A view of the genetic and proteomic profile of extracellular matrix molecules in aging and stroke
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38107409
PubMed Central
PMC10723838
DOI
10.3389/fncel.2023.1296455
Knihovny.cz E-zdroje
- Klíčová slova
- aging, extracellular matrix, genes, proteins, stroke,
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: Modification of the extracellular matrix (ECM) is one of the major processes in the pathology of brain damage following an ischemic stroke. However, our understanding of how age-related ECM alterations may affect stroke pathophysiology and its outcome is still very limited. METHODS: We conducted an ECM-targeted re-analysis of our previously obtained RNA-Seq dataset of aging, ischemic stroke and their interactions in young adult (3-month-old) and aged (18-month-old) mice. The permanent middle cerebral artery occlusion (pMCAo) in rodents was used as a model of ischemic stroke. Altogether 56 genes of interest were chosen for this study. RESULTS: We identified an increased activation of the genes encoding proteins related to ECM degradation, such as matrix metalloproteinases (MMPs), proteases of a disintegrin and metalloproteinase with the thrombospondin motifs (ADAMTS) family and molecules that regulate their activity, tissue inhibitors of metalloproteinases (TIMPs). Moreover, significant upregulation was also detected in the mRNA of other ECM molecules, such as proteoglycans, syndecans and link proteins. Notably, we identified 8 genes where this upregulation was enhanced in aged mice in comparison with the young ones. Ischemia evoked a significant downregulation in only 6 of our genes of interest, including those encoding proteins associated with the protective function of ECM molecules (e.g., brevican, Hapln4, Sparcl1); downregulation in brevican was more prominent in aged mice. The study was expanded by proteome analysis, where we observed an ischemia-induced overexpression in three proteins, which are associated with neuroinflammation (fibronectin and vitronectin) and neurodegeneration (link protein Hapln2). In fibronectin and Hapln2, this overexpression was more pronounced in aged post-ischemic animals. CONCLUSION: Based on these results, we can conclude that the ratio between the protecting and degrading mechanisms in the aged brain is shifted toward degradation and contributes to the aged tissues' increased sensitivity to ischemic insults. Altogether, our data provide fresh perspectives on the processes underlying ischemic injury in the aging brain and serve as a freely accessible resource for upcoming research.
Zobrazit více v PubMed
Allen N. J., Bennett M. L., Foo L. C., Wang G. X., Chakraborty C., Smith S. J., et al. (2012). Astrocyte glypicans 4 and 6 promote formation of excitatory synapses via GluA1 AMPA receptors. PubMed DOI PMC
Alonso G. (2005). NG2 proteoglycan-expressing cells of the adult rat brain: Possible involvement in the formation of glial scar astrocytes following stab wound. PubMed DOI
Ampofo E., Schmitt B. M., Menger M. D., Laschke M. W. (2017). The regulatory mechanisms of NG2/CSPG4 expression. PubMed DOI PMC
Anderova M., Antonova T., Petrik D., Neprasova H., Chvatal A., Sykova E. (2004). Voltage-dependent potassium currents in hypertrophied rat astrocytes after a cortical stab wound. PubMed DOI
Anderova M., Benesova J., Mikesova M., Dzamba D., Honsa P., Kriska J., et al. (2014). Altered astrocytic swelling in the cortex of alpha-syntrophin-negative GFAP/EGFP mice. PubMed DOI PMC
Anders S., Pyl P. T., Huber W. (2015). HTSeq–a python framework to work with high-throughput sequencing data. PubMed DOI PMC
Androvic P., Kirdajova D., Tureckova J., Zucha D., Rohlova E., Abaffy P., et al. (2020). Decoding the transcriptional response to ischemic stroke in young and aged mouse brain. PubMed DOI
Asher R. A., Morgenstern D. A., Fidler P. S., Adcock K. H., Oohira A., Braistead J. E., et al. (2000). Neurocan is upregulated in injured brain and in cytokine-treated astrocytes. PubMed DOI PMC
Barrett H., O’Keeffe M., Kavanagh E., Walsh M., O’Connor E. M. (2018). Is matrix gla protein associated with vascular calcification? A systematic review. PubMed DOI PMC
Bartlett A. H., Hayashida K., Park P. W. (2007). Molecular and cellular mechanisms of syndecans in tissue injury and inflammation. PubMed
Bekku Y., Su W. D., Hirakawa S., Fassler R., Ohtsuka A., Kang J. S., et al. (2003). Molecular cloning of Bral2, a novel brain-specific link protein, and immunohistochemical colocalization with brevican in perineuronal nets. PubMed DOI
