAJ.0000000000000506 PubMed DOI
Higgins G. C., Beart P. M., Shin Y. S., Chen M. J., Cheung N. S., Nagley P. (2010). Oxidative stress: emerging mitochondrial and cellular themes and variations in neuronal injury. J. Alzheimers Dis. 20 S453–S473. 10.3233/JAD-2010-100321 PubMed DOI
Hill R. A., Patel K. D., Goncalves C. M., Grutzendler J., Nishiyama A. (2014). Modulation of oligodendrocyte generation during a critical temporal window after NG2 cell division. Nat. Neurosci. 17 1518–1527. 10.1038/nn.3815 PubMed DOI PMC
Hiskens M. I., Angoa-Perez M., Schneiders A. G., Vella R. K., Fenning A. S. (2019). Modeling sports-related mild traumatic brain injury in animals-A systematic review. J. Neurosci. Res. 97 1194–1222. 10.1002/jnr.24472 PubMed DOI
Hoffman A. N., Watson S. L., Makridis A. S., Patel A. Y., Gonzalez S. T., Ferguson L., et al. (2020). Sex Differences in Behavioral Sensitivities After Traumatic Brain Injury. Front. Neurol. 11:553190. 10.3389/fneur.2020.553190 PubMed DOI PMC
Honsa P., Valny M., Kriska J., Matuskova H., Harantova L., Kirdajova D., et al. (2016). Generation of reactive astrocytes from NG2 cells is regulated by sonic hedgehog. Glia 64 1518–1531. 10.1002/glia.23019 PubMed DOI
Hotta N., Aoyama M., Inagaki M., Ishihara M., Miura Y., Tada T., et al. (2005). Expression of glia maturation factor beta after cryogenic brain injury. Brain Res. Mol. Brain Res. 133 71–77. 10.1016/j.molbrainres.2004.09.027 PubMed DOI
Huber B. R., Meabon J. S., Hoffer Z. S., Zhang J., Hoekstra J. G., Pagulayan K. F., et al. (2016). Blast exposure causes dynamic microglial/macrophage responses and microdomains of brain microvessel dysfunction. Neuroscience 319 206–220. 10.1016/j.neuroscience.2016.01.022 PubMed DOI PMC
Huber B. R., Meabon J. S., Martin T. J., Mourad P. D., Bennett R., Kraemer B. C., et al. (2013). Blast exposure causes early and persistent aberrant phospho- and cleaved-tau expression in a murine model of mild blast-induced traumatic brain injury. J. Alzheimers Dis. 37 309–323. 10.3233/JAD-130182 PubMed DOI PMC
Hughes E. G., Kang S. H., Fukaya M., Bergles D. E. (2013). Oligodendrocyte progenitors balance growth with self-repulsion to achieve homeostasis in the adult brain. Nat. Neurosci. 16 668–676. 10.1038/nn.3390 PubMed DOI PMC
Hughes E. G., Maguire J. L., McMinn M. T., Scholz R. E., Sutherland M. L. (2004). Loss of glial fibrillary acidic protein results in decreased glutamate transport and inhibition of PKA-induced EAAT2 cell surface trafficking. Brain Res. Mol. Brain Res. 124 114–123. 10.1016/j.molbrainres.2004.02.021 PubMed DOI
Hussain S. F., Raza Z., Cash A. T. G., Zampieri T., Mazzoli R. A., Kardon R. H., et al. (2021). Traumatic brain injury and sight loss in military and veteran populations- a review. Mil. Med. Res. 8:42. 10.1186/s40779-021-00334-3 PubMed DOI PMC
Hyder A. A., Wunderlich C. A., Puvanachandra P., Gururaj G., Kobusingye O. C. (2007). The impact of traumatic brain injuries: a global perspective. NeuroRehabilitation 22 341–353. PubMed
Iaccarino C., Carretta A., Nicolosi F., Morselli C. (2018). Epidemiology of severe traumatic brain injury. J. Neurosurg Sci. 62 535–541. 10.23736/S0390-5616.18.04532-0 PubMed DOI
Igarashi T., Potts M. B., Noble-Haeusslein L. J. (2007). Injury severity determines Purkinje cell loss and microglial activation in the cerebellum after cortical contusion injury. Exp. Neurol. 203 258–268. 10.1016/j.expneurol.2006.08.030 PubMed DOI
Ikeda K., Kundu R. K., Ikeda S., Kobara M., Matsubara H., Quertermous T. (2006). Glia maturation factor-gamma is preferentially expressed in microvascular endothelial and inflammatory cells and modulates actin cytoskeleton reorganization. Circ. Res. 99 424–433. 10.1161/01.RES.0000237662.23539.0b PubMed DOI
Illarionova N. B., Gunnarson E., Li Y., Brismar H., Bondar A., Zelenin S., et al. (2010). Functional and molecular interactions between aquaporins and Na,K-ATPase. Neuroscience 168 915–925. 10.1016/j.neuroscience.2009.11.062 PubMed DOI
Irvine K. A., Blakemore W. F. (2008). Remyelination protects axons from demyelination-associated axon degeneration. Brain 131 1464–1477. 10.1093/brain/awn080 PubMed DOI
Izzy S., Liu Q., Fang Z., Lule S., Wu L., Chung J. Y., et al. (2019). Time-dependent changes in microglia transcriptional networks following traumatic brain injury. Front. Cell Neurosci. 13:307. 10.3389/fncel.2019.00307 PubMed DOI PMC
Jafari S., Etminan M., Aminzadeh F., Samii A. (2013). Head injury and risk of Parkinson disease: a systematic review and meta-analysis. Mov. Disord. 28 1222–1229. 10.1002/mds.25458 PubMed DOI
Jain M., Singh M. K., Shyam H., Mishra A., Kumar S., Kumar A., et al. (2021). Role of JAK/STAT in the neuroinflammation and its association with neurological disorders. Ann. Neurosci. 28 191–200. 10.1177/09727531211070532 PubMed DOI PMC
Jain S., Iverson L. M. (2022). “Glasgow coma scale,” in StatPearls. Available online at: https://www.ncbi.nlm.nih.gov/books/NBK513298/ (accessed June 21, 2022). PubMed
Jantti H., Sitnikova V., Ishchenko Y., Shakirzyanova A., Giudice L., Ugidos I. F., et al. (2022). Microglial amyloid beta clearance is driven by PIEZO1 channels. J. Neuroinflammation 19:147. 10.1186/s12974-022-02486-y PubMed DOI PMC
Jassam Y. N., Izzy S., Whalen M., McGavern D. B., El Khoury J. (2017). Neuroimmunology of Traumatic Brain Injury: Time for a Paradigm Shift. Neuron 95 1246–1265. 10.1016/j.neuron.2017.07.010 PubMed DOI PMC
Jayakumar A. R., Panickar K. S., Curtis K. M., Tong X. Y., Moriyama M., Norenberg M. D. (2011). Na-K-Cl cotransporter-1 in the mechanism of cell swelling in cultured astrocytes after fluid percussion injury. J. Neurochem. 117 437–448. 10.1111/j.1471-4159.2011.07211.x PubMed DOI
Jayakumar A. R., Tong X. Y., Ruiz-Cordero R., Bregy A., Bethea J. R., Bramlett H. M., et al. (2014). Activation of NF-kappaB mediates astrocyte swelling and brain edema in traumatic brain injury. J. Neurotrauma 31 1249–1257. 10.1089/neu.2013.3169 PubMed DOI PMC
Jeter C. B., Hergenroeder G. W., Ward N. H., III, Moore A. N., Dash P. K. (2012). Human traumatic brain injury alters circulating L-arginine and its metabolite levels: possible link to cerebral blood flow, extracellular matrix remodeling, and energy status. J. Neurotrauma 29 119–127. 10.1089/neu.2011.2029 PubMed DOI
Jha R. M., Bell J., Citerio G., Hemphill J. C., Kimberly W. T., Narayan R. K., et al. (2020). Role of Sulfonylurea Receptor 1 and Glibenclamide in Traumatic Brain Injury: A Review of the Evidence. Int. J. Mol. Sci. 21:409. 10.3390/ijms21020409 PubMed DOI PMC
Jha R. M., Rani A., Desai S. M., Raikwar S., Mihaljevic S., Munoz-Casabella A., et al. (2021). Sulfonylurea Receptor 1 in Central Nervous System Injury: An Updated Review. Int. J. Mol. Sci. 22:11899. 10.3390/ijms222111899 PubMed DOI PMC
Jiang H., Wang Y., Liang X., Xing X., Xu X., Zhou C. (2018). Toll-Like Receptor 4 Knockdown Attenuates Brain Damage and Neuroinflammation After Traumatic Brain Injury via Inhibiting Neuronal Autophagy and Astrocyte Activation. Cell Mol. Neurobiol. 38 1009–1019. 10.1007/s10571-017-0570-5 PubMed DOI
Johann S., Beyer C. (2013). Neuroprotection by gonadal steroid hormones in acute brain damage requires cooperation with astroglia and microglia. J. Steroid. Biochem. Mol. Biol. 137 71–81. 10.1016/j.jsbmb.2012.11.006 PubMed DOI
Johnson N. H., de Rivero Vaccari J. P., Bramlett H. M., Keane R. W., Dietrich W. D. (2023). Inflammasome activation in traumatic brain injury and Alzheimer’s disease. Transl. Res. 254 1–12. 10.1016/j.trsl.2022.08.014 PubMed DOI PMC
Johnson V. E., Stewart J. E., Begbie F. D., Trojanowski J. Q., Smith D. H., Stewart W. (2013a). Inflammation and white matter degeneration persist for years after a single traumatic brain injury. Brain 136 28–42. 10.1093/brain/aws322 PubMed DOI PMC
Johnson V. E., Stewart W., Smith D. H. (2013b). Axonal pathology in traumatic brain injury. Exp. Neurol. 246 35–43. 10.1016/j.expneurol.2012.01.013 PubMed DOI PMC
Kalluri R., LeBleu V. S. (2020). The biology, function, and biomedical applications of exosomes. Science 367:aau6977. 10.1126/science.aau6977 PubMed DOI PMC
Kang S. H., Fukaya M., Yang J. K., Rothstein J. D., Bergles D. E. (2010). NG2 + CNS glial progenitors remain committed to the oligodendrocyte lineage in postnatal life and following neurodegeneration. Neuron 68 668–681. 10.1016/j.neuron.2010.09.009 PubMed DOI PMC
Kapoor S., Kim S. M., Farook J. M., Mir S., Saha R., Sen N. (2013). Foxo3a transcriptionally upregulates AQP4 and induces cerebral edema following traumatic brain injury. J. Neurosci. 33 17398–17403. 10.1523/JNEUROSCI.2756-13.2013 PubMed DOI PMC
Karlander M., Ljungqvist J., Zelano J. (2021). Post-traumatic epilepsy in adults: a nationwide register-based study. J. Neurol. Neurosurg. Psychiatry 92 617–621. 10.1136/jnnp-2020-325382 PubMed DOI PMC
Karve I. P., Taylor J. M., Crack P. J. (2016). The contribution of astrocytes and microglia to traumatic brain injury. Br. J. Pharmacol. 173 692–702. 10.1111/bph.13125 PubMed DOI PMC
Katzenberger R. J., Loewen C. A., Wassarman D. R., Petersen A. J., Ganetzky B., Wassarman D. A. (2013). A Drosophila model of closed head traumatic brain injury. Proc. Natl. Acad. Sci. U. S. A. 110 E4152–E4159. 10.1073/pnas.1316895110 PubMed DOI PMC
Kelley N., Jeltema D., Duan Y., He Y. (2019). The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation. Int. J. Mol. Sci. 20 3328. 10.3390/ijms20133328 PubMed DOI PMC
Kernie S. G., Erwin T. M., Parada L. F. (2001). Brain remodeling due to neuronal and astrocytic proliferation after controlled cortical injury in mice. J. Neurosci. Res. 66 317–326. 10.1002/jnr.10013 PubMed DOI
Khayatan D., Razavi S. M., Arab Z. N., Niknejad A. H., Nouri K., Momtaz S., et al. (2022). Protective effects of curcumin against traumatic brain injury. Biomed. Pharmacother. 154:113621. 10.1016/j.biopha.2022.113621 PubMed DOI
Kim Y., Park J., Choi Y. K. (2019). The role of astrocytes in the central nervous system focused on BK channel and heme oxygenase metabolites: A review. Antioxidants 8:121. 10.3390/antiox8050121 PubMed DOI PMC
Kim Y. S., Jung H. M., Yoon B. E. (2018). Exploring glia to better understand Alzheimer’s disease. Anim. Cells Syst. 22 213–218. 10.1080/19768354.2018.1508498 PubMed DOI PMC
King Z. A., Sheth K. N., Kimberly W. T., Simard J. M. (2018). Profile of intravenous glyburide for the prevention of cerebral edema following large hemispheric infarction: evidence to date. Drug Des. Devel Ther. 12 2539–2552. 10.2147/DDDT.S150043 PubMed DOI PMC
Kinney J. W., Bemiller S. M., Murtishaw A. S., Leisgang A. M., Salazar A. M., Lamb B. T. (2018). Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dement. 4 575–590. 10.1016/j.trci.2018.06.014 PubMed DOI PMC
Kitchen P., Salman M. M., Halsey A. M., Clarke-Bland C., MacDonald J. A., Ishida H., et al. (2020). Targeting Aquaporin-4 Subcellular Localization to Treat Central Nervous System Edema. Cell 78 e719. 10.1016/j.cell.2020.03.037 PubMed DOI PMC
Kochanek P. M., Wallisch J. S., Bayir H., Clark R. S. B. (2017). Pre-clinical models in pediatric traumatic brain injury-challenges and lessons learned. Childs Nerv. Syst. 33 1693–1701. 10.1007/s00381-017-3474-2 PubMed DOI PMC
