Transient astrocyte-like NG2 glia subpopulation emerges solely following permanent brain ischemia
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34314531
PubMed Central
PMC9292252
DOI
10.1002/glia.24064
Knihovny.cz E-zdroje
- Klíčová slova
- NG2 glia, astrocytes, demyelination, ischemia, oligodendrocytes, stab wound,
- MeSH
- astrocyty * metabolismus MeSH
- glióza patologie MeSH
- ischemie mozku * metabolismus MeSH
- myši MeSH
- neuroglie metabolismus MeSH
- oligodendroglie patologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
NG2 glia display wide proliferation and differentiation potential under physiological and pathological conditions. Here, we examined these two features following different types of brain disorders such as focal cerebral ischemia (FCI), cortical stab wound (SW), and demyelination (DEMY) in 3-month-old mice, in which NG2 glia are labeled by tdTomato under the Cspg4 promoter. To compare NG2 glia expression profiles following different CNS injuries, we employed single-cell RT-qPCR and self-organizing Kohonen map analysis of tdTomato-positive cells isolated from the uninjured cortex/corpus callosum and those after specific injury. Such approach enabled us to distinguish two main cell populations (NG2 glia, oligodendrocytes), each of them comprising four distinct subpopulations. The gene expression profiling revealed that a subpopulation of NG2 glia expressing GFAP, a marker of reactive astrocytes, is only present transiently after FCI. However, following less severe injuries, namely the SW and DEMY, subpopulations mirroring different stages of oligodendrocyte maturation markedly prevail. Such injury-dependent incidence of distinct subpopulations was also confirmed by immunohistochemistry. To characterize this unique subpopulation of transient astrocyte-like NG2 glia, we used single-cell RNA-sequencing analysis and to disclose their basic membrane properties, the patch-clamp technique was employed. Overall, we have proved that astrocyte-like NG2 glia are a specific subpopulation of NG2 glia emerging transiently only following FCI. These cells, located in the postischemic glial scar, are active in the cell cycle and display a current pattern similar to that identified in cortical astrocytes. Astrocyte-like NG2 glia may represent important players in glial scar formation and repair processes, following ischemia.
2nd Faculty of Medicine Charles University Prague Czech Republic
Faculty of Science Charles University Prague Czech Republic
Laboratory of Gene Expression Institute of Biotechnology CAS BIOCEV Vestec Czech Republic
Zobrazit více v PubMed
Aguirre, A. , & Gallo, V. (2004). Postnatal neurogenesis and gliogenesis in the olfactory bulb from NG2‐expressing progenitors of the subventricular zone. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 24(46), 10530–10541. 10.1523/JNEUROSCI.3572-04.2004 PubMed DOI PMC
Alberdi, E. , Sánchez‐Gómez, M. V. , Marino, A. , & Matute, C. (2002). Ca(2+) influx through AMPA or kainate receptors alone is sufficient to initiate excitotoxicity in cultured oligodendrocytes. Neurobiology of Disease, 9(2), 234–243. 10.1006/nbdi.2001.0457 PubMed DOI
Anderová, M. , Antonova, T. , Petrík, D. , Neprasová, H. , Chvátal, A. , & Syková, E. (2004). Voltage‐dependent potassium currents in hypertrophied rat astrocytes after a cortical stab wound. Glia, 48(4), 311–326. 10.1002/glia.20076 PubMed DOI
Anderová, M. , Kubinová, S. , Jelitai, M. , Neprasová, H. , Glogarová, K. , Prajerová, I. , … Syková, E. (2006). Transplantation of embryonic neuroectodermal progenitor cells into the site of a photochemical lesion: Immunohistochemical and electrophysiological analysis. Journal of Neurobiology, 66(10), 1084–1100. 10.1002/neu.20278 PubMed DOI
Battefeld, A. , Klooster, J. , & Kole, M. H. (2016). Myelinating satellite oligodendrocytes are integrated in a glial syncytium constraining neuronal high‐frequency activity. Nature Communications, 7, 11298. 10.1038/ncomms11298 PubMed DOI PMC