Bekku Y., Vargova L., Goto Y., Vorisek I., Dmytrenko L., Narasaki M., et al. (2010). Bral1: Its role in diffusion barrier formation and conduction velocity in the CNS. PubMed DOI PMC
Benjamin E. J., Virani S. S., Callaway C. W., Chamberlain A. M., Chang A. R., Cheng S., et al. (2018). Heart disease and stroke statistics-2018 update: A report from the American Heart Association. PubMed DOI
Berti R., Williams A. J., Moffett J. R., Hale S. L., Velarde L. C., Elliott P. J., et al. (2002). Quantitative real-time RT-PCR analysis of inflammatory gene expression associated with ischemia-reperfusion brain injury. PubMed DOI
Bolger A. M., Lohse M., Usadel B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. PubMed DOI PMC
Bousman C. A., Chana G., Glatt S. J., Chandler S. D., Lucero G. R., Tatro E., et al. (2010). Preliminary evidence of ubiquitin proteasome system dysregulation in schizophrenia and bipolar disorder: Convergent pathway analysis findings from two independent samples. PubMed DOI PMC
Brenneman M., Sharma S., Harting M., Strong R., Cox C. S., Jr., Aronowski J., et al. (2010). Autologous bone marrow mononuclear cells enhance recovery after acute ischemic stroke in young and middle-aged rats. PubMed DOI PMC
Brew K., Nagase H. (2010). The tissue inhibitors of metalloproteinases (TIMPs): An ancient family with structural and functional diversity. PubMed DOI PMC
Bridel C., Koel-Simmelink M. J. A., Peferoen L., Derada Troletti C., Durieux S., Gorter R., et al. (2018). Brain endothelial cell expression of SPARCL-1 is specific to chronic multiple sclerosis lesions and is regulated by inflammatory mediators in vitro. PubMed DOI
Carmichael S. T., Archibeque I., Luke L., Nolan T., Momiy J., Li S. (2005). Growth-associated gene expression after stroke: Evidence for a growth-promoting region in peri-infarct cortex. PubMed DOI
Carulli D., Pizzorusso T., Kwok J. C., Putignano E., Poli A., Forostyak S., et al. (2010). Animals lacking link protein have attenuated perineuronal nets and persistent plasticity. PubMed DOI
Carulli D., Rhodes K. E., Brown D. J., Bonnert T. P., Pollack S. J., Oliver K., et al. (2006). Composition of perineuronal nets in the adult rat cerebellum and the cellular origin of their components. PubMed DOI
Chakravarti S. (2002). Functions of lumican and fibromodulin: Lessons from knockout mice. PubMed DOI
Changyaleket B., Chong Z. Z., Dull R. O., Nanegrungsunk D., Xu H. (2017). Heparanase promotes neuroinflammatory response during subarachnoid hemorrhage in rats. PubMed DOI PMC
Chen S., Zou Q., Chen Y., Kuang X., Wu W., Guo M., et al. (2020). Regulation of SPARC family proteins in disorders of the central nervous system. PubMed DOI
Cicanic M., Edamatsu M., Bekku Y., Vorisek I., Oohashi T., Vargova L. (2018). A deficiency of the link protein Bral2 affects the size of the extracellular space in the thalamus of aged mice. PubMed DOI
Cox J., Mann M. (2008). MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. PubMed DOI
Cross A. K., Haddock G., Stock C. J., Allan S., Surr J., Bunning R. A., et al. (2006). ADAMTS-1 and -4 are up-regulated following transient middle cerebral artery occlusion in the rat and their expression is modulated by TNF in cultured astrocytes. PubMed DOI
Cunningham L. A., Wetzel M., Rosenberg G. A. (2005). Multiple roles for MMPs and TIMPs in cerebral ischemia. PubMed DOI
Daghals I., Sargurupremraj M., Danning R., Gormley P., Malik R., Amouyel P., et al. (2022). Migraine, stroke, and cervical arterial dissection: Shared genetics for a triad of brain disorders with vascular involvement. PubMed DOI PMC
Dansie L. E., Ethell I. M. (2011). Casting a net on dendritic spines: The extracellular matrix and its receptors. PubMed DOI PMC
De Rubeis S., He X., Goldberg A. P., Poultney C. S., Samocha K., Cicek A. E., et al. (2014). Synaptic, transcriptional and chromatin genes disrupted in autism. PubMed DOI PMC
Deguchi K., Takaishi M., Hayashi T., Oohira A., Nagotani S., Li F., et al. (2005). Expression of neurocan after transient middle cerebral artery occlusion in adult rat brain. PubMed DOI
del Zoppo G. J., Frankowski H., Gu Y. H., Osada T., Kanazawa M., Milner R., et al. (2012). Microglial cell activation is a source of metalloproteinase generation during hemorrhagic transformation. PubMed DOI PMC
Deleidi M., Jaggle M., Rubino G. (2015). Immune aging, dysmetabolism, and inflammation in neurological diseases. PubMed DOI PMC
Dimou L., Gallo V. (2015). NG2-glia and their functions in the central nervous system. PubMed DOI PMC
Ding Y., Xiong S., Chen X., Pan Q., Fan J., Guo J. (2023). HAPLN3 inhibits apoptosis and promotes EMT of clear cell renal cell carcinoma via ERK and Bcl-2 signal pathways. PubMed DOI PMC