Kodali M., Madhu L. N., Reger R. L., Milutinovic B., Upadhya R., Gonzalez J. J., et al. (2023). Intranasally administered human MSC-derived extracellular vesicles inhibit NLRP3-p38/MAPK signaling after TBI and prevent chronic brain dysfunction. Brain Behav. Immun. 108 118–134. 10.1016/j.bbi.2022.11.014 PubMed DOI PMC
Kofler B., Bulleyment A., Humphries A., Carter D. A. (2002). Id-1 expression defines a subset of vimentin/S-100beta-positive. GFAP-negative astrocytes in the adult rat pineal gland. Histochem. J. 34 167–171. 10.1023/a:1020946631937 PubMed DOI
Kohanbash G., Okada H. (2012). MicroRNAs and STAT interplay. Semin. Cancer Biol. 22 70–75. 10.1016/j.semcancer.2011.12.010 PubMed DOI PMC
Kong L. Z., Zhang R. L., Hu S. H., Lai J. B. (2022). Military traumatic brain injury: a challenge straddling neurology and psychiatry. Mil. Med. Res. 9:2. 10.1186/s40779-021-00363-y PubMed DOI PMC
Korbecki J., Bobinski R., Dutka M. (2019). Self-regulation of the inflammatory response by peroxisome proliferator-activated receptors. Inflamm. Res. 68 443–458. 10.1007/s00011-019-01231-1 PubMed DOI PMC
Kosari-Nasab M., Shokouhi G., Ghorbanihaghjo A., Mesgari-Abbasi M., Salari A. A. (2019). Quercetin mitigates anxiety-like behavior and normalizes hypothalamus-pituitary-adrenal axis function in a mouse model of mild traumatic brain injury. Behav. Pharmacol. 30 282–289. 10.1097/FBP.0000000000000480 PubMed DOI
Kovac S., Angelova P. R., Holmstrom K. M., Zhang Y., Dinkova-Kostova A. T., Abramov A. Y. (2015). Nrf2 regulates ROS production by mitochondria and NADPH oxidase. Biochim. Biophys. Acta 1850 794–801. 10.1016/j.bbagen.2014.11.021 PubMed DOI PMC
Kramer-Albers E. M., Bretz N., Tenzer S., Winterstein C., Mobius W., Berger H., et al. (2007). Oligodendrocytes secrete exosomes containing major myelin and stress-protective proteins: Trophic support for axons? Proteomics Clin. Appl. 1 1446–1461. 10.1002/prca.200700522 PubMed DOI
Krieg J. L., Leonard A. V., Tuner R. J., Corrigan F. (2023). Characterization of Traumatic Brain Injury in a Gyrencephalic Ferret Model Using the Novel Closed Head Injury Model of Engineered Rotational Acceleration (CHIMERA). Neurotrauma Rep. 4 761–780. 10.1089/neur.2023.0047 PubMed DOI PMC
Kritsilis M. S. V. R., Koutsoudaki P. N., Evangelou K., Gorgoulis V. G., Papadopoulos D. (2018). Ageing, Cellular Senescence and Neurodegenerative Disease. Int. J. Mol. Sci. 19:2937. 10.3390/ijms19102937 PubMed DOI PMC
Kumar A., Stoica B. A., Loane D. J., Yang M., Abulwerdi G., Khan N., et al. (2017). Microglial-derived microparticles mediate neuroinflammation after traumatic brain injury. J. Neuroinflammation 14:47. 10.1186/s12974-017-0819-4 PubMed DOI PMC
Kumar A., Stoica B. A., Sabirzhanov B., Burns M. P., Faden A. I., Loane D. J. (2013). Traumatic brain injury in aged animals increases lesion size and chronically alters microglial/macrophage classical and alternative activation states. Neurobiol. Aging 34 1397–1411. 10.1016/j.neurobiolaging.2012.11.013 PubMed DOI PMC
Kumar R. G., Diamond M. L., Boles J. A., Berger R. P., Tisherman S. A., Kochanek P. M., et al. (2015). Acute CSF interleukin-6 trajectories after TBI: associations with neuroinflammation, polytrauma, and outcome. Brain Behav. Immun. 45 253–262. 10.1016/j.bbi.2014.12.021 PubMed DOI
Kumari M., Arora P., Sharma P., Hasija Y., Rana P., D’Souza M. M., et al. (2023). Acute metabolic alterations in the hippocampus are associated with decreased acetylation after blast induced TBI. Metabolomics 19:5. 10.1007/s11306-022-01970-z PubMed DOI
Laird M. D., Shields J. S., Sukumari-Ramesh S., Kimbler D. E., Fessler R. D., Shakir B., et al. (2014). High mobility group box protein-1 promotes cerebral edema after traumatic brain injury via activation of toll-like receptor 4. Glia 62 26–38. 10.1002/glia.22581 PubMed DOI PMC
Lan Y. L., Wang X., Zou Y. J., Xing J. S., Lou J. C., Zou S., et al. (2019). Bazedoxifene protects cerebral autoregulation after traumatic brain injury and attenuates impairments in blood-brain barrier damage: involvement of anti-inflammatory pathways by blocking MAPK signaling. Inflamm. Res. 68 311–323. 10.1007/s00011-019-01217-z PubMed DOI
Lang B., Liu H. L., Liu R., Feng G. D., Jiao X. Y., Ju G. (2004). Astrocytes in injured adult rat spinal cord may acquire the potential of neural stem cells. Neuroscience 128 775–783. 10.1016/j.neuroscience.2004.06.033 PubMed DOI
Langlois J. A., Rutland-Brown W., Wald M. M. (2006). The epidemiology and impact of traumatic brain injury: a brief overview. J. Head Trauma Rehabil. 21 375–378. 10.1097/00001199-200609000-00001 PubMed DOI
LaPak K. M., Burd C. E. (2014). The molecular balancing act of p16(INK4a) in cancer and aging. Mol. Cancer Res. 12 167–183. 10.1158/1541-7786.MCR-13-0350 PubMed DOI PMC
Lee C. Y., Landreth G. E. (2010). The role of microglia in amyloid clearance from the AD brain. J. Neural Transm. 117 949–960. 10.1007/s00702-010-0433-4 PubMed DOI PMC
Lehmann C., Bette S., Engele J. (2009). High extracellular glutamate modulates expression of glutamate transporters and glutamine synthetase in cultured astrocytes. Brain Res. 1297 1–8. 10.1016/j.brainres.2009.08.070 PubMed DOI
Lei P., Li Y., Chen X., Yang S., Zhang J. (2009). Microarray based analysis of microRNA expression in rat cerebral cortex after traumatic brain injury. Brain Res. 1284 191–201. 10.1016/j.brainres.2009.05.074 PubMed DOI
Leng Y., Byers A. L., Barnes D. E., Peltz C. B., Li Y., Yaffe K. (2021). Traumatic Brain Injury and Incidence Risk of Sleep Disorders in Nearly 200,000 US Veterans. Neurology 96 e1792–e1799. 10.1212/WNL.0000000000011656 PubMed DOI PMC
Leo P., McCrea M. (2016). “Epidemiology,” in Translational Research in Traumatic Brain Injury, eds Laskowitz D., Grant G. (Boca Raton, FL: Taylor and Francis; ). PubMed
Lerouet D., Marchand-Leroux C., Besson V. C. (2021). Neuropharmacology in traumatic brain injury: from preclinical to clinical neuroprotection? Fundam. Clin. Pharmacol. 35 524–538. 10.1111/fcp.12656 PubMed DOI PMC
Levine J. M. (1994). Increased expression of the NG2 chondroitin-sulfate proteoglycan after brain injury. J. Neurosci. 14 4716–4730. 10.1523/JNEUROSCI.14-08-04716.1994 PubMed DOI PMC
Lewen A., Matz P., Chan P. H. (2000). Free radical pathways in CNS injury. J. Neurotrauma 17 871–890. 10.1089/neu.2000.17.871 PubMed DOI
Li D., Huang B., Liu J., Li L., Li X. (2013). Decreased brain K(ATP) channel contributes to exacerbating ischemic brain injury and the failure of neuroprotection by sevoflurane post-conditioning in diabetic rats. PLoS One 8:e73334. 10.1371/journal.pone.0073334 PubMed DOI PMC
Li G., Duan L., Yang F., Yang L., Deng Y., Yu Y., et al. (2022a). Curcumin suppress inflammatory response in traumatic brain injury via p38/MAPK signaling pathway. Phytother. Res. 36 1326–1337. 10.1002/ptr.7391 PubMed DOI
Li Y. F., Ren X., Zhang L., Wang Y. H., Chen T. (2022b). Microglial polarization in TBI: Signaling pathways and influencing pharmaceuticals. Front. Aging Neurosci. 14:901117. 10.3389/fnagi.2022.901117 PubMed DOI PMC
Li W., He Y., Zhang R., Zheng G., Zhou D. (2019). The curcumin analog EF24 is a novel senolytic agent. Aging 11 771–782. 10.18632/aging.101787 PubMed DOI PMC
Li X., Wang H., Gao Y., Li L., Tang C., Wen G., et al. (2016). Protective Effects of Quercetin on Mitochondrial Biogenesis in Experimental Traumatic Brain Injury via the Nrf2 Signaling Pathway. PLoS One 11:e0164237. 10.1371/journal.pone.0164237 PubMed DOI PMC
Li Y., Li Y., Li X., Zhang S., Zhao J., Zhu X., et al. (2017). Head Injury as a Risk Factor for Dementia and Alzheimer’s Disease: A Systematic Review and Meta-Analysis of 32 Observational Studies. PLoS One 12:e0169650. 10.1371/journal.pone.0169650 PubMed DOI PMC
Lian L., Liu M., Cui L., Guan Y., Liu T., Cui B., et al. (2019). Environmental risk factors and amyotrophic lateral sclerosis (ALS): A case-control study of ALS in China. J. Clin. Neurosci. 66 12–18. 10.1016/j.jocn.2019.05.036 PubMed DOI
Liddelow S. A., Barres B. A. (2017). Reactive astrocytes: Production, function, and therapeutic potential. Immunity 46 957–967. 10.1016/j.immuni.2017.06.006 PubMed DOI
Liddelow S. A., Guttenplan K. A., Clarke L. E., Bennett F. C., Bohlen C. J., Schirmer L., et al. (2017). Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541 481–487. 10.1038/nature21029 PubMed DOI PMC
Lim R., Zaheer A. (1996). In vitro enhancement of p38 mitogen-activated protein kinase activity by phosphorylated glia maturation factor. J. Biol. Chem. 271 22953–22956. 10.1074/jbc.271.38.22953 PubMed DOI
Limbad C., Oron T. R., Alimirah F., Davalos A. R., Tracy T. E., Gan L., et al. (2020). Astrocyte senescence promotes glutamate toxicity in cortical neurons. PLoS One 15:e0227887. 10.1371/journal.pone.0227887 PubMed DOI PMC
Lindner M. D., Plone M. A., Cain C. K., Frydel B., Francis J. M., Emerich D. F., et al. (1998). Dissociable long-term cognitive deficits after frontal versus sensorimotor cortical contusions. J. Neurotrauma 15 199–216. 10.1089/neu.1998.15.199 PubMed DOI
Litwiniuk A., Juszczak G. R., Stankiewicz A. M., Urbanska K. (2023). The role of glial autophagy in Alzheimer’s disease. Mol. Psychiatry 10.1038/s41380-023-02242-5 [Epub ahead of print]. PubMed DOI
Liu Y., Miao Q., Yuan J., Han S., Zhang P., Li S., et al. (2015). Ascl1 Converts Dorsal Midbrain Astrocytes into Functional Neurons In Vivo. J. Neurosci. 35 9336–9355. 10.1523/JNEUROSCI.3975-14.2015 PubMed DOI PMC
Loane D. J., Kumar A., Stoica B. A., Cabatbat R., Faden A. I. (2014). Progressive neurodegeneration after experimental brain trauma: association with chronic microglial activation. J. Neuropathol. Exp. Neurol. 73 14–29. 10.1097/NEN.0000000000000021 PubMed DOI PMC
Loboda A., Damulewicz M., Pyza E., Jozkowicz A., Dulak J. (2016). Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol. Life Sci. 73 3221–3247. 10.1007/s00018-016-2223-0 PubMed DOI PMC
Logsdon A. F., Meabon J. S., Cline M. M., Bullock K. M., Raskind M. A., Peskind E. R., et al. (2018). Blast exposure elicits blood-brain barrier disruption and repair mediated by tight junction integrity and nitric oxide dependent processes. Sci. Rep. 8:11344. 10.1038/s41598-018-29341-6 PubMed DOI PMC
Logsdon A. F., Schindler A. G., Meabon J. S., Yagi M., Herbert M. J., Banks W. A., et al. (2020). Nitric oxide synthase mediates cerebellar dysfunction in mice exposed to repetitive blast-induced mild traumatic brain injury. Sci. Rep. 10:9420. 10.1038/s41598-020-66113-7 PubMed DOI PMC
Logsdon A. F., Turner R. C., Lucke-Wold B. P., Robson M. J., Naser Z. J., Smith K. E., et al. (2014). Altering endoplasmic reticulum stress in a model of blast-induced traumatic brain injury controls cellular fate and ameliorates neuropsychiatric symptoms. Front. Cell Neurosci. 8:421. 10.3389/fncel.2014.00421 PubMed DOI PMC
Long J. B., Gordon J., Bettencourt J. A., Bolt S. L. (1996). Laser-Doppler flowmetry measurements of subcortical blood flow changes after fluid percussion brain injury in rats. J. Neurotrauma 13 149–162. 10.1089/neu.1996.13.149 PubMed DOI