Baxi, E. G. , DeBruin, J. , Jin, J. , Strasburger, H. J. , Smith, M. D. , Orthmann‐Murphy, J. L. , … Calabresi, P. A. (2017). Lineage tracing reveals dynamic changes in oligodendrocyte precursor cells following cuprizone‐induced demyelination. Glia, 65(12), 2087–2098. 10.1002/glia.23229 PubMed DOI PMC
Bergles, D. E. , Roberts, J. D. , Somogyi, P. , & Jahr, C. E. (2000). Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature, 405(6783), 187–191. 10.1038/35012083 PubMed DOI
Boda, E. , Viganò, F. , Rosa, P. , Fumagalli, M. , Labat‐Gest, V. , Tempia, F. , … Buffo, A. (2011). The GPR17 receptor in NG2 expressing cells: Focus on in vivo cell maturation and participation in acute trauma and chronic damage. Glia, 59(12), 1958–1973. 10.1002/glia.21237 PubMed DOI
Bonfanti, E. , Gelosa, P. , Fumagalli, M. , Dimou, L. , Viganò, F. , Tremoli, E. , … Abbracchio, M. P. (2017). The role of oligodendrocyte precursor cells expressing the GPR17 receptor in brain remodeling after stroke. Cell Death & Disease, 8(6), e2871. 10.1038/cddis.2017.256 PubMed DOI PMC
Boulanger, J. J. , & Messier, C. (2017). Doublecortin in oligodendrocyte precursor cells in the adult mouse brain. Frontiers in Neuroscience, 11, 143. 10.3389/fnins.2017.00143 PubMed DOI PMC
Buffo, A. , Vosko, M. R. , Erturk, D. , Hamann, G. F. , Jucker, M. , Rowitch, D. , & Gotz, M. (2005). Expression pattern of the transcription factor Olig2 in response to brain injuries: Implications for neuronal repair. Proceedings of the National Academy of Sciences of the United States of America, 102(50), 18183–18188. 10.1073/pnas.0506535102 PubMed DOI PMC
Butt, A. M. , Vanzulli, I. , Papanikolaou, M. , de la Rocha, I. C. , & Hawkins, V. E. (2017). Metabotropic glutamate receptors protect oligodendrocytes from acute ischemia in the mouse optic nerve. Neurochemical Research, 42(9), 2468–2478. 10.1007/s11064-017-2220-1 PubMed DOI PMC
Cahoy, J. D. , Emery, B. , Kaushal, A. , Foo, L. C. , Zamanian, J. L. , Christopherson, K. S. , … Barres, B. A. (2008). A transcriptome database for astrocytes, neurons, and oligodendrocytes: A new resource for understanding brain development and function. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 28(1), 264–278. 10.1523/jneurosci.4178-07.2008 PubMed DOI PMC
Ceprian, M. , & Fulton, D. (2019). Glial cell AMPA receptors in nervous system health, injury and disease. International Journal of Molecular Sciences, 20(10), 2450. 10.3390/ijms20102450 PubMed DOI PMC
Chamling, X. , Kallman, A. , Fang, W. X. , Berlinicke, C. A. , Mertz, J. L. , Devkota, P. , … Zack, D. J. (2021). Single‐cell transcriptomic reveals molecular diversity and developmental heterogeneity of human stem cell‐derived oligodendrocyte lineage cells. Nat Commun. 12(1), 652. 10.1101/2020.10.07.328971 PubMed DOI PMC
Chittajallu, R. , Aguirre, A. , & Gallo, V. (2004). NG2‐positive cells in the mouse white and grey matter display distinct physiological properties. The Journal of Physiology, 561(Pt 1), 109–122. 10.1113/jphysiol.2004.074252 PubMed DOI PMC
David, F. P. A. , Litovchenko, M. , Deplancke, B. , & Gardeux, V. (2020). ASAP 2020 update: An open, scalable and interactive web‐based portal for (single‐cell) omics analyses. Nucleic Acids Research, 48(W1), W403–w414. 10.1093/nar/gkaa412 PubMed DOI PMC
de Biase, L. M. , Nishiyama, A. , & Bergles, D. E. (2010). Excitability and synaptic communication within the oligodendrocyte lineage. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 30(10), 3600–3611. 10.1523/jneurosci.6000-09.2010 PubMed DOI PMC
DeSilva, T. M. , Kabakov, A. Y. , Goldhoff, P. E. , Volpe, J. J. , & Rosenberg, P. A. (2009). Regulation of glutamate transport in developing rat oligodendrocytes. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 29(24), 7898–7908. 10.1523/jneurosci.6129-08.2009 PubMed DOI PMC
Dewar, D. , Underhill, S. M. , & Goldberg, M. P. (2003). Oligodendrocytes and ischemic brain injury. Journal of Cerebral Blood Flow and Metabolism, 23(3), 263–274. 10.1097/01.WCB.0000053472.41007.F9 PubMed DOI
