Astrocytic TRPV4 Channels and Their Role in Brain Ischemia

. 2023 Apr 12 ; 24 (8) : . [epub] 20230412

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid37108263

Grantová podpora
LX22NPO5107 (MEYS) EU-Next Generation EU
20-05770S Czech Science Foundation
956325 Funding agency - European Union's Horizon 2020

Transient receptor potential cation channels subfamily V member 4 (TRPV4) are non-selective cation channels expressed in different cell types of the central nervous system. These channels can be activated by diverse physical and chemical stimuli, including heat and mechanical stress. In astrocytes, they are involved in the modulation of neuronal excitability, control of blood flow, and brain edema formation. All these processes are significantly impaired in cerebral ischemia due to insufficient blood supply to the tissue, resulting in energy depletion, ionic disbalance, and excitotoxicity. The polymodal cation channel TRPV4, which mediates Ca2+ influx into the cell because of activation by various stimuli, is one of the potential therapeutic targets in the treatment of cerebral ischemia. However, its expression and function vary significantly between brain cell types, and therefore, the effect of its modulation in healthy tissue and pathology needs to be carefully studied and evaluated. In this review, we provide a summary of available information on TRPV4 channels and their expression in healthy and injured neural cells, with a particular focus on their role in ischemic brain injury.

Zobrazit více v PubMed

Xie Q., Ma R., Li H., Wang J., Guo X., Chen H. Advancement in research on the role of the transient receptor potential vanilloid channel in cerebral ischemic injury (Review) Exp. Ther. Med. 2021;22:881. doi: 10.3892/etm.2021.10313. PubMed DOI PMC

Liedtke W., Choe Y., Marti-Renom M.A., Bell A.M., Denis C.S., Sali A., Hudspeth A.J., Friedman J.M., Heller S. Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell. 2000;103:525–535. doi: 10.1016/S0092-8674(00)00143-4. PubMed DOI PMC

Feetham C.H., Nunn N., Lewis R., Dart C., Barrett-Jolley R. TRPV4 and K(Ca) ion channels functionally couple as osmosensors in the paraventricular nucleus. Br. J. Pharmacol. 2015;172:1753–1768. doi: 10.1111/bph.13023. PubMed DOI PMC

Shibasaki K., Tominaga M., Ishizaki Y. Hippocampal neuronal maturation triggers post-synaptic clustering of brain temperature-sensor TRPV4. Biochem. Biophys. Res. Commun. 2015;458:168–173. doi: 10.1016/j.bbrc.2015.01.087. PubMed DOI

Zhang Q., Dias F., Fang Q., Henry G., Wang Z., Suttle A., Chen Y. Involvement of Sensory Neurone-TRPV4 in Acute and Chronic Itch Behaviours. Acta Derm. Venereol. 2022;102:adv00651. doi: 10.2340/actadv.v102.1621. PubMed DOI PMC

Bai J.Z., Lipski J. Differential expression of TRPM2 and TRPV4 channels and their potential role in oxidative stress-induced cell death in organotypic hippocampal culture. Neurotoxicology. 2010;31:204–214. doi: 10.1016/j.neuro.2010.01.001. PubMed DOI

Benfenati V., Amiry-Moghaddam M., Caprini M., Mylonakou M.N., Rapisarda C., Ottersen O.P., Ferroni S. Expression and functional characterization of transient receptor potential vanilloid-related channel 4 (TRPV4) in rat cortical astrocytes. Neuroscience. 2007;148:876–892. doi: 10.1016/j.neuroscience.2007.06.039. PubMed DOI

Kim K.J., Iddings J.A., Stern J.E., Blanco V.M., Croom D., Kirov S.A., Filosa J.A. Astrocyte contributions to flow/pressure-evoked parenchymal arteriole vasoconstriction. J. Neurosci. 2015;35:8245–8257. doi: 10.1523/JNEUROSCI.4486-14.2015. PubMed DOI PMC

Guerra G., Lucariello A., Perna A., Botta L., De Luca A., Moccia F. The Role of Endothelial Ca2+ Signaling in Neurovascular Coupling: A View from the Lumen. Int. J. Mol. Sci. 2018;19:938. doi: 10.3390/ijms19040938. PubMed DOI PMC

Filosa J.A., Yao X., Rath G. TRPV4 and the regulation of vascular tone. J. Cardiovasc. Pharmacol. 2013;61:113–119. doi: 10.1097/FJC.0b013e318279ba42. PubMed DOI PMC

Echeverry S., Rodriguez M.J., Torres Y.P. Transient Receptor Potential Channels in Microglia: Roles in Physiology and Disease. Neurotox. Res. 2016;30:467–478. doi: 10.1007/s12640-016-9632-6. PubMed DOI

Nishimoto R., Derouiche S., Eto K., Deveci A., Kashio M., Kimori Y., Matsuoka Y., Morimatsu H., Nabekura J., Tominaga M. Thermosensitive TRPV4 channels mediate temperature-dependent microglia movement. Proc. Natl. Acad. Sci. USA. 2021;118 doi: 10.1073/pnas.2012894118. PubMed DOI PMC

Ohashi K., Deyashiki A., Miyake T., Nagayasu K., Shibasaki K., Shirakawa H., Kaneko S. TRPV4 is functionally expressed in oligodendrocyte precursor cells and increases their proliferation. Pflug. Arch. 2018;470:705–716. doi: 10.1007/s00424-018-2130-3. PubMed DOI

Jie P., Lu Z., Hong Z., Li L., Zhou L., Li Y., Zhou R., Zhou Y., Du Y., Chen L., et al. Activation of Transient Receptor Potential Vanilloid 4 is Involved in Neuronal Injury in Middle Cerebral Artery Occlusion in Mice. Mol. Neurobiol. 2016;53:8–17. doi: 10.1007/s12035-014-8992-2. PubMed DOI

Li L., Qu W., Zhou L., Lu Z., Jie P., Chen L., Chen L. Activation of Transient Receptor Potential Vanilloid 4 Increases NMDA-Activated Current in Hippocampal Pyramidal Neurons. Front. Cell. Neurosci. 2013;7:17. doi: 10.3389/fncel.2013.00017. PubMed DOI PMC

Wang S., He H., Long J., Sui X., Yang J., Lin G., Wang Q., Wang Y., Luo Y. TRPV4 Regulates Soman-Induced Status Epilepticus and Secondary Brain Injury via NMDA Receptor and NLRP3 Inflammasome. Neurosci. Bull. 2021;37:905–920. doi: 10.1007/s12264-021-00662-3. PubMed DOI PMC

Dunn K.M., Hill-Eubanks D.C., Liedtke W.B., Nelson M.T. TRPV4 channels stimulate Ca2+-induced Ca2+ release in astrocytic endfeet and amplify neurovascular coupling responses. Proc. Natl. Acad. Sci. USA. 2013;110:6157–6162. doi: 10.1073/pnas.1216514110. PubMed DOI PMC