Lotocki G., de Rivero Vaccari J., Alonso O., Molano J. S., Nixon R., Dietrich W. D., et al. (2011). Oligodendrocyte Vulnerability Following Traumatic Brain Injury in Rats: Effect of Moderate Hypothermia. Ther. Hypothermia Temp. Manag. 1 43–51. 10.1089/ther.2010.0011 PubMed DOI PMC
Lu Y. C., Liu S., Gong Q. Z., Hamm R. J., Lyeth B. G. (1997). Inhibition of nitric oxide synthase potentiates hypertension and increases mortality in traumatically brain-injured rats. Mol. Chem. Neuropathol. 30 125–137. 10.1007/BF02815154 PubMed DOI
Lucci E. B. (2006). Civilian preparedness and counter-terrorism: conventional weapons. Surg. Clin. North Am. 86 579–600. 10.1016/j.suc.2006.03.001 PubMed DOI
Lund H., Pieber M., Parsa R., Han J., Grommisch D., Ewing E., et al. (2018). Competitive repopulation of an empty microglial niche yields functionally distinct subsets of microglia-like cells. Nat. Commun. 9:4845. 10.1038/s41467-018-07295-7 PubMed DOI PMC
Lund S. B., Gjeilo K. H., Moen K. G., Schirmer-Mikalsen K., Skandsen T., Vik A. (2016). Moderate traumatic brain injury, acute phase course and deviations in physiological variables: an observational study. Scand. J. Trauma Resusc. Emerg. Med. 24:77. 10.1186/s13049-016-0269-5 PubMed DOI PMC
Luo J., Nguyen A., Villeda S., Zhang H., Ding Z., Lindsey D., et al. (2014). Long-term cognitive impairments and pathological alterations in a mouse model of repetitive mild traumatic brain injury. Front. Neurol. 5:12. 10.3389/fneur.2014.00012 PubMed DOI PMC
Ma X., Aravind A., Pfister B. J., Chandra N., Haorah J. (2019). Animal models of traumatic brain injury and assessment of injury severity. Mol. Neurobiol. 56 5332–5345. 10.1007/s12035-018-1454-5 PubMed DOI
Madan S., Kron B., Jin Z., Al Shamy G., Campeau P. M., Sun Q., et al. (2018). Arginase overexpression in neurons and its effect on traumatic brain injury. Mol. Genet. Metab. 125 112–117. 10.1016/j.ymgme.2018.07.007 PubMed DOI PMC
Mader M. M., Czorlich P. (2022). The role of L-arginine metabolism in neurocritical care patients. Neural Regen. Res. 17 1446–1453. 10.4103/1673-5374.327331 PubMed DOI PMC
Madhok D. Y., Rodriguez R. M., Barber J., Temkin N. R., Markowitz A. J., Kreitzer N., et al. (2022). Outcomes in patients with mild traumatic brain injury without acute intracranial traumatic injury. JAMA Netw Open 5:e2223245. 10.1001/jamanetworkopen.2022.23245 PubMed DOI PMC
Mahoney S. O., Chowdhury N. F., Ngo V., Imms P., Irimia A. (2022). Mild traumatic brain injury results in significant and lasting cortical demyelination. Front. Neurol. 13:854396. 10.3389/fneur.2022.854396 PubMed DOI PMC
Manivannan S., Wales E., Zaben M. (2021). The Role of HMGB1 in Traumatic Brain Injury-Bridging the Gap Between the Laboratory and Clinical Studies. Curr. Neurol. Neurosci. Rep. 21:75. 10.1007/s11910-021-01158-3 PubMed DOI
Maragakis N. J., Rothstein J. D. (2006). Mechanisms of Disease: astrocytes in neurodegenerative disease. Nat. Clin. Pract. Neurol. 2 679–689. 10.1038/ncpneuro0355 PubMed DOI
Margulies S. S., Thibault K. L. (2000). Infant skull and suture properties: measurements and implications for mechanisms of pediatric brain injury. J. Biomech. Eng. 122 364–371. 10.1115/1.1287160 PubMed DOI
Marmarou A., Foda M. A., van den Brink W., Campbell J., Kita H., Demetriadou K. (1994). A new model of diffuse brain injury in rats. Part I: Pathophysiology and biomechanics. J. Neurosurg. 80 291–300. 10.3171/jns.1994.80.2.0291 PubMed DOI
Marmarou A., Signoretti S., Fatouros P. P., Portella G., Aygok G. A., Bullock M. R. (2006). Predominance of cellular edema in traumatic brain swelling in patients with severe head injuries. J. Neurosurg. 104 720–730. 10.3171/jns.2006.104.5.720 PubMed DOI
Martinez-Coria H., Arrieta-Cruz I., Gutierrez-Juarez R., Lopez-Valdes H. E. (2023). Anti-inflammatory effects of flavonoids in common neurological disorders associated with aging. Int. J. Mol. Sci. 24:4297. 10.3390/ijms24054297 PubMed DOI PMC
Martinez-Valverde T., Vidal-Jorge M., Martinez-Saez E., Castro L., Arikan F., Cordero E., et al. (2015). Sulfonylurea receptor 1 in humans with post-traumatic brain contusions. J. Neurotrauma 32 1478–1487. 10.1089/neu.2014.3706 PubMed DOI PMC
Matias I., Morgado J., Gomes F. C. A. (2019). Astrocyte Heterogeneity: Impact to Brain Aging and Disease. Front. Aging Neurosci. 11:59. 10.3389/fnagi.2019.00059 PubMed DOI PMC
Mattugini N., Merl-Pham J., Petrozziello E., Schindler L., Bernhagen J., Hauck S. M., et al. (2018). Influence of white matter injury on gray matter reactive gliosis upon stab wound in the adult murine cerebral cortex. Glia 66 1644–1662. 10.1002/glia.23329 PubMed DOI
Mautes A. E., Fukuda K., Noble L. J. (1996). Cellular response in the cerebellum after midline traumatic brain injury in the rat. Neurosci. Lett. 214 95–98. 10.1016/0304-3940(96)12916-5 PubMed DOI
Mayer S., Khakipoor S., Dromer M., Cozetto D. (2019). Single-cell RNA-Sequencing in Neuroscience. Neuroforum 25 251–258. 10.1515/nf-2019-0021 DOI
McDonald B. Z., Gee C. C., Kievit F. M. (2021). The nanotheranostic researcher’s guide for use of animal models of traumatic brain injury. J. Nanotheranostics 2 224–268. 10.3390/jnt2040014 PubMed DOI PMC
McKee A. C., Alosco M. L., Huber B. R. (2016). Repetitive Head Impacts and Chronic Traumatic Encephalopathy. Neurosurg. Clin. N. Am. 27 529–535. 10.1016/j.nec.2016.05.009 PubMed DOI PMC
McKee A. C., Cantu R. C., Nowinski C. J., Hedley-Whyte E. T., Gavett B. E., Budson A. E., et al. (2009). Chronic traumatic encephalopathy in athletes: progressive tauopathy after repetitive head injury. J. Neuropathol. Exp. Neurol. 68 709–735. 10.1097/NEN.0b013e3181a9d503 PubMed DOI PMC
McKee A. C., Daneshvar D. H., Alvarez V. E., Stein T. D. (2014). The neuropathology of sport. Acta Neuropathol. 127 29–51. 10.1007/s00401-013-1230-6 PubMed DOI PMC
McKee A. C., Robinson M. E. (2014). Military-related traumatic brain injury and neurodegeneration. Alzheimers Dement. 3 S242–S253. 10.1016/j.jalz.2014.04.003 PubMed DOI PMC
McNamara E. H., Grillakis A. A., Tucker L. B., McCabe J. T. (2020). The closed-head impact model of engineered rotational acceleration (CHIMERA) as an application for traumatic brain injury pre-clinical research: A status report. Exp. Neurol. 333:113409. 10.1016/j.expneurol.2020.113409 PubMed DOI
Mendes Arent A., de Souza L. F., Walz R., Dafre A. L. (2014). Perspectives on molecular biomarkers of oxidative stress and antioxidant strategies in traumatic brain injury. Biomed. Res. Int. 2014:723060. 10.1155/2014/723060 PubMed DOI PMC
Menzies F. M., Henriquez F. L., Alexander J., Roberts C. W. (2011). Selective inhibition and augmentation of alternative macrophage activation by progesterone. Immunology 134 281–291. 10.1111/j.1365-2567.2011.03488.x PubMed DOI PMC
Mesa Suarez P., Santotoribio J. D., Ramos Ramos V., Gonzalez Garcia M. A., Perez Ramos S., Portilla Huertas D., et al. (2016). [Brain damage after general anesthesia]. Med. Clin. 146 384–388. 10.1016/j.medcli.2016.01.018 PubMed DOI
Michinaga S., Koyama Y. (2021). Pathophysiological Responses and Roles of Astrocytes in Traumatic Brain Injury. Int. J. Mol. Sci. 22:6418. 10.3390/ijms22126418 PubMed DOI PMC
Mielke M. M., Ransom J. E., Mandrekar J., Turcano P., Savica R., Brown A. W. (2022). Traumatic Brain Injury and Risk of Alzheimer’s Disease and Related Dementias in the Population. J. Alzheimers Dis. 88 1049–1059. 10.3233/JAD-220159 PubMed DOI PMC
Miller G. F., DePadilla L., Xu L. (2021). Costs of non-fatal traumatic brain injury in the United States, 2016. Med. Care 59 451–455. 10.1097/MLR.0000000000001511 PubMed DOI PMC
Mills C. D., Kincaid K., Alt J. M., Heilman M. J., Hill A. M. (2000). M-1/M-2 macrophages and the Th1/Th2 paradigm. J. Immunol. 164 6166–6173. 10.4049/jimmunol.164.12.6166 PubMed DOI
Mira R. G., Lira M., Cerpa W. (2021). Traumatic Brain Injury: Mechanisms of Glial Response. Front. Physiol. 12:740939. 10.3389/fphys.2021.740939 PubMed DOI PMC
Miron V. E., Boyd A., Zhao J. W., Yuen T. J., Ruckh J. M., Shadrach J. L., et al. (2013). M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat. Neurosci. 16 1211–1218. 10.1038/nn.3469 PubMed DOI PMC
Mishra V., Skotak M., Schuetz H., Heller A., Haorah J., Chandra N. (2016). Primary blast causes mild, moderate, severe and lethal TBI with increasing blast overpressures: Experimental rat injury model. Sci. Rep. 6:26992. 10.1038/srep26992 PubMed DOI PMC
Miyamoto A., Wake H., Moorhouse A. J., Nabekura J. (2013). Microglia and synapse interactions: fine tuning neural circuits and candidate molecules. Front. Cell Neurosci. 7:70. 10.3389/fncel.2013.00070 PubMed DOI PMC
Miyazawa N., Diksic M., Yamamoto Y. (1995). Chronological study of peripheral benzodiazepine binding sites in the rat brain stab wounds using [3H] PK-11195 as a marker for gliosis. Acta Neurochir. 137 207–216. 10.1007/BF02187195 PubMed DOI
Morgan M. J., Liu Z. G. (2011). Crosstalk of reactive oxygen species and NF-kappaB signaling. Cell Res. 21 103–115. 10.1038/cr.2010.178 PubMed DOI PMC
Morganti J. M., Goulding D. S., Van Eldik L. J. (2019). Deletion of p38alpha MAPK in microglia blunts trauma-induced inflammatory responses in mice. J. Neuroinflammation 16:98. 10.1186/s12974-019-1493-5 PubMed DOI PMC
Mori T., Wang X., Jung J. C., Sumii T., Singhal A. B., Fini M. E., et al. (2002). Mitogen-activated protein kinase inhibition in traumatic brain injury: in vitro and in vivo effects. J. Cereb. Blood Flow Metab. 22 444–452. 10.1097/00004647-200204000-00008 PubMed DOI
Morita A., Jullienne A., Salehi A., Hamer M., Javadi E., Alsarraj Y., et al. (2020). Temporal evolution of heme oxygenase-1 expression in reactive astrocytes and microglia in response to traumatic brain injury. Brain Hemorrhages 1 65–74. 10.1016/j.hest.2020.01.002 PubMed DOI
Moro N., Ghavim S. S., Sutton R. L. (2021). Massive efflux of adenosine triphosphate into the extracellular space immediately after experimental traumatic brain injury. Exp. Ther. Med. 21:575. 10.3892/etm.2021.10007 PubMed DOI PMC
Morris R. (1984). Developments of a water-maze procedure for studying spatial learning in the rat. J. Neurosci. Methods 11 47–60. 10.1016/0165-0270(84)90007-4 PubMed DOI
Morrison G., Fraser D. D., Cepinskas G. (2013). Mechanisms and consequences of acquired brain injury during development. Pathophysiology 20 49–57. 10.1016/j.pathophys.2012.02.006 PubMed DOI
Mukherjee S., Arisi G. M., Mims K., Hollingsworth G., O’Neil K., Shapiro L. A. (2020). Neuroinflammatory mechanisms of post-traumatic epilepsy. J. Neuroinflammation 17:193. 10.1186/s12974-020-01854-w PubMed DOI PMC
Murray H. C., Osterman C., Bell P., Vinnell L., Curtis M. A. (2022). Neuropathology in chronic traumatic encephalopathy: a systematic review of comparative post-mortem histology literature. Acta Neuropathol. Commun. 10:108. 10.1186/s40478-022-01413-9 PubMed DOI PMC
Musi N., Valentine J. M., Sickora K. R., Baeuerle E., Thompson C. S., Shen Q., et al. (2018). Tau protein aggregation is associated with cellular senescence in the brain. Aging Cell. 17 e12840. 10.1111/acel.12840 PubMed DOI PMC