Dias, D. O. , Kalkitsas, J. , Kelahmetoglu, Y. , Estrada, C. P. , Tatarishvili, J. , Ernst, A. , … Göritz, C. (2020). Pericyte‐derived fibrotic scarring is conserved across diverse central nervous system lesions. bioRxiv, 2020.2004.2030.068965. 10.1101/2020.04.30.068965 PubMed DOI PMC
Dimou, L. , Simon, C. , Kirchhoff, F. , Takebayashi, H. , & Gotz, M. (2008). Progeny of Olig2‐expressing progenitors in the gray and white matter of the adult mouse cerebral cortex. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 28(41), 10434–10442. 10.1523/jneurosci.2831-08.2008 PubMed DOI PMC
Dobin, A. , Davis, C. A. , Schlesinger, F. , Drenkow, J. , Zaleski, C. , Jha, S. , … Gingeras, T. R. (2013). STAR: ultrafast universal RNA‐seq aligner. Bioinformatics, 29(1), 15–21. 10.1093/bioinformatics/bts635 PubMed DOI PMC
Essers, J. , Theil, A. F. , Baldeyron, C. , van Cappellen, W. A. , Houtsmuller, A. B. , Kanaar, R. , & Vermeulen, W. (2005). Nuclear dynamics of PCNA in DNA replication and repair. Molecular and Cellular Biology, 25(21), 9350–9359. 10.1128/mcb.25.21.9350-9359.2005 PubMed DOI PMC
Ferent, J. , Zimmer, C. , Durbec, P. , Ruat, M. , & Traiffort, E. (2013). Sonic Hedgehog signaling is a positive oligodendrocyte regulator during demyelination. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 33(5), 1759–1772. 10.1523/jneurosci.3334-12.2013 PubMed DOI PMC
Gudi, V. , Gingele, S. , Skripuletz, T. , & Stangel, M. (2014). Glial response during cuprizone‐induced de‐ and remyelination in the CNS: Lessons learned. Frontiers in Cellular Neuroscience, 8, 73. 10.3389/fncel.2014.00073 PubMed DOI PMC
Guo, F. , Lang, J. , Sohn, J. , Hammond, E. , Chang, M. , & Pleasure, D. (2015). Canonical Wnt signaling in the oligodendroglial lineage: Puzzles remain. Glia, 63(10), 1671–1693. 10.1002/glia.22813 PubMed DOI
Guo, F. , Ma, J. , McCauley, E. , Bannerman, P. , & Pleasure, D. (2009). Early postnatal proteolipid promoter‐expressing progenitors produce multilineage cells in vivo. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 29(22), 7256–7270. 10.1523/jneurosci.5653-08.2009 PubMed DOI PMC
Hackett, A. R. , Yahn, S. L. , Lyapichev, K. , Dajnoki, A. , Lee, D. H. , Rodriguez, M. , … Lee, J. K. (2018). Injury type‐dependent differentiation of NG2 glia into heterogeneous astrocytes. Experimental Neurology, 308, 72–79. 10.1016/j.expneurol.2018.07.001 PubMed DOI PMC
Haneda, H. , Katabami, M. , Miyamoto, H. , Isobe, H. , Shimizu, T. , Ishiguro, A. , … Kawakami, Y. (1991). The relationship of the proliferating cell nuclear antigen protein to cis‐diamminedichloroplatinum (II) resistance of a murine leukemia cell line P388/CDDP. Oncology, 48(3), 234–238. 10.1159/000226934 PubMed DOI
Hansen, A. J. (1978). The extracellular potassium concentration in brain cortex following ischemia in hypo‐ and hyperglycemic rats. Acta Physiologica Scandinavica, 102(3), 324–329. 10.1111/j.1748-1716.1978.tb06079.x PubMed DOI
Hassannejad, Z. , Shakouri‐Motlagh, A. , Mokhatab, M. , Zadegan, S. A. , Sharif‐Alhoseini, M. , Shokraneh, F. , & Rahimi‐Movaghar, V. (2019). Oligodendrogliogenesis and axon remyelination after traumatic spinal cord injuries in animal studies: A systematic review. Neuroscience, 402, 37–50. 10.1016/j.neuroscience.2019.01.019 PubMed DOI
He, Y. , Liu, X. , & Chen, Z. (2020). Glial scar: A promising target for improving outcomes after CNS injury. Journal of Molecular Neuroscience, 70(3), 340–352. 10.1007/s12031-019-01417-6 PubMed DOI
Hill, R. A. , & Nishiyama, A. (2014). NG2 cells (polydendrocytes): Listeners to the neural network with diverse properties. Glia, 62(8), 1195–1210. 10.1002/glia.22664 PubMed DOI PMC
Honsa, P. , Pivonkova, H. , Dzamba, D. , Filipova, M. , & Anderova, M. (2012). Polydendrocytes display large lineage plasticity following focal cerebral ischemia. PLoS One, 7(5), e36816. 10.1371/journal.pone.0036816 PubMed DOI PMC
Honsa, P. , Valny, M. , Kriska, J. , Matuskova, H. , Harantova, L. , Kirdajova, D. , … Anderova, M. (2016). Generation of reactive astrocytes from NG2 cells is regulated by sonic hedgehog. Glia, 64(9), 1518–1531. 10.1002/glia.23019 PubMed DOI