Hong K., Cope E.L., DeLalio L.J., Marziano C., Isakson B.E., Sonkusare S.K. TRPV4 (Transient Receptor Potential Vanilloid 4) Channel-Dependent Negative Feedback Mechanism Regulates G(q) Protein-Coupled Receptor-Induced Vasoconstriction. Arterioscler. Thromb. Vasc. Biol. 2018;38:542–554. doi: 10.1161/ATVBAHA.117.310038. PubMed DOI PMC

Phuong T.T.T., Redmon S.N., Yarishkin O., Winter J.M., Li D.Y., Krizaj D. Calcium influx through TRPV4 channels modulates the adherens contacts between retinal microvascular endothelial cells. J. Physiol. 2017;595:6869–6885. doi: 10.1113/JP275052. PubMed DOI PMC

Watanabe H., Vriens J., Prenen J., Droogmans G., Voets T., Nilius B. Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature. 2003;424:434–438. doi: 10.1038/nature01807. PubMed DOI

Jie P., Tian Y., Hong Z., Li L., Zhou L., Chen L., Chen L. Blockage of transient receptor potential vanilloid 4 inhibits brain edema in middle cerebral artery occlusion mice. Front. Cell. Neurosci. 2015;9:141. doi: 10.3389/fncel.2015.00141. PubMed DOI PMC

Tanaka K., Matsumoto S., Yamada T., Yamasaki R., Suzuki M., Kido M.A., Kira J.I. Reduced Post-ischemic Brain Injury in Transient Receptor Potential Vanilloid 4 Knockout Mice. Front. Neurosci. 2020;14:453. doi: 10.3389/fnins.2020.00453. PubMed DOI PMC

Wei Z.L., Nguyen M.T., O’Mahony D.J., Acevedo A., Zipfel S., Zhang Q., Liu L., Dourado M., Chi C., Yip V., et al. Identification of orally-bioavailable antagonists of the TRPV4 ion-channel. Bioorg. Med. Chem. Lett. 2015;25:4011–4015. doi: 10.1016/j.bmcl.2015.06.098. PubMed DOI

Samanta A., Hughes T.E.T., Moiseenkova-Bell V.Y. Transient Receptor Potential (TRP) Channels. Subcell. Biochem. 2018;87:141–165. doi: 10.1007/978-981-10-7757-9_6. PubMed DOI PMC

Zhang E., Liao P. Brain transient receptor potential channels and stroke. J. Neurosci. Res. 2015;93:1165–1183. doi: 10.1002/jnr.23529. PubMed DOI

White J.P., Cibelli M., Urban L., Nilius B., McGeown J.G., Nagy I. TRPV4: Molecular Conductor of a Diverse Orchestra. Physiol. Rev. 2016;96:911–973. doi: 10.1152/physrev.00016.2015. PubMed DOI

Everaerts W., Nilius B., Owsianik G. The vanilloid transient receptor potential channel TRPV4: From structure to disease. Prog. Biophys. Mol. Biol. 2010;103:2–17. doi: 10.1016/j.pbiomolbio.2009.10.002. PubMed DOI

Nilius B., Watanabe H., Vriens J. The TRPV4 channel: Structure-function relationship and promiscuous gating behaviour. Pflug. Arch. 2003;446:298–303. doi: 10.1007/s00424-003-1028-9. PubMed DOI

Takahashi N., Hamada-Nakahara S., Itoh Y., Takemura K., Shimada A., Ueda Y., Kitamata M., Matsuoka R., Hanawa-Suetsugu K., Senju Y., et al. TRPV4 channel activity is modulated by direct interaction of the ankyrin domain to PI(4,5)P(2) Nat. Commun. 2014;5:4994. doi: 10.1038/ncomms5994. PubMed DOI

Gaudet R. A primer on ankyrin repeat function in TRP channels and beyond. Mol. Biosyst. 2008;4:372–379. doi: 10.1039/b801481g. PubMed DOI PMC

D’Hoedt D., Owsianik G., Prenen J., Cuajungco M.P., Grimm C., Heller S., Voets T., Nilius B. Stimulus-specific modulation of the cation channel TRPV4 by PACSIN 3. J. Biol. Chem. 2008;283:6272–6280. doi: 10.1074/jbc.M706386200. PubMed DOI

Liedtke W.B., Heller S., editors. TRP Ion Channel Function in Sensory Transduction and Cellular Signaling Cascades. CRC Press/Taylor & Francis; Boca Raton, FL, USA: 2007. Frontiers in Neuroscience. PubMed

Suzuki M., Mizuno A., Kodaira K., Imai M. Impaired pressure sensation in mice lacking TRPV4. J. Biol. Chem. 2003;278:22664–22668. doi: 10.1074/jbc.M302561200. PubMed DOI

Garcia-Elias A., Lorenzo I.M., Vicente R., Valverde M.A. IP3 receptor binds to and sensitizes TRPV4 channel to osmotic stimuli via a calmodulin-binding site. J. Biol. Chem. 2008;283:31284–31288. doi: 10.1074/jbc.C800184200. PubMed DOI

Strotmann R., Schultz G., Plant T.D. Ca2+-dependent potentiation of the nonselective cation channel TRPV4 is mediated by a C-terminal calmodulin binding site. J. Biol. Chem. 2003;278:26541–26549. doi: 10.1074/jbc.M302590200. PubMed DOI

Nilius B., Voets T. The puzzle of TRPV4 channelopathies. EMBO Rep. 2013;14:152–163. doi: 10.1038/embor.2012.219. PubMed DOI PMC

Verma P., Kumar A., Goswami C. TRPV4-mediated channelopathies. Channels (Austin) 2010;4:319–328. doi: 10.4161/chan.4.4.12905. PubMed DOI

Urel-Demir G., Simsek-Kiper P.O., Oncel I., Utine G.E., Haliloglu G., Boduroglu K. Natural history of TRPV4-Related disorders: From skeletal dysplasia to neuromuscular phenotype. Eur. J. Paediatr. Neurol. 2021;32:46–55. doi: 10.1016/j.ejpn.2021.03.011. PubMed DOI

Voets T., Prenen J., Vriens J., Watanabe H., Janssens A., Wissenbach U., Bodding M., Droogmans G., Nilius B. Molecular determinants of permeation through the cation channel TRPV4. J. Biol. Chem. 2002;277:33704–33710. doi: 10.1074/jbc.M204828200. PubMed DOI

Rosenbaum T., Benitez-Angeles M., Sanchez-Hernandez R., Morales-Lazaro S.L., Hiriart M., Morales-Buenrostro L.E., Torres-Quiroz F. TRPV4: A Physio and Pathophysiologically Significant Ion Channel. Int. J. Mol. Sci. 2020;21:3837. doi: 10.3390/ijms21113837. PubMed DOI PMC

Watanabe H., Davis J.B., Smart D., Jerman J.C., Smith G.D., Hayes P., Vriens J., Cairns W., Wissenbach U., Prenen J., et al. Activation of TRPV4 channels (hVRL-2/mTRP12) by phorbol derivatives. J. Biol. Chem. 2002;277:13569–13577. doi: 10.1074/jbc.M200062200. PubMed DOI