Mychasiuk R., Hehar H., Candy S., Ma I., Esser M. J. (2016). The direction of the acceleration and rotational forces associated with mild traumatic brain injury in rodents effect behavioural and molecular outcomes. J. Neurosci. Methods 257 168–178. 10.1016/j.jneumeth.2015.10.002 PubMed DOI
Nakano M., Tamura Y., Yamato M., Kume S., Eguchi A., Takata K., et al. (2017). NG2 glial cells regulate neuroimmunological responses to maintain neuronal function and survival. Sci. Rep. 7:42041. 10.1038/srep42041 PubMed DOI PMC
Namjoshi D. R., Cheng W. H., McInnes K. A., Martens K. M., Carr M., Wilkinson A., et al. (2014). Merging pathology with biomechanics using CHIMERA (Closed-Head Impact Model of Engineered Rotational Acceleration): a novel, surgery-free model of traumatic brain injury. Mol. Neurodegener. 9:55. 10.1186/1750-1326-9-55 PubMed DOI PMC
Nascimento G. C., Bortolanza M., Bribian A., Leal-Luiz G. C., Raisman-Vozari R., Lopez-Mascaraque L., et al. (2023). Dynamic Involvement of Striatal NG2-glia in L-DOPA Induced Dyskinesia in Parkinsonian Rats: Effects of Doxycycline. ASN Neuro. 15:17590914231155976. 10.1177/17590914231155976 PubMed DOI PMC
Natale J. E., Ahmed F., Cernak I., Stoica B., Faden A. I. (2003). Gene expression profile changes are commonly modulated across models and species after traumatic brain injury. J. Neurotrauma 20 907–927. 10.1089/089771503770195777 PubMed DOI
Neely J. D., Amiry-Moghaddam M., Ottersen O. P., Froehner S. C., Agre P., Adams M. E. (2001). Syntrophin-dependent expression and localization of Aquaporin-4 water channel protein. Proc. Natl. Acad. Sci. U. S. A. 98 14108–14113. 10.1073/pnas.241508198 PubMed DOI PMC
Network B. I. C. C. (2021). A multimodal cell census and atlas of the mammalian primary motor cortex. Nature 598 86–102. 10.1038/s41586-021-03950-0 PubMed DOI PMC
Neusch C., Bahr M., Schneider-Gold C. (2007). Glia cells in amyotrophic lateral sclerosis: new clues to understanding an old disease? Muscle Nerve 35 712–724. 10.1002/mus.20768 PubMed DOI
Ng S. Y., Lee A. Y. W. (2019). Traumatic Brain Injuries: Pathophysiology and Potential Therapeutic Targets. Front. Cell Neurosci. 13:528. 10.3389/fncel.2019.00528 PubMed DOI PMC
Ngo V., Duennwald M. L. (2022). Nrf2 and Oxidative Stress: A General Overview of Mechanisms and Implications in Human Disease. Antioxidants 11:2345. 10.3390/antiox11122345 PubMed DOI PMC
Nichols N. R., Day J. R., Laping N. J., Johnson S. A., Finch C. E. (1993). GFAP mRNA increases with age in rat and human brain. Neurobiol. Aging 14 421–429. 10.1016/0197-4580(93)90100-p PubMed DOI
Nielsen H. M., Ek D., Avdic U., Orbjorn C., Hansson O., Netherlands Brain B., et al. (2013). NG2 cells, a new trail for Alzheimer’s disease mechanisms? Acta Neuropathol. Commun. 1:7. 10.1186/2051-5960-1-7 PubMed DOI PMC
Niu W., Zang T., Zou Y., Fang S., Smith D. K., Bachoo R., et al. (2013). In vivo reprogramming of astrocytes to neuroblasts in the adult brain. Nat. Cell Biol. 15 1164–1175. 10.1038/ncb2843 PubMed DOI PMC
Nordengen K., Kirsebom B. E., Henjum K., Selnes P., Gisladottir B., Wettergreen M., et al. (2019). Glial activation and inflammation along the Alzheimer’s disease continuum. J. Neuroinflammation 16:46. 10.1186/s12974-019-1399-2 PubMed DOI PMC
Norris C., Weatherbee J., Murphy S. F., VandeVord P. J. (2023). Quantifying acute changes in neurometabolism following blast-induced traumatic brain injury. Neurosci. Res. 10.1016/j.neures.2023.06.008 [Epub ahead of print]. PubMed DOI
Nwafor D. C., Brichacek A. L., Foster C. H., Lucke-Wold B. P., Ali A., Colantonio M. A., et al. (2022). Pediatric traumatic brain injury: An update on preclinical models, clinical biomarkers, and the implications of cerebrovascular dysfunction. J. Cent. Nerv. Syst. Dis. 14:11795735221098125. 10.1177/11795735221098125 PubMed DOI PMC
Obenaus A., Rodriguez-Grande B., Lee J. B., Dubois C. J., Fournier M. L., Cador M., et al. (2023). A single mild juvenile TBI in male mice leads to regional brain tissue abnormalities at 12 months of age that correlate with cognitive impairment at the middle age. Acta Neuropathol. Commun. 11:32. 10.1186/s40478-023-01515-y PubMed DOI PMC
O’Brien W. T., Pham L., Symons G. F., Monif M., Shultz S. R., McDonald S. J. (2020). The NLRP3 inflammasome in traumatic brain injury: potential as a biomarker and therapeutic target. J. Neuroinflammation 17:104. 10.1186/s12974-020-01778-5 PubMed DOI PMC
Ojha R. P., Rastogi M., Devi B. P., Agrawal A., Dubey G. P. (2012). Neuroprotective effect of curcuminoids against inflammation-mediated dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease. J. Neuroimmune Pharmacol. 7 609–618. 10.1007/s11481-012-9363-2 PubMed DOI
Okuma Y., Liu K., Wake H., Zhang J., Maruo T., Date I., et al. (2012). Anti-high mobility group box-1 antibody therapy for traumatic brain injury. Ann. Neurol. 72 373–384. 10.1002/ana.23602 PubMed DOI
Ooi S. Z. Y., Spencer R. J., Hodgson M., Mehta S., Phillips N. L., Preest G., et al. (2022). Interleukin-6 as a prognostic biomarker of clinical outcomes after traumatic brain injury: a systematic review. Neurosurg. Rev. 45 3035–3054. 10.1007/s10143-022-01827-y PubMed DOI PMC
Ortega F. J., Jolkkonen J., Rodriguez M. J. (2013). Microglia is an active player in how glibenclamide improves stroke outcome. J. Cereb. Blood Flow Metab. 33 1138–1139. 10.1038/jcbfm.2013.72 PubMed DOI PMC
Osier N., Dixon C. E. (2016). The controlled cortical impact model of experimental brain trauma: overview. Research applications, and protocol. Methods Mol. Biol. 1462 177–192. 10.1007/978-1-4939-3816-2_11 PubMed DOI PMC
Otani N., Nawashiro H., Fukui S., Nomura N., Shima K. (2002). Temporal and spatial profile of phosphorylated mitogen-activated protein kinase pathways after lateral fluid percussion injury in the cortex of the rat brain. J. Neurotrauma 19 1587–1596. 10.1089/089771502762300247 PubMed DOI
Otani N., Nawashiro H., Nagatani K., Takeuchi S., Kobayashi H., Shima K. (2011). Mitogen-Activated Protein Kinase Pathways Following Traumatic Brain Injury. Neurosci. Med. 2 208–216. 10.4236/nm.2011.23028 DOI
Palmer A. M., Marion D. W., Botscheller M. L., Swedlow P. E., Styren S. D., DeKosky S. T. (1993). Traumatic brain injury-induced excitotoxicity assessed in a controlled cortical impact model. J. Neurochem. 61 2015–2024. 10.1111/j.1471-4159.1993.tb07437.x PubMed DOI
Paolicelli R. C., Sierra A., Stevens B., Tremblay M. E., Aguzzi A., Ajami B., et al. (2022). Microglia states and nomenclature: A field at its crossroads. Neuron 110 3458–3483. 10.1016/j.neuron.2022.10.020 PubMed DOI PMC
Paredes I., Navarro B., Lagares A. (2021). Sleep disorders in traumatic brain injury. Neurocirugia 32 178–187. 10.1016/j.neucie.2020.12.001 PubMed DOI
Park E., McKnight S., Ai J., Baker A. J. (2006). Purkinje cell vulnerability to mild and severe forebrain head trauma. J. Neuropathol. Exp. Neurol. 65 226–234. 10.1097/01.jnen.0000202888.29705.93 PubMed DOI
Pang Z. P., Yang N., Vierbuchen T., Ostermeier A., Fuentes D. R., Yang T. Q., et al. (2011). Induction of human neuronal cells by defined transcription factors. Nature 476, 220–223. 10.1038/nature10202 PubMed DOI PMC
Paudel Y. N., Angelopoulou E., Piperi C., Othman I., Shaikh M. F. (2020). HMGB1-Mediated Neuroinflammatory Responses in Brain Injuries: Potential Mechanisms and Therapeutic Opportunities. Int. J. Mol. Sci. 21 4609. 10.3390/ijms21134609 PubMed DOI PMC
Paudel Y. N., Shaikh M. F., Chakraborti A., Kumari Y., Aledo-Serrano A., Aleksovska K., et al. (2018). HMGB1: A common biomarker and potential target for TBI, neuroinflammation, epilepsy, and cognitive dysfunction. Front. Neurosci. 12:628. 10.3389/fnins.2018.00628 PubMed DOI PMC
Pedersen T. J., Keil S. A., Han W., Wang M. X., Iliff J. J. (2023). The effect of aquaporin-4 mis-localization on Abeta deposition in mice. Neurobiol. Dis. 181:106100. 10.1016/j.nbd.2023.106100 PubMed DOI
Peeters W., van den Brande R., Polinder S., Brazinova A., Steyerberg E. W., Lingsma H. F., et al. (2015). Epidemiology of traumatic brain injury in Europe. Acta Neurochir. 157 1683–1696. 10.1007/s00701-015-2512-7 PubMed DOI PMC
Pekny M., Pekna M. (2016). Reactive gliosis in the pathogenesis of CNS diseases. Biochim. Biophys. Acta 1862 483–491. 10.1016/j.bbadis.2015.11.014 PubMed DOI
Penkowa M., Giralt M., Lago N., Camats J., Carrasco J., Hernandez J., et al. (2003). Astrocyte-targeted expression of IL-6 protects the CNS against a focal brain injury. Exp. Neurol. 181 130–148. 10.1016/s0014-4886(02)00051-1 PubMed DOI
Perry V. H., Nicoll J. A., Holmes C. (2010). Microglia in neurodegenerative disease. Nat. Rev. Neurol. 6 193–201. 10.1038/nrneurol.2010.17 PubMed DOI
Philips T., Rothstein J. D. (2014). Glial cells in amyotrophic lateral sclerosis. Exp. Neurol. 262 111–120. 10.1016/j.expneurol.2014.05.015 PubMed DOI PMC
Pierce J. E., Smith D. H., Trojanowski J. Q., McIntosh T. K. (1998). Enduring cognitive, neurobehavioral and histopathological changes persist for up to one year following severe experimental brain injury in rats. Neuroscience 87 359–369. 10.1016/s0306-4522(98)00142-0 PubMed DOI
Pinchi E., Frati P., Arcangeli M., Volonnino G., Tomassi R., Santoro P., et al. (2020). MicroRNAs: The New Challenge for Traumatic Brain Injury Diagnosis. Curr. Neuropharmacol. 18 319–331. PubMed PMC
Piwecka M., Rajewsky N., Rybak-Wolf A. (2023). Single-cell and spatial transcriptomics: deciphering brain complexity in health and disease. Nat. Rev. Neurol. 19 346–362. 10.1038/s41582-023-00809-y PubMed DOI PMC
Plantman S., Ng K. C., Lu J., Davidsson J., Risling M. (2012). Characterization of a novel rat model of penetrating traumatic brain injury. J. Neurotrauma 29 1219–1232. 10.1089/neu.2011.2182 PubMed DOI
Plassman B. L., Havlik R. J., Steffens D. C., Helms M. J., Newman T. N., Drosdick D., et al. (2000). Documented head injury in early adulthood and risk of Alzheimer’s disease and other dementias. Neurology 55 1158–1166. 10.1212/wnl.55.8.1158 PubMed DOI
Pluta R., Furmaga-Jablonska W., Januszewski S., Czuczwar S. J. (2022). Post-ischemic brain neurodegeneration in the form of Alzheimer’s disease proteinopathy: possible therapeutic role of curcumin. Nutrients 14:248. 10.3390/nu14020248 PubMed DOI PMC
Popkirov S., Carson A. J., Stone J. (2018). Scared or scarred: Could ‘dissociogenic’ lesions predispose to non-epileptic seizures after head trauma? Seizure 58 127–132. 10.1016/j.seizure.2018.04.009 PubMed DOI
Poprac P., Jomova K., Simunkova M., Kollar V., Rhodes C. J., Valko M. (2017). Targeting Free Radicals in Oxidative Stress-Related Human Diseases. Trends Pharmacol. Sci. 38 592–607. 10.1016/j.tips.2017.04.005 PubMed DOI
Porchet R., Probst A., Bouras C., Draberova E., Draber P., Riederer B. M. (2003). Analysis of glial acidic fibrillary protein in the human entorhinal cortex during aging and in Alzheimer’s disease. Proteomics 3 1476–1485. 10.1002/pmic.200300456 PubMed DOI
Porebska N., Pozniak M., Matynia A., Zukowska D., Zakrzewska M., Otlewski J., et al. (2021). Galectins as modulators of receptor tyrosine kinases signaling in health and disease. Cytokine Growth Factor Rev. 60 89–106. 10.1016/j.cytogfr.2021.03.004 PubMed DOI