Huang, W. , Bai, X. , Stopper, L. , Catalin, B. , Cartarozzi, L. P. , Scheller, A. , & Kirchhoff, F. (2018). During development NG2 glial cells of the spinal cord are restricted to the oligodendrocyte lineage, but generate astrocytes upon acute injury. Neuroscience, 385, 154–165. 10.1016/j.neuroscience.2018.06.015 PubMed DOI
Huang, W. , Guo, Q. , Bai, X. , Scheller, A. , & Kirchhoff, F. (2019). Early embryonic NG2 glia are exclusively gliogenic and do not generate neurons in the brain. Glia, 67(6), 1094–1103. 10.1002/glia.23590 PubMed DOI
Huang, W. , Zhao, N. , Bai, X. , Karram, K. , Trotter, J. , Goebbels, S. , … Kirchhoff, F. (2014). Novel NG2‐CreERT2 knock‐in mice demonstrate heterogeneous differentiation potential of NG2 glia during development. Glia, 62(6), 896–913. 10.1002/glia.22648 PubMed DOI
Juríková, M. , Danihel, Ľ. , Polák, Š. , & Varga, I. (2016). Ki67, PCNA, and MCM proteins: Markers of proliferation in the diagnosis of breast cancer. Acta Histochemica, 118(5), 544–552. 10.1016/j.acthis.2016.05.002 PubMed DOI
Kang, S. H. , Fukaya, M. , Yang, J. K. , Rothstein, J. D. , & Bergles, D. E. (2010). NG2+ CNS glial progenitors remain committed to the oligodendrocyte lineage in postnatal life and following neurodegeneration. Neuron, 68(4), 668–681. 10.1016/j.neuron.2010.09.009 PubMed DOI PMC
Kantzer, C. G. , Boutin, C. , Herzig, I. D. , Wittwer, C. , Reiß, S. , Tiveron, M. C. , … Bosio, A. (2017). Anti‐ACSA‐2 defines a novel monoclonal antibody for prospective isolation of living neonatal and adult astrocytes. Glia, 65(6), 990–1004. 10.1002/glia.23140 PubMed DOI
Káradóttir, R. , Hamilton, N. B. , Bakiri, Y. , & Attwell, D. (2008). Spiking and nonspiking classes of oligodendrocyte precursor glia in CNS white matter. Nature Neuroscience, 11(4), 450–456. 10.1038/nn2060 PubMed DOI PMC
Khawaja, R. R. , Amit, A. , Fukaya, M. , Jeong, H.‐k. , Gross, S. , Gonzalez‐Fernandez, E. , Soboloff, J. , Bergles, D. E. , & Kang, S. H. (2021). GluA2 overexpression in oligodendrocyte progenitors promotes postinjury oligodendrocyte regeneration. Cell Reports, 35(7), 109147. 10.2139/ssrn.3422305 PubMed DOI PMC
Kirdajova, D. , & Anderova, M. (2020). NG2 cells and their neurogenic potential. Current Opinion in Pharmacology, 50, 53–60. 10.1016/j.coph.2019.11.005 PubMed DOI
Komitova, M. , Serwanski, D. R. , Lu, Q. R. , & Nishiyama, A. (2011). NG2 cells are not a major source of reactive astrocytes after neocortical stab wound injury. Glia, 59(5), 800–809. 10.1002/glia.21152 PubMed DOI PMC
Kukley, M. , Kiladze, M. , Tognatta, R. , Hans, M. , Swandulla, D. , Schramm, J. , & Dietrich, D. (2008). Glial cells are born with synapses. The FASEB Journal, 22(8), 2957–2969. 10.1096/fj.07-090985 PubMed DOI
Kula, B. , Chen, T. J. , & Kukley, M. (2019). Glutamatergic signaling between neurons and oligodendrocyte lineage cells: Is it synaptic or non‐synaptic? Glia, 67(11), 2071–2091. 10.1002/glia.23617 PubMed DOI
Leuchtmann, E. A. , Ratner, A. E. , Vijitruth, R. , Qu, Y. , & McDonald, J. W. (2003). AMPA receptors are the major mediators of excitotoxic death in mature oligodendrocytes. Neurobiology of Disease, 14(3), 336–348. 10.1016/j.nbd.2003.07.004 PubMed DOI
Levine, J. (2016). The reactions and role of NG2 glia in spinal cord injury. Brain Research, 1638, 199–208. 10.1016/j.brainres.2015.07.026 PubMed DOI PMC
Loulier, K. , Ruat, M. , & Traiffort, E. (2006). Increase of proliferating oligodendroglial progenitors in the adult mouse brain upon sonic hedgehog delivery in the lateral ventricle. Journal of Neurochemistry, 98(2), 530–542. 10.1111/j.1471-4159.2006.03896.x PubMed DOI
Lun, A. T. L. , Riesenfeld, S. , Andrews, T. , Dao, T. P. , Gomes, T. , & Marioni, J. C. (2019). EmptyDrops: Distinguishing cells from empty droplets in droplet‐based single‐cell RNA sequencing data. Genome Biology, 20(1), 63. 10.1186/s13059-019-1662-y PubMed DOI PMC