Watanabe H., Vriens J., Janssens A., Wondergem R., Droogmans G., Nilius B. Modulation of TRPV4 gating by intra- and extracellular Ca2+ Cell Calcium. 2003;33:489–495. doi: 10.1016/S0143-4160(03)00064-2. PubMed DOI

Watanabe H., Vriens J., Suh S.H., Benham C.D., Droogmans G., Nilius B. Heat-evoked activation of TRPV4 channels in a HEK293 cell expression system and in native mouse aorta endothelial cells. J. Biol. Chem. 2002;277:47044–47051. doi: 10.1074/jbc.M208277200. PubMed DOI

Vriens J., Watanabe H., Janssens A., Droogmans G., Voets T., Nilius B. Cell swelling, heat, and chemical agonists use distinct pathways for the activation of the cation channel TRPV4. Proc. Natl. Acad. Sci. USA. 2004;101:396–401. doi: 10.1073/pnas.0303329101. PubMed DOI PMC

O’Neil R.G., Heller S. The mechanosensitive nature of TRPV channels. Pflug. Arch. 2005;451:193–203. doi: 10.1007/s00424-005-1424-4. PubMed DOI

Toft-Bertelsen T.L., MacAulay N. TRPing on Cell Swelling—TRPV4 Senses It. Front. Immunol. 2021;12:730982. doi: 10.3389/fimmu.2021.730982. PubMed DOI PMC

Becker D., Bereiter-Hahn J., Jendrach M. Functional interaction of the cation channel transient receptor potential vanilloid 4 (TRPV4) and actin in volume regulation. Eur. J. Cell Biol. 2009;88:141–152. doi: 10.1016/j.ejcb.2008.10.002. PubMed DOI

Goswami C., Kuhn J., Heppenstall P.A., Hucho T. Importance of non-selective cation channel TRPV4 interaction with cytoskeleton and their reciprocal regulations in cultured cells. PLoS ONE. 2010;5:e11654. doi: 10.1371/journal.pone.0011654. PubMed DOI PMC

Guler A.D., Lee H., Iida T., Shimizu I., Tominaga M., Caterina M. Heat-evoked activation of the ion channel, TRPV4. J. Neurosci. 2002;22:6408–6414. doi: 10.1523/JNEUROSCI.22-15-06408.2002. PubMed DOI PMC

Spector A.A. Arachidonic acid cytochrome P450 epoxygenase pathway. J. Lipid Res. 2009;50:S52–S56. doi: 10.1194/jlr.R800038-JLR200. PubMed DOI PMC

Loot A.E., Popp R., Fisslthaler B., Vriens J., Nilius B., Fleming I. Role of cytochrome P450-dependent transient receptor potential V4 activation in flow-induced vasodilatation. Cardiovasc. Res. 2008;80:445–452. doi: 10.1093/cvr/cvn207. PubMed DOI

Vriens J., Owsianik G., Fisslthaler B., Suzuki M., Janssens A., Voets T., Morisseau C., Hammock B.D., Fleming I., Busse R., et al. Modulation of the Ca2 permeable cation channel TRPV4 by cytochrome P450 epoxygenases in vascular endothelium. Circ. Res. 2005;97:908–915. doi: 10.1161/01.RES.0000187474.47805.30. PubMed DOI

Nilius B., Vriens J., Prenen J., Droogmans G., Voets T. TRPV4 calcium entry channel: A paradigm for gating diversity. Am. J. Physiol. Cell Physiol. 2004;286:C195–C205. doi: 10.1152/ajpcell.00365.2003. PubMed DOI

Nilius B., Owsianik G., Voets T. Transient receptor potential channels meet phosphoinositides. EMBO J. 2008;27:2809–2816. doi: 10.1038/emboj.2008.217. PubMed DOI PMC

Rohacs T. Phosphoinositide regulation of non-canonical transient receptor potential channels. Cell Calcium. 2009;45:554–565. doi: 10.1016/j.ceca.2009.03.011. PubMed DOI PMC

Vincent F., Duncton M.A. TRPV4 agonists and antagonists. Curr. Top. Med. Chem. 2011;11:2216–2226. doi: 10.2174/156802611796904861. PubMed DOI

Thorneloe K.S., Sulpizio A.C., Lin Z., Figueroa D.J., Clouse A.K., McCafferty G.P., Chendrimada T.P., Lashinger E.S., Gordon E., Evans L., et al. N-((1S)-1-[4-((2S)-2-[(2,4-dichlorophenyl)sulfonyl]amino-3-hydroxypropanoyl)-1-piperazinyl]carbonyl-3-methylbutyl)-1-benzothiophene-2-carboxamide (GSK1016790A), a novel and potent transient receptor potential vanilloid 4 channel agonist induces urinary bladder contraction and hyperactivity: Part I. J. Pharmacol. Exp. Ther. 2008;326:432–442. doi: 10.1124/jpet.108.139295. PubMed DOI

Vriens J., Owsianik G., Janssens A., Voets T., Nilius B. Determinants of 4 alpha-phorbol sensitivity in transmembrane domains 3 and 4 of the cation channel TRPV4. J. Biol. Chem. 2007;282:12796–12803. doi: 10.1074/jbc.M610485200. PubMed DOI

Thorneloe K.S., Cheung M., Holt D.A., Willette R.N. Properties of the TRPV4 agonist GSK1016790A and the TRPV4 antagonist GSK2193874. Physiol. Rev. 2017;97:1231–1232. doi: 10.1152/physrev.00019.2017. PubMed DOI

Toft-Bertelsen T.L., Krizaj D., MacAulay N. When size matters: Transient receptor potential vanilloid 4 channel as a volume-sensor rather than an osmo-sensor. J. Physiol. 2017;595:3287–3302. doi: 10.1113/JP274135. PubMed DOI PMC

Willette R.N., Bao W., Nerurkar S., Yue T.L., Doe C.P., Stankus G., Turner G.H., Ju H., Thomas H., Fishman C.E., et al. Systemic activation of the transient receptor potential vanilloid subtype 4 channel causes endothelial failure and circulatory collapse: Part 2. J. Pharmacol. Exp. Ther. 2008;326:443–452. doi: 10.1124/jpet.107.134551. PubMed DOI

Stanslowsky N., Tharmarasa S., Staege S., Kalmbach N., Klietz M., Schwarz S.C., Leffler A., Wegner F. Calcium, Sodium, and Transient Receptor Potential Channel Expression in Human Fetal Midbrain-Derived Neural Progenitor Cells. Stem Cells Dev. 2018;27:976–984. doi: 10.1089/scd.2017.0281. PubMed DOI

Atobe M., Nagami T., Muramatsu S., Ohno T., Kitagawa M., Suzuki H., Ishiguro M., Watanabe A., Kawanishi M. Discovery of Novel Transient Receptor Potential Vanilloid 4 (TRPV4) Agonists as Regulators of Chondrogenic Differentiation: Identification of Quinazolin-4(3 H)-ones and in Vivo Studies on a Surgically Induced Rat Model of Osteoarthritis. J. Med. Chem. 2019;62:1468–1483. doi: 10.1021/acs.jmedchem.8b01615. PubMed DOI