Potolicchio I., Carven G. J., Xu X., Stipp C., Riese R. J., Stern L. J., et al. (2005). Proteomic analysis of microglia-derived exosomes: metabolic role of the aminopeptidase CD13 in neuropeptide catabolism. J. Immunol. 175 2237–2243. 10.4049/jimmunol.175.4.2237 PubMed DOI
Pozojevic J., Spielmann M. (2023). Single-Cell Sequencing in Neurodegenerative Disorders. Mol. Diagn. Ther. 27 553–561. 10.1007/s40291-023-00668-9 PubMed DOI PMC
Qi L., Jacob A., Wang P., Wu R. (2010). Peroxisome proliferator activated receptor-gamma and traumatic brain injury. Int. J. Clin. Exp. Med. 3 283–292. PubMed PMC
Qian X., Song H., Ming G. L. (2019). Brain organoids: advances, applications and challenges. Development 146 dev166074. 10.1242/dev.166074 PubMed DOI PMC
Qin Q., Teng Z., Liu C., Li Q., Yin Y., Tang Y. (2021). TREM2, microglia, and Alzheimer’s disease. Mech. Ageing Dev. 195:111438. 10.1016/j.mad.2021.111438 PubMed DOI
Qiu X., Guo Y., Liu M. F., Zhang B., Li J., Wei J. F., et al. (2023). Single-cell RNA-sequencing analysis reveals enhanced non-canonical neurotrophic factor signaling in the subacute phase of traumatic brain injury. CNS Neurosci. Ther. 29 3446–3459. 10.1111/cns.14278 PubMed DOI PMC
Qu Z., Zheng N., Wei Y., Chen Y., Zhang Y., Zhang M., et al. (2019). Effect of cornel iridoid glycoside on microglia activation through suppression of the JAK/STAT signalling pathway. J. Neuroimmunol. 330 96–107. 10.1016/j.jneuroim.2019.01.014 PubMed DOI
Ralay Ranaivo H., Wainwright M. S. (2010). Albumin activates astrocytes and microglia through mitogen-activated protein kinase pathways. Brain Res. 1313 222–231. 10.1016/j.brainres.2009.11.063 PubMed DOI PMC
Ramos-Cejudo J., Wisniewski T., Marmar C., Zetterberg H., Blennow K., de Leon M. J., et al. (2018). Traumatic Brain Injury and Alzheimer’s Disease: The Cerebrovascular Link. EBioMedicine 28 21–30. 10.1016/j.ebiom.2018.01.021 PubMed DOI PMC
Rane S. G., Reddy E. P. (2000). Janus kinases: components of multiple signaling pathways. Oncogene 19 5662–5679. 10.1038/sj.onc.1203925 PubMed DOI
Rao V. L., Baskaya M. K., Dogan A., Rothstein J. D., Dempsey R. J. (1998). Traumatic brain injury down-regulates glial glutamate transporter (GLT-1 and GLAST) proteins in rat brain. J. Neurochem. 70 2020–2027. 10.1046/j.1471-4159.1998.70052020.x PubMed DOI
Redell J. B., Liu Y., Dash P. K. (2009). Traumatic brain injury alters expression of hippocampal microRNAs: potential regulators of multiple pathophysiological processes. J. Neurosci. Res. 87 1435–1448. 10.1002/jnr.21945 PubMed DOI PMC
Reiffurth C., Berndt N., Gonzalez Lopez A., Schoknecht K., Kovacs R., Maechler M., et al. (2023). Deep Isoflurane Anesthesia Is Associated with Alterations in Ion Homeostasis and Specific Na + /K + -ATPase Impairment in the Rat Brain. Anesthesiology 138 611–623. 10.1097/ALN.0000000000004553 PubMed DOI
Reiter R. J., Rosales-Corral S., Tan D. X., Jou M. J., Galano A., Xu B. (2017). Melatonin as a mitochondria-targeted antioxidant: one of evolution’s best ideas. Cell Mol. Life Sci. 74 3863–3881. 10.1007/s00018-017-2609-7 PubMed DOI PMC
Reynaert N. L., Ckless K., Korn S. H., Vos N., Guala A. S., Wouters E. F., et al. (2004). Nitric oxide represses inhibitory kappaB kinase through S-nitrosylation. Proc. Natl. Acad. Sci. U. S. A. 101 8945–8950. 10.1073/pnas.0400588101 PubMed DOI PMC
Rice R. A., Spangenberg E. E., Yamate-Morgan H., Lee R. J., Arora R. P., Hernandez M. X., et al. (2015). Elimination of Microglia Improves Functional Outcomes Following Extensive Neuronal Loss in the Hippocampus. J. Neurosci. 35 9977–9989. 10.1523/JNEUROSCI.0336-15.2015 PubMed DOI PMC
Ritzel R. M., Doran S. J., Glaser E. P., Meadows V. E., Faden A. I., Stoica B. A., et al. (2019). Old age increases microglial senescence, exacerbates secondary neuroinflammation, and worsens neurological outcomes after acute traumatic brain injury in mice. Neurobiol. Aging 77 194–206. 10.1016/j.neurobiolaging.2019.02.010 PubMed DOI PMC
Robinson C., Apgar C., Shapiro L. A. (2016). Astrocyte Hypertrophy Contributes to Aberrant Neurogenesis after Traumatic Brain Injury. Neural Plast. 2016:1347987. 10.1155/2016/1347987 PubMed DOI PMC
Rochfort K. D., Cummins P. M. (2015). The blood-brain barrier endothelium: a target for pro-inflammatory cytokines. Biochem. Soc. Trans. 43 702–706. 10.1042/BST20140319 PubMed DOI
Rodriguez-Grande B., Obenaus A., Ichkova A., Aussudre J., Bessy T., Barse E., et al. (2018). Gliovascular changes precede white matter damage and long-term disorders in juvenile mild closed head injury. Glia 66 1663–1677. 10.1002/glia.23336 PubMed DOI
Romine J., Gao X., Chen J. (2014). Controlled cortical impact model for traumatic brain injury. J. Vis. Exp. 90 e51781. 10.3791/51781 PubMed DOI PMC
Roof R. L., Duvdevani R., Braswell L., Stein D. G. (1994). Progesterone facilitates cognitive recovery and reduces secondary neuronal loss caused by cortical contusion injury in male rats. Exp. Neurol. 129 64–69. 10.1006/exnr.1994.1147 PubMed DOI
Rosenfeld C. S., Ferguson S. A. (2014). Barnes maze testing strategies with small and large rodent models. J. Vis. Exp. 84 e51194. 10.3791/51194 PubMed DOI PMC
Rosenfeld J. V., McFarlane A. C., Bragge P., Armonda R. A., Grimes J. B., Ling G. S. (2013). Blast-related traumatic brain injury. Lancet Neurol. 12 882–893. 10.1016/S1474-4422(13)70161-3 PubMed DOI
Roux P. P., Blenis J. (2004). ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol. Mol. Biol. Rev. 68 320–344. 10.1128/MMBR.68.2.320-344.2004 PubMed DOI PMC
Rubiano A. M., Carney N., Chesnut R., Puyana J. C. (2015). Global neurotrauma research challenges and opportunities. Nature 527 S193–S197. 10.1038/nature16035 PubMed DOI
Rubovitch V., Ten-Bosch M., Zohar O., Harrison C. R., Tempel-Brami C., Stein E., et al. (2011). A mouse model of blast-induced mild traumatic brain injury. Exp. Neurol. 232 280–289. 10.1016/j.expneurol.2011.09.018 PubMed DOI PMC
Saadoun S., Papadopoulos M. C., Watanabe H., Yan D., Manley G. T., Verkman A. S. (2005). Involvement of aquaporin-4 in astroglial cell migration and glial scar formation. J. Cell Sci. 118 5691–5698. 10.1242/jcs.02680 PubMed DOI
Sahni V., Mukhopadhyay A., Tysseling V., Hebert A., Birch D., McGuire T. L., et al. (2010). BMPR1a and BMPR1b signaling exert opposing effects on gliosis after spinal cord injury. J. Neurosci. 30 1839–1855. 10.1523/JNEUROSCI.4459-09.2010 PubMed DOI PMC
Salminen A., Ojala J., Kaarniranta K., Haapasalo A., Hiltunen M., Soininen H. (2011). Astrocytes in the aging brain express characteristics of senescence-associated secretory phenotype. Eur. J. Neurosci. 34 3–11. 10.1111/j.1460-9568.2011.07738.x PubMed DOI
Sanchez-Gonzalez R., Koupourtidou C., Lepko T., Zambusi A., Novoselc K. T., Durovic T., et al. (2022). Innate immune pathways promote oligodendrocyte progenitor cell recruitment to the injury site in adult zebrafish brain. Cells 11:520. 10.3390/cells11030520 PubMed DOI PMC
Sanders M. J., Dietrich W. D., Green E. J. (1999). Cognitive function following traumatic brain injury: effects of injury severity and recovery period in a parasagittal fluid-percussive injury model. J. Neurotrauma 16 915–925. 10.1089/neu.1999.16.915 PubMed DOI
Sandhir R., Onyszchuk G., Berman N. E. (2008). Exacerbated glial response in the aged mouse hippocampus following controlled cortical impact injury. Exp. Neurol. 213 372–380. 10.1016/j.expneurol.2008.06.013 PubMed DOI PMC
Schafer M. J., White T. A., Iijima K., Haak A. J., Ligresti G., Atkinson E. J., et al. (2017). Cellular senescence mediates fibrotic pulmonary disease. Nat. Commun. 8:14532. 10.1038/ncomms14532 PubMed DOI PMC
Schiweck J., Murk K., Ledderose J., Munster-Wandowski A., Ornaghi M., Vida I., et al. (2021). Drebrin controls scar formation and astrocyte reactivity upon traumatic brain injury by regulating membrane trafficking. Nat. Commun. 12:1490. 10.1038/s41467-021-21662-x PubMed DOI PMC
Schlett J. S., Mettang M., Skaf A., Schweizer P., Errerd A., Mulugeta E. A., et al. (2023). NF-kappaB is a critical mediator of post-mitotic senescence in oligodendrocytes and subsequent white matter loss. Mol. Neurodegener. 18:24. 10.1186/s13024-023-00616-5 PubMed DOI PMC
Schwab N., Grenier K., Hazrati L. N. (2019). DNA repair deficiency and senescence in concussed professional athletes involved in contact sports. Acta Neuropathol. Commun. 7:182. 10.1186/s40478-019-0822-3 PubMed DOI PMC
Schwab N., Ju Y., Hazrati L. N. (2021). Early onset senescence and cognitive impairment in a murine model of repeated mTBI. Acta Neuropathol. Commun. 9:82. 10.1186/s40478-021-01190-x PubMed DOI PMC
Schwab N., Taskina D., Leung E., Innes B. T., Bader G. D., Hazrati L. N. (2022). Neurons and glial cells acquire a senescent signature after repeated mild traumatic brain injury in a sex-dependent manner. Front. Neurosci. 16:1027116. 10.3389/fnins.2022.1027116 PubMed DOI PMC
Seabury S. A., Gaudette E., Goldman D. P., Markowitz A. J., Brooks J., McCrea M. A., et al. (2018). Assessment of Follow-up Care After Emergency Department Presentation for Mild Traumatic Brain Injury and Concussion: Results From the TRACK-TBI Study. JAMA Netw. Open 1 e180210. 10.1001/jamanetworkopen.2018.0210 PubMed DOI PMC
Sedarous M., Keramaris E., O’Hare M., Melloni E., Slack R. S., Elce J. S., et al. (2003). Calpains mediate p53 activation and neuronal death evoked by DNA damage. J. Biol. Chem. 278 26031–26038. 10.1074/jbc.M302833200 PubMed DOI
Selvakumar G. P., Ahmed M. E., Iyer S. S., Thangavel R., Kempuraj D., Raikwar S. P., et al. (2020). Absence of glia maturation factor protects from axonal injury and motor behavioral impairments after traumatic brain injury. Exp. Neurobiol. 29 230–248. 10.5607/en20017 PubMed DOI PMC
Sephton C. F., Cenik C., Kucukural A., Dammer E. B., Cenik B., Han Y., et al. (2011). Identification of neuronal RNA targets of TDP-43-containing ribonucleoprotein complexes. J. Biol. Chem. 286 1204–1215. 10.1074/jbc.M110.190884 PubMed DOI PMC
Setoguchi T., Nakashima K., Takizawa T., Yanagisawa M., Ochiai W., Okabe M., et al. (2004). Treatment of spinal cord injury by transplantation of fetal neural precursor cells engineered to express BMP inhibitor. Exp. Neurol. 189 33–44. 10.1016/j.expneurol.2003.12.007 PubMed DOI
Shandra O., Winemiller A. R., Heithoff B. P., Munoz-Ballester C., George K. K., Benko M. J., et al. (2019). Repetitive diffuse mild traumatic brain injury causes an atypical astrocyte response and spontaneous recurrent seizures. J. Neurosci. 39 1944–1963. 10.1523/JNEUROSCI.1067-18.2018 PubMed DOI PMC
Shapira Y., Shohami E., Sidi A., Soffer D., Freeman S., Cotev S. (1988). Experimental closed head injury in rats: mechanical, pathophysiologic, and neurologic properties. Crit. Care Med. 16 258–265. 10.1097/00003246-198803000-00010 PubMed DOI
Sharma S., Tiarks G., Haight J., Bassuk A. G. (2021). Neuropathophysiological Mechanisms and Treatment Strategies for Post-traumatic Epilepsy. Front. Mol. Neurosci. 14:612073. 10.3389/fnmol.2021.612073 PubMed DOI PMC
Shear D. A., Williams A. J., Sharrow K., Lu X. C., Tortella F. C. (2009). Neuroprotective profile of dextromethorphan in an experimental model of penetrating ballistic-like brain injury. Pharmacol. Biochem. Behav. 94 56–62. 10.1016/j.pbb.2009.07.006 PubMed DOI