Magaki, S. D. , Williams, C. K. , & Vinters, H. V. (2018). Glial function (and dysfunction) in the normal & ischemic brain. Neuropharmacology, 134, 218–225. 10.1016/j.neuropharm.2017.11.009 PubMed DOI PMC
Marques, S. , van Bruggen, D. , & Castelo‐Branco, G. (2019). Single‐cell RNA sequencing of Oligodendrocyte lineage cells from the mouse central nervous system. Methods in Molecular Biology, 1936, 1–21. 10.1007/978-1-4939-9072-6_1 PubMed DOI
Marques, S. , van Bruggen, D. , Vanichkina, D. P. , Floriddia, E. M. , Munguba, H. , Varemo, L. , … Castelo‐Branco, G. (2018). Transcriptional convergence of oligodendrocyte lineage progenitors during development. Developmental Cell, 46(4), 504–517.e507. 10.1016/j.devcel.2018.07.005 PubMed DOI PMC
Marques, S. , Zeisel, A. , Codeluppi, S. , van Bruggen, D. , Mendanha Falcao, A. , Xiao, L. , … Castelo‐Branco, G. (2016). Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system. Science, 352(6291), 1326–1329. 10.1126/science.aaf6463 PubMed DOI PMC
Martinez‐Lozada, Z. , Waggener, C. T. , Kim, K. , Zou, S. , Knapp, P. E. , Hayashi, Y. , … Fuss, B. (2014). Activation of sodium‐dependent glutamate transporters regulates the morphological aspects of oligodendrocyte maturation via signaling through calcium/calmodulin‐dependent kinase IIβ's actin‐binding/‐stabilizing domain. Glia, 62(9), 1543–1558. 10.1002/glia.22699 PubMed DOI PMC
McDonald, J. W. , Bhattacharyya, T. , Sensi, S. L. , Lobner, D. , Ying, H. S. , Canzoniero, L. M. , & Choi, D. W. (1998). Extracellular acidity potentiates AMPA receptor‐mediated cortical neuronal death. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 18(16), 6290–6299. 10.1523/jneurosci.18-16-06290.1998 PubMed DOI PMC
Milosevic, A. , Liebmann, T. , Knudsen, M. , Schintu, N. , Svenningsson, P. , & Greengard, P. (2017). Cell‐ and region‐specific expression of depression‐related protein p11 (S100a10) in the brain. The Journal of Comparative Neurology, 525(4), 955–975. 10.1002/cne.24113 PubMed DOI PMC
Mori, T. , Tan, J. , Arendash, G. W. , Koyama, N. , Nojima, Y. , & Town, T. (2008). Overexpression of human S100B exacerbates brain damage and periinfarct gliosis after permanent focal ischemia. Stroke, 39(7), 2114–2121. 10.1161/strokeaha.107.503821 PubMed DOI PMC
Nawashiro, H. , Brenner, M. , Fukui, S. , Shima, K. , & Hallenbeck, J. M. (2000). High susceptibility to cerebral ischemia in GFAP‐null mice. Journal of Cerebral Blood Flow & Metabolism, 20(7), 1040–1044. 10.1097/00004647-200007000-00003 PubMed DOI
Neprasova, H. , Anderova, M. , Petrik, D. , Vargova, L. , Kubinova, S. , Chvatal, A. , & Sykova, E. (2007). High extracellular K(+) evokes changes in voltage‐dependent K(+) and Na (+) currents and volume regulation in astrocytes. Pflügers Archiv, 453(6), 839–849. 10.1007/s00424-006-0151-9 PubMed DOI
Nishiyama, A. , Boshans, L. , Goncalves, C. M. , Wegrzyn, J. , & Patel, K. D. (2016). Lineage, fate, and fate potential of NG2‐glia. Brain Research, 1638, 116–128. 10.1016/j.brainres.2015.08.013 PubMed DOI PMC
Nishiyama, A. , Watanabe, M. , Yang, Z. , & Bu, J. (2002). Identity, distribution, and development of polydendrocytes: NG2‐expressing glial cells. Journal of Neurocytology, 31(6–7), 437–455. PubMed
Nolte, C. , Matyash, M. , Pivneva, T. , Schipke, C. G. , Ohlemeyer, C. , Hanisch, U. K. , … Kettenmann, H. (2001). GFAP promoter‐controlled EGFP‐expressing transgenic mice: A tool to visualize astrocytes and astrogliosis in living brain tissue. Glia, 33(1), 72–86. PubMed
Notomi, T. , & Shigemoto, R. (2004). Immunohistochemical localization of Ih channel subunits, HCN1‐4, in the rat brain. The Journal of Comparative Neurology, 471(3), 241–276. 10.1002/cne.11039 PubMed DOI
Ozerdem, U. , Grako, K. A. , Dahlin‐Huppe, K. , Monosov, E. , & Stallcup, W. B. (2001). NG2 proteoglycan is expressed exclusively by mural cells during vascular morphogenesis. Developmental Dynamics, 222(2), 218–227. 10.1002/dvdy.1200 PubMed DOI