Smith P.L., Maloney K.N., Pothen R.G., Clardy J., Clapham D.E. Bisandrographolide from Andrographis paniculata activates TRPV4 channels. J. Biol. Chem. 2006;281:29897–29904. doi: 10.1074/jbc.M605394200. PubMed DOI

Strotmann R., Harteneck C., Nunnenmacher K., Schultz G., Plant T.D. OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat. Cell Biol. 2000;2:695–702. doi: 10.1038/35036318. PubMed DOI

Skogvall S., Berglund M., Dalence-Guzman M.F., Svensson K., Jonsson P., Persson C.G., Sterner O. Effects of capsazepine on human small airway responsiveness unravel a novel class of bronchorelaxants. Pulm. Pharmacol. Ther. 2007;20:273–280. doi: 10.1016/j.pupt.2006.03.002. PubMed DOI

Stotz S.C., Vriens J., Martyn D., Clardy J., Clapham D.E. Citral sensing by Transient [corrected] receptor potential channels in dorsal root ganglion neurons. PLoS ONE. 2008;3:e2082. doi: 10.1371/annotation/6ba8e9d9-0035-405e-a7c7-45ee22b2e381. PubMed DOI PMC

Pivonkova H., Hermanova Z., Kirdajova D., Awadova T., Malinsky J., Valihrach L., Zucha D., Kubista M., Galisova A., Jirak D., et al. The Contribution of TRPV4 Channels to Astrocyte Volume Regulation and Brain Edema Formation. Neuroscience. 2018;394:127–143. doi: 10.1016/j.neuroscience.2018.10.028. PubMed DOI

Sucha P., Hermanova Z., Chmelova M., Kirdajova D., Camacho Garcia S., Marchetti V., Vorisek I., Tureckova J., Shany E., Jirak D., et al. The absence of AQP4/TRPV4 complex substantially reduces acute cytotoxic edema following ischemic injury. Front. Cell. Neurosci. 2022;16:1054919. doi: 10.3389/fncel.2022.1054919. PubMed DOI PMC

Yang W., Wu P.F., Ma J.X., Liao M.J., Xu L.S., Yi L. TRPV4 activates the Cdc42/N-wasp pathway to promote glioblastoma invasion by altering cellular protrusions. Sci. Rep. 2020;10:14151. doi: 10.1038/s41598-020-70822-4. PubMed DOI PMC

Zhao H., Zhang K., Tang R., Meng H., Zou Y., Wu P., Hu R., Liu X., Feng H., Chen Y. TRPV4 Blockade Preserves the Blood-Brain Barrier by Inhibiting Stress Fiber Formation in a Rat Model of Intracerebral Hemorrhage. Front. Mol. Neurosci. 2018;11:97. doi: 10.3389/fnmol.2018.00097. PubMed DOI PMC

Liu N., Bai L., Lu Z., Gu R., Zhao D., Yan F., Bai J. TRPV4 contributes to ER stress and inflammation: Implications for Parkinson’s disease. J. Neuroinflamm. 2022;19:26. doi: 10.1186/s12974-022-02382-5. PubMed DOI PMC

Li W., Xu Y., Liu Z., Shi M., Zhang Y., Deng Y., Zhong X., Chen L., He J., Zeng J., et al. TRPV4 inhibitor HC067047 produces antidepressant-like effect in LPS-induced depression mouse model. Neuropharmacology. 2021;201:108834. doi: 10.1016/j.neuropharm.2021.108834. PubMed DOI

Aghazadeh A., Feizi M.A.H., Fanid L.M., Ghanbari M., Roshangar L. Effects of Hyperthermia on TRPV1 and TRPV4 Channels Expression and Oxidative Markers in Mouse Brain. Cell. Mol. Neurobiol. 2021;41:1453–1465. doi: 10.1007/s10571-020-00909-z. PubMed DOI

Sanchez J.C., Ehrlich B.E. Functional Interaction between Transient Receptor Potential V4 Channel and Neuronal Calcium Sensor 1 and the Effects of Paclitaxel. Mol. Pharmacol. 2021;100:258–270. doi: 10.1124/molpharm.121.000244. PubMed DOI PMC

Shibasaki K., Sugio S., Takao K., Yamanaka A., Miyakawa T., Tominaga M., Ishizaki Y. TRPV4 activation at the physiological temperature is a critical determinant of neuronal excitability and behavior. Pflug. Arch. 2015;467:2495–2507. doi: 10.1007/s00424-015-1726-0. PubMed DOI

Shibasaki K., Suzuki M., Mizuno A., Tominaga M. Effects of body temperature on neural activity in the hippocampus: Regulation of resting membrane potentials by transient receptor potential vanilloid 4. J. Neurosci. 2007;27:1566–1575. doi: 10.1523/JNEUROSCI.4284-06.2007. PubMed DOI PMC

Shibasaki K., Yamada K., Miwa H., Yanagawa Y., Suzuki M., Tominaga M., Ishizaki Y. Temperature elevation in epileptogenic foci exacerbates epileptic discharge through TRPV4 activation. Lab. Investig. 2020;100:274–284. doi: 10.1038/s41374-019-0335-5. PubMed DOI

Qi M., Wu C., Wang Z., Zhou L., Men C., Du Y., Huang S., Chen L., Chen L. Transient Receptor Potential Vanilloid 4 Activation-Induced Increase in Glycine-Activated Current in Mouse Hippocampal Pyramidal Neurons. Cell. Physiol. Biochem. 2018;45:1084–1096. doi: 10.1159/000487350. PubMed DOI

Hoshi Y., Okabe K., Shibasaki K., Funatsu T., Matsuki N., Ikegaya Y., Koyama R. Ischemic Brain Injury Leads to Brain Edema via Hyperthermia-Induced TRPV4 Activation. J. Neurosci. 2018;38:5700–5709. doi: 10.1523/JNEUROSCI.2888-17.2018. PubMed DOI PMC

Chen C.K., Hsu P.Y., Wang T.M., Miao Z.F., Lin R.T., Juo S.H. TRPV4 Activation Contributes Functional Recovery from Ischemic Stroke via Angiogenesis and Neurogenesis. Mol. Neurobiol. 2018;55:4127–4135. doi: 10.1007/s12035-017-0625-0. PubMed DOI

Luo H., Saubamea B., Chasseigneaux S., Cochois V., Smirnova M., Glacial F., Perriere N., Chaves C., Cisternino S., Decleves X. Molecular and Functional Study of Transient Receptor Potential Vanilloid 1-4 at the Rat and Human Blood-Brain Barrier Reveals Interspecies Differences. Front. Cell Dev. Biol. 2020;8:578514. doi: 10.3389/fcell.2020.578514. PubMed DOI PMC

Hatano N., Suzuki H., Itoh Y., Muraki K. TRPV4 partially participates in proliferation of human brain capillary endothelial cells. Life Sci. 2013;92:317–324. doi: 10.1016/j.lfs.2013.01.002. PubMed DOI