Shen Y. F., Yu W. H., Dong X. Q., Du Q., Yang D. B., Wu G. Q., et al. (2016). The change of plasma galectin-3 concentrations after traumatic brain injury. Clin. Chim. Acta 456 75–80. 10.1016/j.cca.2016.02.029 PubMed DOI
Shields D. C., Haque A., Banik N. L. (2020). Neuroinflammatory responses of microglia in central nervous system trauma. J. Cereb. Blood Flow Metab. 40 S25–S33. PubMed PMC
Shimada I. S., LeComte M. D., Granger J. C., Quinlan N. J., Spees J. L. (2012). Self-renewal and differentiation of reactive astrocyte-derived neural stem/progenitor cells isolated from the cortical peri-infarct area after stroke. J. Neurosci. 32 7926–7940. 10.1523/JNEUROSCI.4303-11.2012 PubMed DOI PMC
Shiokawa R., Otani N., Kajimoto R., Igarashi T., Moro N., Suma T., et al. (2022). Glibenclamide attenuates brain edema associated with microglia activation after intracerebral hemorrhage. Neurochirurgie 68 589–594. 10.1016/j.neuchi.2022.07.009 PubMed DOI
Shitaka Y., Tran H. T., Bennett R. E., Sanchez L., Levy M. A., Dikranian K., et al. (2011). Repetitive closed-skull traumatic brain injury in mice causes persistent multifocal axonal injury and microglial reactivity. J. Neuropathol. Exp. Neurol. 70 551–567. 10.1097/NEN.0b013e31821f891f PubMed DOI PMC
Shultz S. R., Bao F., Weaver L. C., Cain D. P., Brown A. (2013). Treatment with an anti-CD11d integrin antibody reduces neuroinflammation and improves outcome in a rat model of repeated concussion. J. Neuroinflamm. 10:26. 10.1186/1742-2094-10-26 PubMed DOI PMC
Shultz S. R., McDonald S. J., Corrigan F., Semple B. D., Salberg S., Zamani A., et al. (2020). Clinical relevance of behavior testing in animal models of traumatic brain injury. J. Neurotrauma 37 2381–2400. 10.1089/neu.2018.6149 PubMed DOI
Silver J., Miller J. H. (2004). Regeneration beyond the glial scar. Nat. Rev. Neurosci. 5 146–156. 10.1038/nrn1326 PubMed DOI
Sim F. J., Zhao C., Penderis J., Franklin R. J. (2002). The age-related decrease in CNS remyelination efficiency is attributable to an impairment of both oligodendrocyte progenitor recruitment and differentiation. J. Neurosci. 22 2451–2459. 10.1523/JNEUROSCI.22-07-02451.2002 PubMed DOI PMC
Simard J. M., Geng Z., Woo S. K., Ivanova S., Tosun C., Melnichenko L., et al. (2009). Glibenclamide reduces inflammation, vasogenic edema, and caspase-3 activation after subarachnoid hemorrhage. J. Cereb. Blood Flow Metab. 29 317–330. 10.1038/jcbfm.2008.120 PubMed DOI PMC
Simard J. M., Woo S. K., Schwartzbauer G. T., Gerzanich V. (2012). Sulfonylurea receptor 1 in central nervous system injury: a focused review. J. Cereb. Blood Flow Metab. 32 1699–1717. 10.1038/jcbfm.2012.91 PubMed DOI PMC
Simon C., Gotz M., Dimou L. (2011). Progenitors in the adult cerebral cortex: cell cycle properties and regulation by physiological stimuli and injury. Glia 59 869–881. 10.1002/glia.21156 PubMed DOI
Simon M., Wang M. X., Ismail O., Braun M., Schindler A. G., Reemmer J., et al. (2022). Loss of perivascular aquaporin-4 localization impairs glymphatic exchange and promotes amyloid beta plaque formation in mice. Alzheimers Res. Ther. 14:59. 10.1186/s13195-022-00999-5 PubMed DOI PMC
Simpson J. E., Ince P. G., Higham C. E., Gelsthorpe C. H., Fernando M. S., Matthews F., et al. (2007). Microglial activation in white matter lesions and non-lesional white matter of ageing brains. Neuropathol. Appl. Neurobiol. 33 670–683. 10.1111/j.1365-2990.2007.00890.x PubMed DOI
Skandsen T., Kvistad K. A., Solheim O., Strand I. H., Folvik M., Vik A. (2010). Prevalence and impact of diffuse axonal injury in patients with moderate and severe head injury: a cohort study of early magnetic resonance imaging findings and 1-year outcome. J. Neurosurg. 113 556–563. 10.3171/2009.9.JNS09626 PubMed DOI
Snapper D. M., Reginauld B., Liaudanskaya V., Fitzpatrick V., Kim Y., Georgakoudi I., et al. (2023). Development of a novel bioengineered 3D brain-like tissue for studying primary blast-induced traumatic brain injury. J. Neurosci. Res. 101 3–19. 10.1002/jnr.25123 PubMed DOI
Soares L. C., Al-Dalahmah O., Hillis J., Young C. C., Asbed I., Sakaguchi M., et al. (2021). Novel Galectin-3 roles in neurogenesis, inflammation and neurological diseases. Cells 10:3047. 10.3390/cells10113047 PubMed DOI PMC
Sofroniew M. V. (2020). Astrocyte Reactivity: Subtypes, States, and Functions in CNS Innate Immunity. Trends Immunol. 41 758–770. 10.1016/j.it.2020.07.004 PubMed DOI PMC
Song S., Hasan M. N., Yu L., Paruchuri S. S., Bielanin J. P., Metwally S., et al. (2022). Microglial-oligodendrocyte interactions in myelination and neurological function recovery after traumatic brain injury. J. Neuroinflammation 19:246. 10.1186/s12974-022-02608-6 PubMed DOI PMC
Sowers J. L., Sowers M. L., Shavkunov A. S., Hawkins B. E., Wu P., DeWitt D. S., et al. (2021). Traumatic brain injury induces region-specific glutamate metabolism changes as measured by multiple mass spectrometry methods. iScience 24:103108. 10.1016/j.isci.2021.103108 PubMed DOI PMC
Spanos G. K., Wilde E. A., Bigler E. D., Cleavinger H. B., Fearing M. A., Levin H. S., et al. (2007). cerebellar atrophy after moderate-to-severe pediatric traumatic brain injury. AJNR Am. J. Neuroradiol. 28 537–542. PubMed PMC
Stahel P. F., Smith W. R., Bruchis J., Rabb C. H. (2008). Peroxisome proliferator-activated receptors: “key” regulators of neuroinflammation after traumatic brain injury. PPAR Res. 2008:538141. 10.1155/2008/538141 PubMed DOI PMC
Stokum J. A., Kwon M. S., Woo S. K., Tsymbalyuk O., Vennekens R., Gerzanich V., et al. (2018). SUR1-TRPM4 and AQP4 form a heteromultimeric complex that amplifies ion/water osmotic coupling and drives astrocyte swelling. Glia 66 108–125. 10.1002/glia.23231 PubMed DOI PMC
Streit W. J., Sammons N. W., Kuhns A. J., Sparks D. L. (2004). Dystrophic microglia in the aging human brain. Glia 45 208–212. 10.1002/glia.10319 PubMed DOI
Sucha P., Hermanova Z., Chmelova M., Kirdajova D., Camacho Garcia S., Marchetti V., et al. (2022). The absence of AQP4/TRPV4 complex substantially reduces acute cytotoxic edema following ischemic injury. Front. Cell Neurosci. 16:1054919. 10.3389/fncel.2022.1054919 PubMed DOI PMC
Sun G., Miao Z., Ye Y., Zhao P., Fan L., Bao Z., et al. (2020). Curcumin alleviates neuroinflammation, enhances hippocampal neurogenesis, and improves spatial memory after traumatic brain injury. Brain Res. Bull. 162 84–93. 10.1016/j.brainresbull.2020.05.009 PubMed DOI
Sun P., Liu D. Z., Jickling G. C., Sharp F. R., Yin K. J. (2018). MicroRNA-based therapeutics in central nervous system injuries. J. Cereb. Blood Flow Metab. 38 1125–1148. PubMed PMC
Sun W., Suzuki K., Toptunov D., Stoyanov S., Yuzaki M., Khiroug L., et al. (2019). In vivo two-photon imaging of anesthesia-specific alterations in microglial surveillance and photodamage-directed motility in mouse cortex. Front. Neurosci. 13:421. 10.3389/fnins.2019.00421 PubMed DOI PMC
Taib T., Leconte C., Van Steenwinckel J., Cho A. H., Palmier B., Torsello E., et al. (2017). Neuroinflammation, myelin and behavior: Temporal patterns following mild traumatic brain injury in mice. PLoS One 12:e0184811. 10.1371/journal.pone.0184811 PubMed DOI PMC
Tan A. M., Zhang W., Levine J. M. (2005). NG2: a component of the glial scar that inhibits axon growth. J. Anat. 207 717–725. 10.1111/j.1469-7580.2005.00452.x PubMed DOI PMC
Tan S. W., Zhao Y., Li P., Ning Y. L., Huang Z. Z., Yang N., et al. (2021). HMGB1 mediates cognitive impairment caused by the NLRP3 inflammasome in the late stage of traumatic brain injury. J. Neuroinflammation 18:241. 10.1186/s12974-021-02274-0 PubMed DOI PMC
Tanaka T., Kai S., Matsuyama T., Adachi T., Fukuda K., Hirota K. (2013). General anesthetics inhibit LPS-induced IL-1beta expression in glial cells. PLoS One 8:e82930. 10.1371/journal.pone.0082930 PubMed DOI PMC
Tchkonia T., Zhu Y., van Deursen J., Campisi J., Kirkland J. L. (2013). Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J. Clin. Invest. 123 966–972. 10.1172/JCI64098 PubMed DOI PMC
Terpolilli N. A., Kim S. W., Thal S. C., Kuebler W. M., Plesnila N. (2013). Inhaled nitric oxide reduces secondary brain damage after traumatic brain injury in mice. J. Cereb. Blood Flow Metab 33 311–318. 10.1038/jcbfm.2012.176 PubMed DOI PMC
Terpolilli N. A., Zweckberger K., Trabold R., Schilling L., Schinzel R., Tegtmeier F., et al. (2009). The novel nitric oxide synthase inhibitor 4-amino-tetrahydro-L-biopterine prevents brain edema formation and intracranial hypertension following traumatic brain injury in mice. J. Neurotrauma 26 1963–1975. 10.1089/neu.2008.0853 PubMed DOI
Theadom A., Mahon S., Barker-Collo S., McPherson K., Rush E., Vandal A. C., et al. (2013). Enzogenol for cognitive functioning in traumatic brain injury: a pilot placebo-controlled RCT. Eur. J. Neurol. 20 1135–1144. 10.1111/ene.12099 PubMed DOI
Thompson A. G., Gray E., Heman-Ackah S. M., Mager I., Talbot K., Andaloussi S. E., et al. (2016). Extracellular vesicles in neurodegenerative disease - pathogenesis to biomarkers. Nat. Rev. Neurol. 12 346–357. 10.1038/nrneurol.2016.68 PubMed DOI
Tisdall M. M., Rejdak K., Kitchen N. D., Smith M., Petzold A. (2013). The prognostic value of brain extracellular fluid nitric oxide metabolites after traumatic brain injury. Neurocrit. Care 19 65–68. 10.1007/s12028-011-9633-5 PubMed DOI
Tjalkens R. B., Popichak K. A., Kirkley K. A. (2017). Inflammatory Activation of Microglia and Astrocytes in Manganese Neurotoxicity. Adv. Neurobiol. 18 159–181. 10.1007/978-3-319-60189-2_8 PubMed DOI PMC
Tominaga T., Shimada R., Okada Y., Kawamata T., Kibayashi K. (2019). Senescence-associated-beta-galactosidase staining following traumatic brain injury in the mouse cerebrum. PLoS One 14:e0213673. 10.1371/journal.pone.0213673 PubMed DOI PMC
Torper O., Ottosson D. R., Pereira M., Lau S., Cardoso T., Grealish S., et al. (2015). In Vivo Reprogramming of Striatal NG2 Glia into Functional Neurons that Integrate into Local Host Circuitry. Cell Rep. 12 474–481. 10.1016/j.celrep.2015.06.040 PubMed DOI PMC
Toshkezi G., Kyle M., Longo S. L., Chin L. S., Zhao L. R. (2018). Brain repair by hematopoietic growth factors in the subacute phase of traumatic brain injury. J. Neurosurg. 129 1286–1294. 10.3171/2017.7.JNS17878 PubMed DOI
Tsai C. P., Hu C., Lee C. T. (2019). Finding diseases associated with amyotrophic lateral sclerosis: a total population-based case-control study. Amyotroph. Lateral Scler. Frontotemporal Degener. 20 82–89. 10.1080/21678421.2018.1522354 PubMed DOI
Tucker L. B., Velosky A. G., McCabe J. T. (2018). Applications of the Morris water maze in translational traumatic brain injury research. Neurosci. Biobehav. Rev. 88 187–200. 10.1016/j.neubiorev.2018.03.010 PubMed DOI
Uddin M. S., Lim L. W. (2022). Glial cells in Alzheimer’s disease: From neuropathological changes to therapeutic implications. Ageing Res. Rev. 78:101622. 10.1016/j.arr.2022.101622 PubMed DOI
Uryu K., Laurer H., McIntosh T., Pratico D., Martinez D., Leight S., et al. (2002). Repetitive mild brain trauma accelerates Abeta deposition, lipid peroxidation, and cognitive impairment in a transgenic mouse model of Alzheimer amyloidosis. J. Neurosci. 22 446–454. 10.1523/JNEUROSCI.22-02-00446.2002 PubMed DOI PMC