Pablo, Y. , Nilsson, M. , Pekna, M. , & Pekny, M. (2013). Intermediate filaments are important for astrocyte response to oxidative stress induced by oxygen‐glucose deprivation and reperfusion. Histochemistry and Cell Biology, 140(1), 81–91. 10.1007/s00418-013-1110-0 PubMed DOI
Pivonkova, H. , Benesova, J. , Butenko, O. , Chvatal, A. , & Anderova, M. (2010). Impact of global cerebral ischemia on K+ channel expression and membrane properties of glial cells in the rat hippocampus. Neurochemistry International, 57(7), 783–794. 10.1016/j.neuint.2010.08.016 PubMed DOI
Polito, A. , & Reynolds, R. (2005). NG2‐expressing cells as oligodendrocyte progenitors in the normal and demyelinated adult central nervous system. Journal of Anatomy, 207(6), 707–716. 10.1111/j.1469-7580.2005.00454.x PubMed DOI PMC
Rivers, L. E. , Young, K. M. , Rizzi, M. , Jamen, F. , Psachoulia, K. , Wade, A. , … Richardson, W. D. (2008). PDGFRA/NG2 glia generate myelinating oligodendrocytes and piriform projection neurons in adult mice. Nature Neuroscience, 11(12), 1392–1401. 10.1038/nn.2220 PubMed DOI PMC
Rusnakova, V. , Honsa, P. , Dzamba, D. , Ståhlberg, A. , Kubista, M. , & Anderova, M. (2013). Heterogeneity of astrocytes: From development to injury ‐ single cell gene expression. PLoS One, 8(8), e69734. 10.1371/journal.pone.0069734 PubMed DOI PMC
Saab, A. S. , Tzvetavona, I. D. , Trevisiol, A. , Baltan, S. , Dibaj, P. , Kusch, K. , … Nave, K. A. (2016). Oligodendroglial NMDA receptors regulate glucose import and axonal energy metabolism. Neuron, 91(1), 119–132. 10.1016/j.neuron.2016.05.016 PubMed DOI PMC
Sanchez‐Gomez, M. V. , Alberdi, E. , Perez‐Navarro, E. , Alberch, J. , & Matute, C. (2011). Bax and calpain mediate excitotoxic oligodendrocyte death induced by activation of both AMPA and kainate receptors. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 31(8), 2996–3006. 10.1523/JNEUROSCI.5578-10.2011 PubMed DOI PMC
Schools, G. P. , Zhou, M. , & Kimelberg, H. K. (2003). Electrophysiologically “complex” glial cells freshly isolated from the hippocampus are immunopositive for the chondroitin sulfate proteoglycan NG2. Journal of Neuroscience Research, 73(6), 765–777. 10.1002/jnr.10680 PubMed DOI
Shao, X. , Liao, J. , Lu, X. , Xue, R. , Ai, N. , & Fan, X. (2020). scCATCH: Automatic annotation on cell types of clusters from single‐cell RNA sequencing data. iScience, 23(3), 100882. 10.1016/j.isci.2020.100882 PubMed DOI PMC
Shivji, K. K. , Kenny, M. K. , & Wood, R. D. (1992). Proliferating cell nuclear antigen is required for DNA excision repair. Cell, 69(2), 367–374. 10.1016/0092-8674(92)90416-a PubMed DOI
Simons, M. , & Nave, K. A. (2015). Oligodendrocytes: Myelination and axonal support. Cold Spring Harbor Perspectives in Biology, 8(1), a020479. 10.1101/cshperspect.a020479 PubMed DOI PMC
Skripuletz, T. , Gudi, V. , Hackstette, D. , & Stangel, M. (2011). De‐ and remyelination in the CNS white and grey matter induced by cuprizone: The old, the new, and the unexpected. Histology and Histopathology, 26(12), 1585–1597. PubMed
Sofroniew, M. V. , & Vinters, H. V. (2010). Astrocytes: Biology and pathology. Acta Neuropathologica, 119(1), 7–35. 10.1007/s00401-009-0619-8 PubMed DOI PMC
Song, F. E. , Huang, J. L. , Lin, S. H. , Wang, S. , Ma, G. F. , & Tong, X. P. (2017). Roles of NG2‐glia in ischemic stroke. CNS Neuroscience & Therapeutics, 23(7), 547–553. 10.1111/cns.12690 PubMed DOI PMC
Spitzer, S. , Volbracht, K. , Lundgaard, I. , & Karadottir, R. T. (2016). Glutamate signalling: A multifaceted modulator of oligodendrocyte lineage cells in health and disease. Neuropharmacology, 110, 574–585. 10.1016/j.neuropharm.2016.06.014 PubMed DOI
Spitzer, S. O. , Sitnikov, S. , Kamen, Y. , Evans, K. A. , Kronenberg‐Versteeg, D. , Dietmann, S. , … Karadottir, R. T. (2019). Oligodendrocyte progenitor cells become regionally diverse and heterogeneous with age. Neuron, 101(3), 459–471.e455. 10.1016/j.neuron.2018.12.020 PubMed DOI PMC
Streitberg, A. , Jäkel, S. , Eugenin von Bernhardi, J. , Straube, C. , Buggenthin, F. , Marr, C. , & Dimou, L. (2021). NG2‐glia transiently overcome their homeostatic network and contribute to wound closure after brain injury. Frontiers in Cell and Developmental Biology, 9, 662056–662056. 10.3389/fcell.2021.662056 PubMed DOI PMC