Wen L., Wen Y.C., Ke G.J., Sun S.Q., Dong K., Wang L., Liao R.F. TRPV4 regulates migration and tube formation of human retinal capillary endothelial cells. BMC Ophthalmol. 2018;18:38. doi: 10.1186/s12886-018-0697-2. PubMed DOI PMC

Harraz O.F., Longden T.A., Hill-Eubanks D., Nelson M.T. PIP(2) depletion promotes TRPV4 channel activity in mouse brain capillary endothelial cells. eLife. 2018;7:e38689. doi: 10.7554/eLife.38689. PubMed DOI PMC

Rosenkranz S.C., Shaposhnykov A., Schnapauff O., Epping L., Vieira V., Heidermann K., Schattling B., Tsvilovskyy V., Liedtke W., Meuth S.G., et al. TRPV4-Mediated Regulation of the Blood Brain Barrier Is Abolished During Inflammation. Front. Cell Dev. Biol. 2020;8:849. doi: 10.3389/fcell.2020.00849. PubMed DOI PMC

Beddek K., Raffin F., Borgel D., Saller F., Riccobono D., Bobe R., Boittin F.X. TRPV4 channel activation induces the transition of venous and arterial endothelial cells toward a pro-inflammatory phenotype. Physiol. Rep. 2021;9:e14613. doi: 10.14814/phy2.14613. PubMed DOI PMC

Kumar H., Lim C.S., Choi H., Joshi H.P., Kim K.T., Kim Y.H., Park C.K., Kim H.M., Han I.B. Elevated TRPV4 Levels Contribute to Endothelial Damage and Scarring in Experimental Spinal Cord Injury. J. Neurosci. 2020;40:1943–1955. doi: 10.1523/JNEUROSCI.2035-19.2020. PubMed DOI PMC

Borst K., Dumas A.A., Prinz M. Microglia: Immune and non-immune functions. Immunity. 2021;54:2194–2208. doi: 10.1016/j.immuni.2021.09.014. PubMed DOI

Pan K., Garaschuk O. The role of intracellular calcium-store-mediated calcium signals in in vivo sensor and effector functions of microglia. J. Physiol. 2022. Online ahead of print . PubMed DOI

Beeken J., Mertens M., Stas N., Kessels S., Aerts L., Janssen B., Mussen F., Pinto S., Vennekens R., Rigo J.M., et al. Acute inhibition of transient receptor potential vanilloid-type 4 cation channel halts cytoskeletal dynamism in microglia. Glia. 2022;70:2157–2168. doi: 10.1002/glia.24243. PubMed DOI

Dutta B., Arya R.K., Goswami R., Alharbi M.O., Sharma S., Rahaman S.O. Role of macrophage TRPV4 in inflammation. Lab. Investig. 2020;100:178–185. doi: 10.1038/s41374-019-0334-6. PubMed DOI PMC

Redmon S.N., Yarishkin O., Lakk M., Jo A., Mustafic E., Tvrdik P., Krizaj D. TRPV4 channels mediate the mechanoresponse in retinal microglia. Glia. 2021;69:1563–1582. doi: 10.1002/glia.23979. PubMed DOI PMC

Konno M., Shirakawa H., Iida S., Sakimoto S., Matsutani I., Miyake T., Kageyama K., Nakagawa T., Shibasaki K., Kaneko S. Stimulation of transient receptor potential vanilloid 4 channel suppresses abnormal activation of microglia induced by lipopolysaccharide. Glia. 2012;60:761–770. doi: 10.1002/glia.22306. PubMed DOI

Kirdajova D., Anderova M. NG2 cells and their neurogenic potential. Curr. Opin. Pharmacol. 2020;50:53–60. doi: 10.1016/j.coph.2019.11.005. PubMed DOI

Kirdajova D., Valihrach L., Valny M., Kriska J., Krocianova D., Benesova S., Abaffy P., Zucha D., Klassen R., Kolenicova D., et al. Transient astrocyte-like NG2 glia subpopulation emerges solely following permanent brain ischemia. Glia. 2021;69:2658–2681. doi: 10.1002/glia.24064. PubMed DOI PMC

Valny M., Honsa P., Waloschkova E., Matuskova H., Kriska J., Kirdajova D., Androvic P., Valihrach L., Kubista M., Anderova M. A single-cell analysis reveals multiple roles of oligodendroglial lineage cells during post-ischemic regeneration. Glia. 2018;66:1068–1081. doi: 10.1002/glia.23301. PubMed DOI

Vigano F., Dimou L. The heterogeneous nature of NG2-glia. Brain Res. 2016;1638:129–137. doi: 10.1016/j.brainres.2015.09.012. PubMed DOI

Haberlandt C., Derouiche A., Wyczynski A., Haseleu J., Pohle J., Karram K., Trotter J., Seifert G., Frotscher M., Steinhauser C., et al. Gray matter NG2 cells display multiple Ca2+-signaling pathways and highly motile processes. PLoS ONE. 2011;6:e17575. doi: 10.1371/journal.pone.0017575. PubMed DOI PMC

Sun W., Matthews E.A., Nicolas V., Schoch S., Dietrich D. NG2 glial cells integrate synaptic input in global and dendritic calcium signals. eLife. 2016;5:e16262. doi: 10.7554/eLife.16262. PubMed DOI PMC

Liu Y., Fan H., Li X., Liu J., Qu X., Wu X., Liu M., Liu Z., Yao R. Trpv4 regulates Nlrp3 inflammasome via SIRT1/PGC-1α pathway in a cuprizone-induced mouse model of demyelination. Exp. Neurol. 2021;337:113593. doi: 10.1016/j.expneurol.2020.113593. PubMed DOI

Pannasch U., Rouach N. Emerging role for astroglial networks in information processing: From synapse to behavior. Trends Neurosci. 2013;36:405–417. doi: 10.1016/j.tins.2013.04.004. PubMed DOI

Marina N., Christie I.N., Korsak A., Doronin M., Brazhe A., Hosford P.S., Wells J.A., Sheikhbahaei S., Humoud I., Paton J.F.R., et al. Astrocytes monitor cerebral perfusion and control systemic circulation to maintain brain blood flow. Nat. Commun. 2020;11:131. doi: 10.1038/s41467-019-13956-y. PubMed DOI PMC

Takano T., Tian G.F., Peng W., Lou N., Libionka W., Han X., Nedergaard M. Astrocyte-mediated control of cerebral blood flow. Nat. Neurosci. 2006;9:260–267. doi: 10.1038/nn1623. PubMed DOI

Kanju P., Liedtke W. Pleiotropic function of TRPV4 ion channels in the central nervous system. Exp. Physiol. 2016;101:1472–1476. doi: 10.1113/EP085790. PubMed DOI PMC

Shibasaki K., Ikenaka K., Tamalu F., Tominaga M., Ishizaki Y. A novel subtype of astrocytes expressing TRPV4 (transient receptor potential vanilloid 4) regulates neuronal excitability via release of gliotransmitters. J. Biol. Chem. 2014;289:14470–14480. doi: 10.1074/jbc.M114.557132. PubMed DOI PMC