Valko M., Leibfritz D., Moncol J., Cronin M. T., Mazur M., Telser J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 39 44–84. 10.1016/j.biocel.2006.07.001 PubMed DOI
van Landeghem F. K., Stover J. F., Bechmann I., Bruck W., Unterberg A., Buhrer C., et al. (2001). Early expression of glutamate transporter proteins in ramified microglia after controlled cortical impact injury in the rat. Glia 35 167–179. 10.1002/glia.1082 PubMed DOI
van Landeghem F. K., Weiss T., Oehmichen M., von Deimling A. (2006). Decreased expression of glutamate transporters in astrocytes after human traumatic brain injury. J. Neurotrauma 23 1518–1528. 10.1089/neu.2006.23.1518 PubMed DOI
VanGuilder H. D., Bixler G. V., Brucklacher R. M., Farley J. A., Yan H., Warrington J. P., et al. (2011). Concurrent hippocampal induction of MHC II pathway components and glial activation with advanced aging is not correlated with cognitive impairment. J. Neuroinflammation 8:138. 10.1186/1742-2094-8-138 PubMed DOI PMC
Venkatesan C., Chrzaszcz M., Choi N., Wainwright M. S. (2010). Chronic upregulation of activated microglia immunoreactive for galectin-3/Mac-2 and nerve growth factor following diffuse axonal injury. J. Neuroinflammation 7:32. 10.1186/1742-2094-7-32 PubMed DOI PMC
Vergara D., Nigro A., Romano A., De Domenico S., Damato M., Franck J., et al. (2019). Distinct Protein Expression Networks are Activated in Microglia Cells after Stimulation with IFN-gamma and IL-4. Cells 8:580. 10.3390/cells8060580 PubMed DOI PMC
Verkerke M., Hol E. M., Middeldorp J. (2021). Physiological and Pathological Ageing of Astrocytes in the Human Brain. Neurochem. Res. 46 2662–2675. 10.1007/s11064-021-03256-7 PubMed DOI PMC
Villapol S., Loane D. J., Burns M. P. (2017). Sexual dimorphism in the inflammatory response to traumatic brain injury. Glia 65 1423–1438. 10.1002/glia.23171 PubMed DOI PMC
Villapol S., Yaszemski A. K., Logan T. T., Sanchez-Lemus E., Saavedra J. M., Symes A. J. (2012). Candesartan, an angiotensin II AT(1)-receptor blocker and PPAR-gamma agonist, reduces lesion volume and improves motor and memory function after traumatic brain injury in mice. Neuropsychopharmacology 37 2817–2829. 10.1038/npp.2012.152 PubMed DOI PMC
Viney T. J., Sarkany B., Ozdemir A. T., Hartwich K., Schweimer J., Bannerman D., et al. (2022). Spread of pathological human Tau from neurons to oligodendrocytes and loss of high-firing pyramidal neurons in aging mice. Cell Rep. 41 111646. 10.1016/j.celrep.2022.111646 PubMed DOI PMC
von Streitberg A., Jakel S., Eugenin von Bernhardi J., Straube C., Buggenthin F., Marr C., et al. (2021). NG2-Glia Transiently Overcome Their Homeostatic Network and Contribute to Wound Closure After Brain Injury. Front. Cell Dev. Biol. 9:662056. 10.3389/fcell.2021.662056 PubMed DOI PMC
Wada K., Chatzipanteli K., Busto R., Dietrich W. D. (1999). Effects of L-NAME and 7-NI on NOS catalytic activity and behavioral outcome after traumatic brain injury in the rat. J. Neurotrauma 16 203–212. 10.1089/neu.1999.16.203 PubMed DOI
Wake H., Moorhouse A. J., Jinno S., Kohsaka S., Nabekura J. (2009). Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J. Neurosci. 29 3974–3980. 10.1523/JNEUROSCI.4363-08.2009 PubMed DOI PMC
Walker M. G. (2003). Gene expression versus sequence for predicting function: Glia Maturation Factor gamma is not a glia maturation factor. Genom. Proteomics Bioinform. 1 52–57. 10.1016/s1672-0229(03)01007-6 PubMed DOI PMC
Waller R., Baxter L., Fillingham D. J., Coelho S., Pozo J. M., Mozumder M., et al. (2019). Iba-1-/CD68 + microglia are a prominent feature of age-associated deep subcortical white matter lesions. PLoS One 14:e0210888. 10.1371/journal.pone.0210888 PubMed DOI PMC
Walter A., Finelli K., Bai X., Arnett P., Bream T., Seidenberg P., et al. (2017). Effect of Enzogenol(R) Supplementation on Cognitive. Executive, and Vestibular/Balance Functioning in Chronic Phase of Concussion. Dev. Neuropsychol. 42 93–103. 10.1080/87565641.2016.1256404 PubMed DOI
Walter T. J., Suter R. K., Ayad N. G. (2023). An overview of human single-cell RNA sequencing studies in neurobiological disease. Neurobiol. Dis. 184 106201. 10.1016/j.nbd.2023.106201 PubMed DOI PMC
Walz W. (2000). Controversy surrounding the existence of discrete functional classes of astrocytes in adult gray matter. Glia 31 95–103. PubMed
Walz W., Lang M. K. (1998). Immunocytochemical evidence for a distinct GFAP-negative subpopulation of astrocytes in the adult rat hippocampus. Neurosci. Lett. 257 127–130. 10.1016/s0304-3940(98)00813-1 PubMed DOI
Wang C., Ouyang S., Zhu X., Jiang Y., Lu Z., Gong P. (2023). Myricetin suppresses traumatic brain injury-induced inflammatory response via EGFR/AKT/STAT pathway. Sci. Rep. 13 22764. 10.1038/s41598-023-50144-x PubMed DOI PMC
Wang J., Lu Y., Carr C., Dhandapani K. M., Brann D. W. (2023). Senolytic therapy is neuroprotective and improves functional outcome long-term after traumatic brain injury in mice. Front. Neurosci. 17:1227705. 10.3389/fnins.2023.1227705 PubMed DOI PMC
Wang C. F., Zhao C. C., Liu W. L., Huang X. J., Deng Y. F., Jiang J. Y., et al. (2020). Depletion of Microglia Attenuates Dendritic Spine Loss and Neuronal Apoptosis in the Acute Stage of Moderate Traumatic Brain Injury in Mice. J. Neurotrauma 37 43–54. 10.1089/neu.2019.6460 PubMed DOI
Wang J., Hou Y., Zhang L., Liu M., Zhao J., Zhang Z., et al. (2021). Estrogen Attenuates Traumatic Brain Injury by Inhibiting the Activation of Microglia and Astrocyte-Mediated Neuroinflammatory Responses. Mol. Neurobiol. 58 1052–1061. 10.1007/s12035-020-02171-2 PubMed DOI
Wanner I. B., Anderson M. A., Song B., Levine J., Fernandez A., Gray-Thompson Z., et al. (2013). Glial scar borders are formed by newly proliferated, elongated astrocytes that interact to corral inflammatory and fibrotic cells via STAT3-dependent mechanisms after spinal cord injury. J. Neurosci. 33 12870–12886. 10.1523/JNEUROSCI.2121-13.2013 PubMed DOI PMC
Washington P. M., Forcelli P. A., Wilkins T., Zapple D. N., Parsadanian M., Burns M. P. (2012). The effect of injury severity on behavior: a phenotypic study of cognitive and emotional deficits after mild, moderate, and severe controlled cortical impact injury in mice. J. Neurotrauma 29 2283–2296. 10.1089/neu.2012.2456 PubMed DOI PMC
Webster K. M., Sun M., Crack P. J., O’Brien T. J., Shultz S. R., Semple B. D. (2019). Age-dependent release of high-mobility group box protein-1 and cellular neuroinflammation after traumatic brain injury in mice. J. Comp. Neurol. 527 1102–1117. 10.1002/cne.24589 PubMed DOI
Wesley U. V., Vemuganti R., Ayvaci E. R., Dempsey R. J. (2013). Galectin-3 enhances angiogenic and migratory potential of microglial cells via modulation of integrin linked kinase signaling. Brain Res. 1496 1–9. 10.1016/j.brainres.2012.12.008 PubMed DOI PMC
White D. L., Kunik M. E., Yu H., Lin H. L., Richardson P. A., Moore S., et al. (2020). Post-Traumatic Stress Disorder is Associated with further Increased Parkinson’s Disease Risk in Veterans with Traumatic Brain Injury. Ann. Neurol. 88 33–41. 10.1002/ana.25726 PubMed DOI
Wicher G., Wallenquist U., Lei Y., Enoksson M., Li X., Fuchs B., et al. (2017). Interleukin-33 Promotes Recruitment of Microglia/Macrophages in Response to Traumatic Brain Injury. J. Neurotrauma 34 3173–3182. 10.1089/neu.2016.4900 PubMed DOI
Wilhelmsson U., Li L., Pekna M., Berthold C. H., Blom S., Eliasson C., et al. (2004). Absence of glial fibrillary acidic protein and vimentin prevents hypertrophy of astrocytic processes and improves post-traumatic regeneration. J. Neurosci. 24 5016–5021. 10.1523/JNEUROSCI.0820-04.2004 PubMed DOI PMC
Wilk J. E., Herrell R. K., Wynn G. H., Riviere L. A., Hoge C. W. (2012). Mild traumatic brain injury (concussion), posttraumatic stress disorder, and depression in U.S. soldiers involved in combat deployments: association with postdeployment symptoms. Psychosom. Med. 74 249–257. 10.1097/PSY.0b013e318244c604 PubMed DOI
Williams A. J., Hartings J. A., Lu X. C., Rolli M. L., Dave J. R., Tortella F. C. (2005). Characterization of a new rat model of penetrating ballistic brain injury. J. Neurotrauma 22 313–331. 10.1089/neu.2005.22.313 PubMed DOI
Williams A. J., Ling G. S., Tortella F. C. (2006). Severity level and injury track determine outcome following a penetrating ballistic-like brain injury in the rat. Neurosci. Lett. 408 183–188. 10.1016/j.neulet.2006.08.086 PubMed DOI
Williams A. J., Wei H. H., Dave J. R., Tortella F. C. (2007). Acute and delayed neuroinflammatory response following experimental penetrating ballistic brain injury in the rat. J. Neuroinflammation 4 17. 10.1186/1742-2094-4-17 PubMed DOI PMC
Willis E. F., MacDonald K. P. A., Nguyen Q. H., Garrido A. L., Gillespie E. R., Harley S. B. R., et al. (2020). Repopulating Microglia Promote Brain Repair in an IL-6-Dependent Manner. Cell 83 e816. 10.1016/j.cell.2020.02.013 PubMed DOI
Woo S. K., Tsymbalyuk N., Tsymbalyuk O., Ivanova S., Gerzanich V., Simard J. M. (2020). SUR1-TRPM4 channels, not K(ATP), mediate brain swelling following cerebral ischemia. Neurosci. Lett. 718:134729. 10.1016/j.neulet.2019.134729 PubMed DOI PMC
Wu A. G., Yong Y. Y., Pan Y. R., Zhang L., Wu J. M., Zhang Y., et al. (2022). Targeting Nrf2-Mediated Oxidative Stress Response in Traumatic Brain Injury: Therapeutic Perspectives of Phytochemicals. Oxid. Med. Cell Longev. 2022:1015791. 10.1155/2022/1015791 PubMed DOI PMC
Wu L., Zhao H., Weng H., Ma D. (2019). Lasting effects of general anesthetics on the brain in the young and elderly: “mixed picture” of neurotoxicity, neuroprotection and cognitive impairment. J. Anesth. 33 321–335. 10.1007/s00540-019-02623-7 PubMed DOI PMC
Wu Y., Zhang J., Feng X., Jiao W. (2023). Omega-3 polyunsaturated fatty acids alleviate early brain injury after traumatic brain injury by inhibiting neuroinflammation and necroptosis. Transl. Neurosci. 14:20220277. 10.1515/tnsci-2022-0277 PubMed DOI PMC
Xin P., Xu X., Deng C., Liu S., Wang Y., Zhou X., et al. (2020). The role of JAK/STAT signaling pathway and its inhibitors in diseases. Int. Immunopharmacol. 80:106210. 10.1016/j.intimp.2020.106210 PubMed DOI
Xiong Y., Mahmood A., Chopp M. (2013). Animal models of traumatic brain injury. Nat. Rev. Neurosci. 14 128–142. 10.1038/nrn3407 PubMed DOI PMC
Xiong Y., Mahmood A., Chopp M. (2017). Emerging potential of exosomes for treatment of traumatic brain injury. Neural Regen. Res. 12 19–22. 10.4103/1673-5374.198966 PubMed DOI PMC
Xu B., Yu D. M., Liu F. S. (2014). Effect of siRNA-induced inhibition of IL-6 expression in rat cerebral gliocytes on cerebral edema following traumatic brain injury. Mol. Med. Rep. 10 1863–1868. 10.3892/mmr.2014.2462 PubMed DOI
Xu F., Han L., Wang Y., Deng D., Ding Y., Zhao S., et al. (2023). Prolonged anesthesia induces neuroinflammation and complement-mediated microglial synaptic elimination involved in neurocognitive dysfunction and anxiety-like behaviors. BMC Med. 21:7. 10.1186/s12916-022-02705-6 PubMed DOI PMC