Stuart, T. , Butler, A. , Hoffman, P. , Hafemeister, C. , Papalexi, E. , Mauck, W. M., 3rd , … Satija, R. (2019). Comprehensive integration of single‐cell data. Cell, 177(7), 1888–1902.e1821. 10.1016/j.cell.2019.05.031 PubMed DOI PMC
Suárez‐Pozos, E. , Thomason, E. J. , & Fuss, B. (2020). Glutamate transporters: expression and function in oligodendrocytes. Neurochemical Research, 45(3), 551–560. 10.1007/s11064-018-02708-x PubMed DOI PMC
Tamura, Y. , Kataoka, Y. , Cui, Y. , Takamori, Y. , Watanabe, Y. , & Yamada, H. (2007). Multi‐directional differentiation of doublecortin‐ and NG2‐immunopositive progenitor cells in the adult rat neocortex in vivo. The European Journal of Neuroscience, 25(12), 3489–3498. 10.1111/j.1460-9568.2007.05617.x PubMed DOI
Tanner, D. C. , Cherry, J. D. , & Mayer‐Pröschel, M. (2011). Oligodendrocyte progenitors reversibly exit the cell cycle and give rise to astrocytes in response to interferon‐γ. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 31(16), 6235–6246. 10.1523/jneurosci.5905-10.2011 PubMed DOI PMC
Tripathi, R. B. , Rivers, L. E. , Young, K. M. , Jamen, F. , & Richardson, W. D. (2010). NG2 glia generate new oligodendrocytes but few astrocytes in a murine experimental autoimmune encephalomyelitis model of demyelinating disease. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 30(48), 16383–16390. 10.1523/jneurosci.3411-10.2010 PubMed DOI PMC
Tsoa, R. W. , Coskun, V. , Ho, C. K. , & de Vellis, J. (2014). Spatiotemporally different origins of NG2 progenitors produce cortical interneurons versus glia in the mammalian forebrain. Proceedings of the National Academy of Sciences of the United States of America, 111(20), 7444–7449. 10.1073/pnas.1400422111 PubMed DOI PMC
Valny, M. , Honsa, P. , Kirdajova, D. , Kamenik, Z. , & Anderova, M. (2016). Tamoxifen in the mouse brain: Implications for fate‐mapping studies using the Tamoxifen‐inducible Cre‐loxP system. Frontiers in Cellular Neuroscience, 10, 243. 10.3389/fncel.2016.00243 PubMed DOI PMC
Valny, M. , Honsa, P. , Waloschkova, E. , Matuskova, H. , Kriska, J. , Kirdajova, D. , … Anderova, M. (2018). A single‐cell analysis reveals multiple roles of oligodendroglial lineage cells during post‐ischemic regeneration. Glia, 66(5), 1068–1081. 10.1002/glia.23301 PubMed DOI
Vigano, F. , & Dimou, L. (2016). The heterogeneous nature of NG2‐glia. Brain Research, 1638, 129–137. 10.1016/j.brainres.2015.09.012 PubMed DOI
Viganò, F. , Möbius, W. , Götz, M. , & Dimou, L. (2013). Transplantation reveals regional differences in oligodendrocyte differentiation in the adult brain. Nature Neuroscience, 16(10), 1370–1372. 10.1038/nn.3503 PubMed DOI
Wallraff, A. , Odermatt, B. , Willecke, K. , & Steinhäuser, C. (2004). Distinct types of astroglial cells in the hippocampus differ in gap junction coupling. Glia, 48(1), 36–43. 10.1002/glia.20040 PubMed DOI
Wang, L. C. , & Almazan, G. (2016). Role of sonic hedgehog signaling in oligodendrocyte differentiation. Neurochemical Research, 41(12), 3289–3299. 10.1007/s11064-016-2061-3 PubMed DOI
Wanner, I. B. , Anderson, M. A. , Song, B. , Levine, J. , Fernandez, A. , Gray‐Thompson, Z. , … Sofroniew, M. V. (2013). Glial scar Borders are formed by newly proliferated, elongated astrocytes that interact to corral inflammatory and fibrotic cells via STAT3‐dependent mechanisms after spinal cord injury. Journal of Neuroscience, 33(31), 12870–12886. 10.1523/jneurosci.2121-13.2013 PubMed DOI PMC
Wu, Y. E. , Pan, L. , Zuo, Y. , Li, X. , & Hong, W. (2017). Detecting activated cell populations using single‐cell RNA‐Seq. Neuron, 96(2), 313–329.e316. 10.1016/j.neuron.2017.09.026 PubMed DOI
Xia, W. , Liu, Y. , & Jiao, J. (2015). GRM7 regulates embryonic neurogenesis via CREB and YAP. Stem Cell Reports, 4(5), 795–810. 10.1016/j.stemcr.2015.03.004 PubMed DOI PMC