Toft-Bertelsen T.L., Larsen B.R., MacAulay N. Sensing and regulation of cell volume—We know so much and yet understand so little: TRPV4 as a sensor of volume changes but possibly without a volume-regulatory role? Channels (Austin) 2018;12:100–108. doi: 10.1080/19336950.2018.1438009. PubMed DOI PMC

Zhang Y., Chen K., Sloan S.A., Bennett M.L., Scholze A.R., O’Keeffe S., Phatnani H.P., Guarnieri P., Caneda C., Ruderisch N., et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 2014;34:11929–11947. doi: 10.1523/JNEUROSCI.1860-14.2014. PubMed DOI PMC

Chai H., Diaz-Castro B., Shigetomi E., Monte E., Octeau J.C., Yu X., Cohn W., Rajendran P.S., Vondriska T.M., Whitelegge J.P., et al. Neural Circuit-Specialized Astrocytes: Transcriptomic, Proteomic, Morphological, and Functional Evidence. Neuron. 2017;95:531–549. doi: 10.1016/j.neuron.2017.06.029. PubMed DOI PMC

Milich L.M., Choi J.S., Ryan C., Cerqueira S.R., Benavides S., Yahn S.L., Tsoulfas P., Lee J.K. Single-cell analysis of the cellular heterogeneity and interactions in the injured mouse spinal cord. J. Exp. Med. 2021;218:e20210040. doi: 10.1084/jem.20210040. PubMed DOI PMC

Boulay A.C., Saubamea B., Adam N., Chasseigneaux S., Mazare N., Gilbert A., Bahin M., Bastianelli L., Blugeon C., Perrin S., et al. Translation in astrocyte distal processes sets molecular heterogeneity at the gliovascular interface. Cell Discov. 2017;3:17005. doi: 10.1038/celldisc.2017.5. PubMed DOI PMC

Sakers K., Lake A.M., Khazanchi R., Ouwenga R., Vasek M.J., Dani A., Dougherty J.D. Astrocytes locally translate transcripts in their peripheral processes. Proc. Natl. Acad. Sci. USA. 2017;114:E3830–E3838. doi: 10.1073/pnas.1617782114. PubMed DOI PMC

Jo A.O., Ryskamp D.A., Phuong T.T., Verkman A.S., Yarishkin O., MacAulay N., Krizaj D. TRPV4 and AQP4 Channels Synergistically Regulate Cell Volume and Calcium Homeostasis in Retinal Muller Glia. J. Neurosci. 2015;35:13525–13537. doi: 10.1523/JNEUROSCI.1987-15.2015. PubMed DOI PMC

Diaz J.R., Kim K.J., Brands M.W., Filosa J.A. Augmented astrocyte microdomain Ca2+ dynamics and parenchymal arteriole tone in angiotensin II-infused hypertensive mice. Glia. 2019;67:551–565. doi: 10.1002/glia.23564. PubMed DOI PMC

Butenko O., Dzamba D., Benesova J., Honsa P., Benfenati V., Rusnakova V., Ferroni S., Anderova M. The increased activity of TRPV4 channel in the astrocytes of the adult rat hippocampus after cerebral hypoxia/ischemia. PLoS ONE. 2012;7:e39959. doi: 10.1371/journal.pone.0039959. PubMed DOI PMC

Yi M., Wei T., Wang Y., Lu Q., Chen G., Gao X., Geller H.M., Chen H., Yu Z. The potassium channel KCa3.1 constitutes a pharmacological target for astrogliosis associated with ischemia stroke. J. Neuroinflamm. 2017;14:203. doi: 10.1186/s12974-017-0973-8. PubMed DOI PMC

Agre P., King L.S., Yasui M., Guggino W.B., Ottersen O.P., Fujiyoshi Y., Engel A., Nielsen S. Aquaporin water channels--from atomic structure to clinical medicine. J. Physiol. 2002;542:3–16. doi: 10.1113/jphysiol.2002.020818. PubMed DOI PMC

Benfenati V., Caprini M., Dovizio M., Mylonakou M.N., Ferroni S., Ottersen O.P., Amiry-Moghaddam M. An aquaporin-4/transient receptor potential vanilloid 4 (AQP4/TRPV4) complex is essential for cell-volume control in astrocytes. Proc. Natl. Acad. Sci. USA. 2011;108:2563–2568. doi: 10.1073/pnas.1012867108. PubMed DOI PMC

Salman M.M., Kitchen P., Woodroofe M.N., Brown J.E., Bill R.M., Conner A.C., Conner M.T. Hypothermia increases aquaporin 4 (AQP4) plasma membrane abundance in human primary cortical astrocytes via a calcium/transient receptor potential vanilloid 4 (TRPV4)- and calmodulin-mediated mechanism. Eur. J. Neurosci. 2017;46:2542–2547. doi: 10.1111/ejn.13723. PubMed DOI PMC

Kitchen P., Salman M.M., Halsey A.M., Clarke-Bland C., MacDonald J.A., Ishida H., Vogel H.J., Almutiri S., Logan A., Kreida S., et al. Targeting Aquaporin-4 Subcellular Localization to Treat Central Nervous System Edema. Cell. 2020;181:784–799.e19. doi: 10.1016/j.cell.2020.03.037. PubMed DOI PMC

Galizia L., Pizzoni A., Fernandez J., Rivarola V., Capurro C., Ford P. Functional interaction between AQP2 and TRPV4 in renal cells. J. Cell. Biochem. 2012;113:580–589. doi: 10.1002/jcb.23382. PubMed DOI

Liu X., Bandyopadhyay B.C., Nakamoto T., Singh B., Liedtke W., Melvin J.E., Ambudkar I. A role for AQP5 in activation of TRPV4 by hypotonicity: Concerted involvement of AQP5 and TRPV4 in regulation of cell volume recovery. J. Biol. Chem. 2006;281:15485–15495. doi: 10.1074/jbc.M600549200. PubMed DOI

Mola M.G., Sparaneo A., Gargano C.D., Spray D.C., Svelto M., Frigeri A., Scemes E., Nicchia G.P. The speed of swelling kinetics modulates cell volume regulation and calcium signaling in astrocytes: A different point of view on the role of aquaporins. Glia. 2016;64:139–154. doi: 10.1002/glia.22921. PubMed DOI PMC

Butt A.M., Kalsi A. Inwardly rectifying potassium channels (Kir) in central nervous system glia: A special role for Kir4.1 in glial functions. J. Cell. Mol. Med. 2006;10:33–44. doi: 10.1111/j.1582-4934.2006.tb00289.x. PubMed DOI PMC

Nagelhus E.A., Mathiisen T.M., Ottersen O.P. Aquaporin-4 in the central nervous system: Cellular and subcellular distribution and coexpression with KIR4.1. Neuroscience. 2004;129:905–913. doi: 10.1016/j.neuroscience.2004.08.053. PubMed DOI