Xu H., Wang Z., Li J., Wu H., Peng Y., Fan L., et al. (2017). The Polarization States of Microglia in TBI: A New Paradigm for Pharmacological Intervention. Neural Plast. 2017:5405104. 10.1155/2017/5405104 PubMed DOI PMC
Xu J. (2018). New Insights into GFAP Negative Astrocytes in Calbindin D28k Immunoreactive Astrocytes. Brain Sci. 8:143. 10.3390/brainsci8080143 PubMed DOI PMC
Xu L., Nguyen J. V., Lehar M., Menon A., Rha E., Arena J., et al. (2016). Repetitive mild traumatic brain injury with impact acceleration in the mouse: Multifocal axonopathy, neuroinflammation, and neurodegeneration in the visual system. Exp. Neurol. 275 436–449. 10.1016/j.expneurol.2014.11.004 PubMed DOI
Xu M., Pirtskhalava T., Farr J. N., Weigand B. M., Palmer A. K., Weivoda M. M., et al. (2018). Senolytics improve physical function and increase lifespan in old age. Nat. Med. 24 1246–1256. 10.1038/s41591-018-0092-9 PubMed DOI PMC
Yakovlev A. G., Knoblach S. M., Fan L., Fox G. B., Goodnight R., Faden A. I. (1997). Activation of CPP32-like caspases contributes to neuronal apoptosis and neurological dysfunction after traumatic brain injury. J. Neurosci. 17 7415–7424. 10.1523/JNEUROSCI.17-19-07415.1997 PubMed DOI PMC
Yamada K., Inagaki N. (2005). Neuroprotection by KATP channels. J. Mol. Cell Cardiol. 38 945–949. 10.1016/j.yjmcc.2004.11.020 PubMed DOI
Yamaki T., Murakami N., Iwamoto Y., Sakakibara T., Kobori N., Ueda S., et al. (1998). Cognitive dysfunction and histological findings in rats with chronic-stage contusion and diffuse axonal injury. Brain Res. Brain Res. Protoc. 3 100–106. 10.1016/s1385-299x(98)00030-0 PubMed DOI
Yang L., Wang F., Yang L., Yuan Y., Chen Y., Zhang G., et al. (2018). HMGB1 a-Box Reverses Brain Edema and Deterioration of Neurological Function in a Traumatic Brain Injury Mouse Model. Cell Physiol. Biochem. 46 2532–2542. 10.1159/000489659 PubMed DOI
Yang T., Kong B., Gu J. W., Kuang Y. Q., Cheng L., Yang W. T., et al. (2014). Anti-apoptotic and anti-oxidative roles of quercetin after traumatic brain injury. Cell Mol. Neurobiol. 34 797–804. 10.1007/s10571-014-0070-9 PubMed DOI
Yang Y., Gao L., Fu J., Zhang J., Li Y., Yin B., et al. (2013). Apparent diffusion coefficient evaluation for secondary changes in the cerebellum of rats after middle cerebral artery occlusion. Neural Regen. Res. 8 2942–2950. 10.3969/j.issn.1673-5374.2013.31.007 PubMed DOI PMC
Yang Z., Suzuki R., Daniels S. B., Brunquell C. B., Sala C. J., Nishiyama A. (2006). NG2 glial cells provide a favorable substrate for growing axons. J. Neurosci. 26 3829–3839. 10.1523/JNEUROSCI.4247-05.2006 PubMed DOI PMC
Yao Z., van Velthoven C. T. J., Kunst M., Zhang M., McMillen D., Lee C., et al. (2023). A high-resolution transcriptomic and spatial atlas of cell types in the whole mouse brain. Nature 624 317–332. 10.1038/s41586-023-06812-z PubMed DOI PMC
Yee G., Jain A. (2023). Geriatric Head Injury. StatPearls. Treasure Island, FL: StatPearls Publishing. PubMed
Yi J. H., Pow D. V., Hazell A. S. (2005). Early loss of the glutamate transporter splice-variant GLT-1v in rat cerebral cortex following lateral fluid-percussion injury. Glia 49 121–133. 10.1002/glia.20099 PubMed DOI
Yin G., Du M., Li R., Li K., Huang X., Duan D., et al. (2018). Glia maturation factor beta is required for reactive gliosis after traumatic brain injury in zebrafish. Exp. Neurol. 305 129–138. 10.1016/j.expneurol.2018.04.008 PubMed DOI
Yip P. K., Carrillo-Jimenez A., King P., Vilalta A., Nomura K., Chau C. C., et al. (2017). Galectin-3 released in response to traumatic brain injury acts as an alarmin orchestrating brain immune response and promoting neurodegeneration. Sci. Rep. 7:41689. 10.1038/srep41689 PubMed DOI PMC
You J., Youssef M. M. M., Santos J. R., Lee J., Park J. (2023). Microglia and astrocytes in amyotrophic lateral sclerosis: Disease-associated states, pathological roles, and therapeutic potential. Biology 12:1307. 10.3390/biology12101307 PubMed DOI PMC
Yu F., Shukla D. K., Armstrong R. C., Marion C. M., Radomski K. L., Selwyn R. G., et al. (2017). Repetitive Model of Mild Traumatic Brain Injury Produces Cortical Abnormalities Detectable by Magnetic Resonance Diffusion Imaging, Histopathology, and Behavior. J. Neurotrauma 34 1364–1381. 10.1089/neu.2016.4569 PubMed DOI PMC
Zahedi H., Hosseinzadeh-Attar M. J., Shadnoush M., Sahebkar A., Barkhidarian B., Sadeghi O., et al. (2021). Effects of curcuminoids on inflammatory and oxidative stress biomarkers and clinical outcomes in critically ill patients: A randomized double-blind placebo-controlled trial. Phytother. Res. 35 4605–4615. 10.1002/ptr.7179 PubMed DOI
Zaheer A., Lim R. (1996). In vitro inhibition of MAP kinase (ERK1/ERK2) activity by phosphorylated glia maturation factor (GMF). Biochemistry 35 6283–6288. 10.1021/bi960034c PubMed DOI
Zaheer A., Lim R. (1998). Overexpression of glia maturation factor (GMF) in PC12 pheochromocytoma cells activates p38 MAP kinase, MAPKAP kinase-2, and tyrosine hydroxylase. Biochem. Biophys. Res. Commun. 250 278–282. 10.1006/bbrc.1998.9301 PubMed DOI
Zaheer A., Yorek M. A., Lim R. (2001). Effects of glia maturation factor overexpression in primary astrocytes on MAP kinase activation, transcription factor activation, and neurotrophin secretion. Neurochem. Res. 26 1293–1299. 10.1023/a:1014241300179 PubMed DOI
Zaheer A., Zaheer S., Sahu S. K., Knight S., Khosravi H., Mathur S. N., et al. (2007). A novel role of glia maturation factor: induction of granulocyte-macrophage colony-stimulating factor and pro-inflammatory cytokines. J. Neurochem. 101 364–376. 10.1111/j.1471-4159.2006.04385.x PubMed DOI
Zeppenfeld D. M., Simon M., Haswell J. D., D’Abreo D., Murchison C., Quinn J. F., et al. (2017). Association of perivascular localization of aquaporin-4 with cognition and Alzheimer disease in aging brains. JAMA Neurol. 74 91–99. 10.1001/jamaneurol.2016.4370 PubMed DOI
Zhang C., Kang J., Zhang X., Zhang Y., Huang N., Ning B. (2022a). Spatiotemporal dynamics of the cellular components involved in glial scar formation following spinal cord injury. Biomed. Pharmacother. 153:113500. 10.1016/j.biopha.2022.113500 PubMed DOI
Zhang X., Zhang R., Nisa Awan M. U., Bai J. (2022b). The mechanism and function of glia in Parkinson’s disease. Front. Cell Neurosci. 16:903469. 10.3389/fncel.2022.903469 PubMed DOI PMC
Zhang L., Wang H., Zhou Y., Zhu Y., Fei M. (2018). Fisetin alleviates oxidative stress after traumatic brain injury via the Nrf2-ARE pathway. Neurochem. Int. 118 304–313. 10.1016/j.neuint.2018.05.011 PubMed DOI
Zhang M., Pan X., Jung W., Halpern A. R., Eichhorn S. W., Lei Z., et al. (2023). Molecularly defined and spatially resolved cell atlas of the whole mouse brain. Nature 624 343–354. 10.1038/s41586-023-06808-9 PubMed DOI PMC
Zhang S. Z., Wang Q. Q., Yang Q. Q., Gu H. Y., Yin Y. Q., Li Y. D., et al. (2019). NG2 glia regulate brain innate immunity via TGF-beta2/TGFBR2 axis. BMC Med. 17:204. 10.1186/s12916-019-1439-x PubMed DOI PMC
Zhang X., Chen J., Graham S. H., Du L., Kochanek P. M., Draviam R., et al. (2002). Intranuclear localization of apoptosis-inducing factor (AIF) and large scale DNA fragmentation after traumatic brain injury in rats and in neuronal cultures exposed to peroxynitrite. J. Neurochem. 82 181–191. 10.1046/j.1471-4159.2002.00975.x PubMed DOI
Zhang Y., Chopp M., Liu X. S., Katakowski M., Wang X., Tian X., et al. (2017a). Exosomes derived from mesenchymal stromal cells promote axonal growth of cortical neurons. Mol. Neurobiol. 54 2659–2673. 10.1007/s12035-016-9851-0 PubMed DOI PMC
Zhang Y., Chopp M., Zhang Z. G., Katakowski M., Xin H., Qu C., et al. (2017b). Systemic administration of cell-free exosomes generated by human bone marrow derived mesenchymal stem cells cultured under 2D and 3D conditions improves functional recovery in rats after traumatic brain injury. Neurochem. Int. 111 69–81. 10.1016/j.neuint.2016.08.003 PubMed DOI PMC
Zhang Y., Chopp M., Meng Y., Katakowski M., Xin H., Mahmood A., et al. (2015). Effect of exosomes derived from multipluripotent mesenchymal stromal cells on functional recovery and neurovascular plasticity in rats after traumatic brain injury. J. Neurosurg. 122 856–867. 10.3171/2014.11.JNS14770 PubMed DOI PMC
Zhang Y. P., Cai J., Shields L. B., Liu N., Xu X. M., Shields C. B. (2014). Traumatic brain injury using mouse models. Transl. Stroke Res. 5 454–471. 10.1007/s12975-014-0327-0 PubMed DOI
Zhao J., Wang B., Huang T., Guo X., Yang Z., Song J., et al. (2019). Glial response in early stages of traumatic brain injury. Neurosci. Lett. 708:134335. 10.1016/j.neulet.2019.134335 PubMed DOI
Zhao J. B., Zhang Y., Li G. Z., Su X. F., Hang C. H. (2011). Activation of JAK2/STAT pathway in cerebral cortex after experimental traumatic brain injury of rats. Neurosci. Lett. 498 147–152. 10.1016/j.neulet.2011.05.001 PubMed DOI
Zhao Z., Loane D. J., Murray M. G., II, Stoica B. A., Faden A. I. (2012). Comparing the predictive value of multiple cognitive, affective, and motor tasks after rodent traumatic brain injury. J. Neurotrauma 29 2475–2489. 10.1089/neu.2012.2511 PubMed DOI PMC
Zhao Z. A., Li P., Ye S. Y., Ning Y. L., Wang H., Peng Y., et al. (2017). Perivascular AQP4 dysregulation in the hippocampal CA1 area after traumatic brain injury is alleviated by adenosine A(2A) receptor inactivation. Sci. Rep. 7:2254. 10.1038/s41598-017-02505-6 PubMed DOI PMC
Zheng F., Zhou Y. T., Feng D. D., Li P. F., Tang T., Luo J. K., et al. (2020). Metabolomics analysis of the hippocampus in a rat model of traumatic brain injury during the acute phase. Brain Behav. 10 e01520. 10.1002/brb3.1520 PubMed DOI PMC
Zhou Z. L., Xie H., Tian X. B., Xu H. L., Li W., Yao S., et al. (2023). Microglial depletion impairs glial scar formation and aggravates inflammation partly by inhibiting STAT3 phosphorylation in astrocytes after spinal cord injury. Neural Regen. Res. 18 1325–1331. 10.4103/1673-5374.357912 PubMed DOI PMC
Zhu X., Bergles D. E., Nishiyama A. (2008). NG2 cells generate both oligodendrocytes and gray matter astrocytes. Development 135 145–157. 10.1242/dev.004895 PubMed DOI
Zhu Y., Doornebal E. J., Pirtskhalava T., Giorgadze N., Wentworth M., Fuhrmann-Stroissnigg H., et al. (2017). New agents that target senescent cells: the flavone, fisetin, and the BCL-X(L) inhibitors, A1331852 and A1155463. Aging 9 955–963. 10.18632/aging.101202 PubMed DOI PMC
Ziebell J. M., Morganti-Kossmann M. C. (2010). Involvement of pro- and anti-inflammatory cytokines and chemokines in the pathophysiology of traumatic brain injury. Neurotherapeutics 7 22–30. 10.1016/j.nurt.2009.10.016 PubMed DOI PMC
Ziebell J. M., Taylor S. E., Cao T., Harrison J. L., Lifshitz J. (2012). Rod microglia: elongation, alignment, and coupling to form trains across the somatosensory cortex after experimental diffuse brain injury. J. Neuroinflammation 9:247. 10.1186/1742-2094-9-247 PubMed DOI PMC
Zusman B. E., Kochanek P. M., Jha R. M. (2020). Cerebral edema in traumatic brain injury: a historical framework for current therapy. Curr. Treat. Options Neurol. 22:9. 10.1007/s11940-020-0614-x PubMed DOI PMC
ALS-like pathology diminishes swelling of spinal astrocytes in the SOD1 animal model