Xin, W. , Mironova, Y. A. , Shen, H. , Marino, R. A. M. , Waisman, A. , Lamers, W. H. , … Bonci, A. (2019). Oligodendrocytes support neuronal glutamatergic transmission via expression of glutamine synthetase. Cell Reports, 27(8), 2262–2271 e2265. 10.1016/j.celrep.2019.04.094 PubMed DOI PMC
Ye, J. , Coulouris, G. , Zaretskaya, I. , Cutcutache, I. , Rozen, S. , & Madden, T. L. (2012). Primer‐BLAST: A tool to design target‐specific primers for polymerase chain reaction. BMC Bioinformatics, 13, 134. 10.1186/1471-2105-13-134 PubMed DOI PMC
Young, K. M. , Psachoulia, K. , Tripathi, R. B. , Dunn, S. J. , Cossell, L. , Attwell, D. , … Richardson, W. D. (2013). Oligodendrocyte dynamics in the healthy adult CNS: Evidence for myelin remodeling. Neuron, 77(5), 873–885. 10.1016/j.neuron.2013.01.006 PubMed DOI PMC
Zawadzka, M. , Rivers, L. E. , Fancy, S. P. , Zhao, C. , Tripathi, R. , Jamen, F. , … Franklin, R. J. (2010). CNS‐resident glial progenitor/stem cells produce Schwann cells as well as oligodendrocytes during repair of CNS demyelination. Cell Stem Cell, 6(6), 578–590. 10.1016/j.stem.2010.04.002 PubMed DOI PMC
Zeisel, A. , Hochgerner, H. , Lonnerberg, P. , Johnsson, A. , Memic, F. , van der Zwan, J. , … Linnarsson, S. (2018). Molecular architecture of the mouse nervous system. Cell, 174(4), 999–1014.e1022. 10.1016/j.cell.2018.06.021 PubMed DOI PMC
Zhang, L. , Chopp, M. , Zhang, R. L. , Wang, L. , Zhang, J. , Wang, Y. , … Zhang, Z. G. (2010). Erythropoietin amplifies stroke‐induced oligodendrogenesis in the rat. PLoS One, 5(6), e11016. 10.1371/journal.pone.0011016 PubMed DOI PMC
Zhang, S. , Zhu, X. , Gui, X. , Croteau, C. , Song, L. , Xu, J. , … Guo, F. (2018). Sox2 is essential for oligodendroglial proliferation and differentiation during postnatal brain myelination and CNS Remyelination. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 38(7), 1802–1820. 10.1523/JNEUROSCI.1291-17.2018 PubMed DOI PMC
Zhang, Y. , Chen, K. , Sloan, S. A. , Bennett, M. L. , Scholze, A. R. , O'Keeffe, S. , … Guarnieri, P. (2014). An RNA‐sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. Journal of Neuroscience, 34(36), 11929–11947. 10.1523/jneurosci.1860-14.2014 PubMed DOI PMC
Zhao, C. , Ma, D. , Zawadzka, M. , Fancy, S. P. J. , Elis‐Williams, L. , Bouvier, G. , … Franklin, R. J. M. (2015). Sox2 sustains recruitment of Oligodendrocyte progenitor cells following CNS demyelination and primes them for differentiation during Remyelination. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 35(33), 11482–11499. 10.1523/JNEUROSCI.3655-14.2015 PubMed DOI PMC
Zhou, M. , Schools, G. P. , & Kimelberg, H. K. (2006). Development of GLAST(+) astrocytes and NG2(+) glia in rat hippocampus CA1: Mature astrocytes are electrophysiologically passive. Journal of Neurophysiology, 95(1), 134–143. 10.1152/jn.00570.2005 PubMed DOI
Zhou, M. , Xu, G. , Xie, M. , Zhang, X. , Schools, G. P. , Ma, L. , … Chen, H. (2009). TWIK‐1 and TREK‐1 are potassium channels contributing significantly to astrocyte passive conductance in rat hippocampal slices. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 29(26), 8551–8564. 10.1523/jneurosci.5784-08.2009 PubMed DOI PMC
Zhu, H. , & Dahlström, A. (2007). Glial fibrillary acidic protein‐expressing cells in the neurogenic regions in normal and injured adult brains. Journal of Neuroscience Research, 85(12), 2783–2792. 10.1002/jnr.21257 PubMed DOI
Zhu, X. , Bergles, D. E. , & Nishiyama, A. (2008). NG2 cells generate both oligodendrocytes and gray matter astrocytes. Development, 135(1), 145–157. 10.1242/dev.004895 PubMed DOI
Zhu, X. , Hill, R. A. , Dietrich, D. , Komitova, M. , Suzuki, R. , & Nishiyama, A. (2011). Age‐dependent fate and lineage restriction of single NG2 cells. Development, 138(4), 745–753. 10.1242/dev.047951 PubMed DOI PMC
A view of the genetic and proteomic profile of extracellular matrix molecules in aging and stroke
Astrocytic TRPV4 Channels and Their Role in Brain Ischemia
On the Common Journey of Neural Cells through Ischemic Brain Injury and Alzheimer's Disease