Amiry-Moghaddam M., Williamson A., Palomba M., Eid T., de Lanerolle N.C., Nagelhus E.A., Adams M.E., Froehner S.C., Agre P., Ottersen O.P. Delayed K+ clearance associated with aquaporin-4 mislocalization: Phenotypic defects in brains of alpha-syntrophin-null mice. Proc. Natl. Acad. Sci. USA. 2003;100:13615–13620. doi: 10.1073/pnas.2336064100. PubMed DOI PMC

Xia X.M., Zeng X., Lingle C.J. Multiple regulatory sites in large-conductance calcium-activated potassium channels. Nature. 2002;418:880–884. doi: 10.1038/nature00956. PubMed DOI

Filosa J.A., Iddings J.A. Astrocyte regulation of cerebral vascular tone. Am. J. Physiol. Heart Circ. Physiol. 2013;305:H609–H619. doi: 10.1152/ajpheart.00359.2013. PubMed DOI PMC

Szarka N., Pabbidi M.R., Amrein K., Czeiter E., Berta G., Pohoczky K., Helyes Z., Ungvari Z., Koller A., Buki A., et al. Traumatic Brain Injury Impairs Myogenic Constriction of Cerebral Arteries: Role of Mitochondria-Derived H2O2 and TRPV4-Dependent Activation of BKca Channels. J. Neurotrauma. 2018;35:930–939. doi: 10.1089/neu.2017.5056. PubMed DOI PMC

Tinker A., Aziz Q., Li Y., Specterman M. ATP-Sensitive Potassium Channels and Their Physiological and Pathophysiological Roles. Compr. Physiol. 2018;8:1463–1511. doi: 10.1002/cphy.c170048. PubMed DOI

Busija D.W., Lacza Z., Rajapakse N., Shimizu K., Kis B., Bari F., Domoki F., Horiguchi T. Targeting mitochondrial ATP-sensitive potassium channels--a novel approach to neuroprotection. Brain Res. Brain Res. Rev. 2004;46:282–294. doi: 10.1016/j.brainresrev.2004.06.011. PubMed DOI

Wang H., Zhang Y.L., Tang X.C., Feng H.S., Hu G. Targeting ischemic stroke with a novel opener of ATP-sensitive potassium channels in the brain. Mol. Pharmacol. 2004;66:1160–1168. doi: 10.1124/mol.104.003178. PubMed DOI

Turovsky E.A., Braga A., Yu Y., Esteras N., Korsak A., Theparambil S.M., Hadjihambi A., Hosford P.S., Teschemacher A.G., Marina N., et al. Mechanosensory Signaling in Astrocytes. J. Neurosci. 2020;40:9364–9371. doi: 10.1523/JNEUROSCI.1249-20.2020. PubMed DOI PMC

Granda B., Tabernero A., Sanchez-Abarca L.I., Medina J.M. The K-ATP channel regulates the effect of Ca2+ on gap junction permeability in cultured astrocytes. FEBS Lett. 1998;427:41–45. doi: 10.1016/S0014-5793(98)00390-1. PubMed DOI

Sun X.L., Hu G. ATP-sensitive potassium channels: A promising target for protecting neurovascular unit function in stroke. Clin. Exp. Pharmacol. Physiol. 2010;37:243–252. doi: 10.1111/j.1440-1681.2009.05190.x. PubMed DOI

Sun X.L., Zeng X.N., Zhou F., Dai C.P., Ding J.H., Hu G. KATP channel openers facilitate glutamate uptake by GluTs in rat primary cultured astrocytes. Neuropsychopharmacology. 2008;33:1336–1342. doi: 10.1038/sj.npp.1301501. PubMed DOI

Wang S., Hu L.F., Zhang Y., Sun T., Sun Y.H., Liu S.Y., Ding J.H., Wu J., Hu G. Effects of systemic administration of iptakalim on extracellular neurotransmitter levels in the striatum of unilateral 6-hydroxydopamine-lesioned rats. Neuropsychopharmacology. 2006;31:933–940. doi: 10.1038/sj.npp.1300857. PubMed DOI

Guerard P., Goirand F., Fichet N., Bernard A., Rochette L., Morcillo E.J., Dumas M., Bardou M. Arachidonic acid relaxes human pulmonary arteries through K+ channels and nitric oxide pathways. Eur. J. Pharmacol. 2004;501:127–135. doi: 10.1016/j.ejphar.2004.08.007. PubMed DOI

Maqoud F., Scala R., Hoxha M., Zappacosta B., Tricarico D. ATP-sensitive Potassium Channel Subunits in Neuroinflammation: Novel Drug Targets in Neurodegenerative Disorders. CNS Neurol. Disord. Drug Targets. 2022;21:130–149. doi: 10.2174/1871527320666210119095626. PubMed DOI

Reed M.M., Blazer-Yost B. Channels and Transporters in Astrocyte Volume Regulation in Health and Disease. Cell. Physiol. Biochem. 2022;56:12–30. doi: 10.33594/000000495. PubMed DOI

Woo S.K., Tsymbalyuk N., Tsymbalyuk O., Ivanova S., Gerzanich V., Simard J.M. SUR1-TRPM4 channels, not K(ATP), mediate brain swelling following cerebral ischemia. Neurosci. Lett. 2020;718:134729. doi: 10.1016/j.neulet.2019.134729. PubMed DOI PMC

Attwell D., Buchan A.M., Charpak S., Lauritzen M., Macvicar B.A., Newman E.A. Glial and neuronal control of brain blood flow. Nature. 2010;468:232–243. doi: 10.1038/nature09613. PubMed DOI PMC

Gordon G.R.J., Mulligan S.J., MacVicar B.A. Astrocyte control of the cerebrovasculature. Glia. 2007;55:1214–1221. doi: 10.1002/glia.20543. PubMed DOI

Nakahata K., Kinoshita H., Tokinaga Y., Ishida Y., Kimoto Y., Dojo M., Mizumoto K., Ogawa K., Hatano Y. Vasodilation mediated by inward rectifier K+ channels in cerebral microvessels of hypertensive and normotensive rats. Anesth. Analg. 2006;102:571–576. doi: 10.1213/01.ane.0000194303.00844.5e. PubMed DOI

Dormanns K., Brown R.G., David T. The role of nitric oxide in neurovascular coupling. J. Theor. Biol. 2016;394:1–17. doi: 10.1016/j.jtbi.2016.01.009. PubMed DOI

Zonta M., Angulo M.C., Gobbo S., Rosengarten B., Hossmann K.A., Pozzan T., Carmignoto G. Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat. Neurosci. 2003;6:43–50. doi: 10.1038/nn980. PubMed DOI

Filosa J.A., Bonev A.D., Straub S.V., Meredith A.L., Wilkerson M.K., Aldrich R.W., Nelson M.T. Local potassium signaling couples neuronal activity to vasodilation in the brain. Nat. Neurosci. 2006;9:1397–1403. doi: 10.1038/nn1779. PubMed DOI

Higashimori H., Blanco V.M., Tuniki V.R., Falck J.R., Filosa J.A. Role of epoxyeicosatrienoic acids as autocrine metabolites in glutamate-mediated K+ signaling in perivascular astrocytes. Am. J. Physiol. Cell Physiol. 2010;299:C1068–C1078. doi: 10.1152/ajpcell.00225.2010. PubMed DOI PMC

Kenny A., Plank M.J., David T. The role of astrocytic calcium and TRPV4 channels in neurovascular coupling. J. Comput. Neurosci. 2018;44:97–114. doi: 10.1007/s10827-017-0671-7. PubMed DOI

Haidey J.N., Peringod G., Institoris A., Gorzo K.A., Nicola W., Vandal M., Ito K., Liu S., Fielding C., Visser F., et al. Astrocytes regulate ultra-slow arteriole oscillations via stretch-mediated TRPV4-COX-1 feedback. Cell Rep. 2021;36:109405. doi: 10.1016/j.celrep.2021.109405. PubMed DOI

Parpura V., Basarsky T.A., Liu F., Jeftinija K., Jeftinija S., Haydon P.G. Glutamate-mediated astrocyte-neuron signalling. Nature. 1994;369:744–747. doi: 10.1038/369744a0. PubMed DOI

Simard M., Arcuino G., Takano T., Liu Q.S., Nedergaard M. Signaling at the gliovascular interface. J. Neurosci. 2003;23:9254–9262. doi: 10.1523/JNEUROSCI.23-27-09254.2003. PubMed DOI PMC

Newman E.A. New roles for astrocytes: Regulation of synaptic transmission. Trends Neurosci. 2003;26:536–542. doi: 10.1016/S0166-2236(03)00237-6. PubMed DOI

Wilson C.S., Mongin A.A. Cell Volume Control in Healthy Brain and Neuropathologies. Curr. Top. Membr. 2018;81:385–455. doi: 10.1016/bs.ctm.2018.07.006. PubMed DOI PMC

Liedtke W., Friedman J.M. Abnormal osmotic regulation in trpv4−/− mice. Proc. Natl. Acad. Sci. USA. 2003;100:13698–13703. doi: 10.1073/pnas.1735416100. PubMed DOI PMC

Mola M.G., Saracino E., Formaggio F., Amerotti A.G., Barile B., Posati T., Cibelli A., Frigeri A., Palazzo C., Zamboni R., et al. Cell Volume Regulation Mechanisms in Differentiated Astrocytes. Cell. Physiol. Biochem. 2021;55:196–212. doi: 10.33594/000000469. PubMed DOI

Risher W.C., Andrew R.D., Kirov S.A. Real-time passive volume responses of astrocytes to acute osmotic and ischemic stress in cortical slices and in vivo revealed by two-photon microscopy. Glia. 2009;57:207–221. doi: 10.1002/glia.20747. PubMed DOI PMC

Chmelova M., Sucha P., Bochin M., Vorisek I., Pivonkova H., Hermanova Z., Anderova M., Vargova L. The role of aquaporin-4 and transient receptor potential vaniloid isoform 4 channels in the development of cytotoxic edema and associated extracellular diffusion parameter changes. Eur. J. Neurosci. 2019;50:1685–1699. doi: 10.1111/ejn.14338. PubMed DOI

de Pablo Y., Nilsson M., Pekna M., Pekny M. Intermediate filaments are important for astrocyte response to oxidative stress induced by oxygen-glucose deprivation and reperfusion. Histochem. Cell Biol. 2013;140:81–91. doi: 10.1007/s00418-013-1110-0. PubMed DOI

Chen Y., Vartiainen N.E., Ying W., Chan P.H., Koistinaho J., Swanson R.A. Astrocytes protect neurons from nitric oxide toxicity by a glutathione-dependent mechanism. J. Neurochem. 2001;77:1601–1610. doi: 10.1046/j.1471-4159.2001.00374.x. PubMed DOI

Hansson E., Ronnback L. Glial neuronal signaling in the central nervous system. FASEB J. 2003;17:341–348. doi: 10.1096/fj.02-0429rev. PubMed DOI

Kimelberg H.K. Astrocytic swelling in cerebral ischemia as a possible cause of injury and target for therapy. Glia. 2005;50:389–397. doi: 10.1002/glia.20174. PubMed DOI

Abbott N.J., Ronnback L., Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat. Rev. Neurosci. 2006;7:41–53. doi: 10.1038/nrn1824. PubMed DOI

Anderson C.M., Swanson R.A. Astrocyte glutamate transport: Review of properties, regulation, and physiological functions. Glia. 2000;32:1–14. doi: 10.1002/1098-1136(200010)32:1<1::AID-GLIA10>3.0.CO;2-W. PubMed DOI

Li L., Lundkvist A., Andersson D., Wilhelmsson U., Nagai N., Pardo A.C., Nodin C., Stahlberg A., Aprico K., Larsson K., et al. Protective role of reactive astrocytes in brain ischemia. J. Cereb. Blood Flow Metab. 2008;28:468–481. doi: 10.1038/sj.jcbfm.9600546. PubMed DOI

Smith G.M., Strunz C. Growth factor and cytokine regulation of chondroitin sulfate proteoglycans by astrocytes. Glia. 2005;52:209–218. doi: 10.1002/glia.20236. PubMed DOI

Faulkner J.R., Herrmann J.E., Woo M.J., Tansey K.E., Doan N.B., Sofroniew M.V. Reactive astrocytes protect tissue and preserve function after spinal cord injury. J. Neurosci. 2004;24:2143–2155. doi: 10.1523/JNEUROSCI.3547-03.2004. PubMed DOI PMC

Sofroniew M.V. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci. 2009;32:638–647. doi: 10.1016/j.tins.2009.08.002. PubMed DOI PMC

Meyer J., Gerkau N.J., Kafitz K.W., Patting M., Jolmes F., Henneberger C., Rose C.R. Rapid Fluorescence Lifetime Imaging Reveals That TRPV4 Channels Promote Dysregulation of Neuronal Na+ in Ischemia. J. Neurosci. 2022;42:552–566. doi: 10.1523/JNEUROSCI.0819-21.2021. PubMed DOI PMC

Rakers C., Schmid M., Petzold G.C. TRPV4 channels contribute to calcium transients in astrocytes and neurons during peri-infarct depolarizations in a stroke model. Glia. 2017;65:1550–1561. doi: 10.1002/glia.23183. PubMed DOI

Cobley J.N., Fiorello M.L., Bailey D.M. 13 reasons why the brain is susceptible to oxidative stress. Redox Biol. 2018;15:490–503. doi: 10.1016/j.redox.2018.01.008. PubMed DOI PMC

Asao Y., Tobori S., Kakae M., Nagayasu K., Shibasaki K., Shirakawa H., Kaneko S. Transient receptor potential vanilloid 4 agonist GSK1016790A improves neurological outcomes after intracerebral hemorrhage in mice. Biochem. Biophys. Res. Commun. 2020;529:590–595. doi: 10.1016/j.bbrc.2020.06.103. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...