Dityatev A., Schachner M., Sonderegger P. (2010). The dual role of the extracellular matrix in synaptic plasticity and homeostasis. PubMed DOI
Dobin A., Davis C. A., Schlesinger F., Drenkow J., Zaleski C., Jha S., et al. (2013). STAR: Ultrafast universal RNA-seq aligner. PubMed DOI PMC
Duan W. M., Zhao L. R., Westerman M., Lovick D., Furcht L. T., McCarthy J. B., et al. (2000). Enhancement of nigral graft survival in rat brain with the systemic administration of synthetic fibronectin peptide V. PubMed DOI
Dzyubenko E., Manrique-Castano D., Kleinschnitz C., Faissner A., Hermann D. M. (2018a). Role of immune responses for extracellular matrix remodeling in the ischemic brain. PubMed DOI PMC
Dzyubenko E., Manrique-Castano D., Kleinschnitz C., Faissner A., Hermann D. M. (2018b). Topological remodeling of cortical perineuronal nets in focal cerebral ischemia and mild hypoperfusion. PubMed DOI
Echtermeyer F., Streit M., Wilcox-Adelman S., Saoncella S., Denhez F., Detmar M., et al. (2001). Delayed wound repair and impaired angiogenesis in mice lacking syndecan-4. PubMed DOI PMC
Edwards D. N., Bix G. J. (2019). Roles of blood-brain barrier integrins and extracellular matrix in stroke. PubMed DOI PMC
Elenius K., Vainio S., Laato M., Salmivirta M., Thesleff I., Jalkanen M. (1991). Induced expression of syndecan in healing wounds. PubMed DOI PMC
Ewald C. Y. (2020). The matrisome during aging and longevity: A systems-level approach toward defining matreotypes promoting healthy aging. PubMed DOI PMC
Faissner A., Roll L., Theocharidis U. (2017). Tenascin-C in the matrisome of neural stem and progenitor cells. PubMed DOI
Fawcett J. W., Oohashi T., Pizzorusso T. (2019). The roles of perineuronal nets and the perinodal extracellular matrix in neuronal function. PubMed DOI
Foscarin S., Raha-Chowdhury R., Fawcett J. W., Kwok J. C. F. (2017). Brain ageing changes proteoglycan sulfation, rendering perineuronal nets more inhibitory. PubMed DOI PMC
Galtrey C. M., Kwok J. C., Carulli D., Rhodes K. E., Fawcett J. W. (2008). Distribution and synthesis of extracellular matrix proteoglycans, hyaluronan, link proteins and tenascin-R in the rat spinal cord. PubMed DOI
Gasche Y., Fujimura M., Morita-Fujimura Y., Copin J. C., Kawase M., Massengale J., et al. (1999). Early appearance of activated matrix metalloproteinase-9 after focal cerebral ischemia in mice: A possible role in blood-brain barrier dysfunction. PubMed DOI
George N., Geller H. M. (2018). Extracellular matrix and traumatic brain injury. PubMed DOI PMC
Giamanco K. A., Matthews R. T. (2012). Deconstructing the perineuronal net: Cellular contributions and molecular composition of the neuronal extracellular matrix. PubMed DOI PMC
Giancotti F. G., Ruoslahti E. (1999). Integrin signaling. PubMed DOI
Gopal S. (2020). Syndecans in inflammation at a glance. PubMed DOI PMC
Gottschall P. E., Howell M. D. (2015). ADAMTS expression and function in central nervous system injury and disorders. PubMed DOI PMC
Graham S. H., Liu H. (2017). Life and death in the trash heap: The ubiquitin proteasome pathway and UCHL1 in brain aging, neurodegenerative disease and cerebral Ischemia. PubMed DOI PMC
Hamann G. F., Burggraf D., Martens H. K., Liebetrau M., Jager G., Wunderlich N., et al. (2004). Mild to moderate hypothermia prevents microvascular basal lamina antigen loss in experimental focal cerebral ischemia. PubMed DOI
Hansen S. M., Kohler L. B., Li S., Kiselyov V., Christensen C., Owczarek S., et al. (2008). NCAM-derived peptides function as agonists for the fibroblast growth factor receptor. PubMed DOI
Hebert A. S., Richards A. L., Bailey D. J., Ulbrich A., Coughlin E. E., Westphall M. S., et al. (2014). The one hour yeast proteome. PubMed DOI PMC
Heo J. H., Lucero J., Abumiya T., Koziol J. A., Copeland B. R., del Zoppo G. J. (1999). Matrix metalloproteinases increase very early during experimental focal cerebral ischemia. PubMed DOI
Hienola A., Tumova S., Kulesskiy E., Rauvala H. (2006). N-syndecan deficiency impairs neural migration in brain. PubMed DOI PMC
Hobohm C., Gunther A., Grosche J., Rossner S., Schneider D., Bruckner G. (2005). Decomposition and long-lasting downregulation of extracellular matrix in perineuronal nets induced by focal cerebral ischemia in rats. PubMed DOI
Honsa P., Pivonkova H., Dzamba D., Filipova M., Anderova M. (2012). Polydendrocytes display large lineage plasticity following focal cerebral ischemia. PubMed DOI PMC
Hsueh Y. P., Sheng M. (1999). Regulated expression and subcellular localization of syndecan heparan sulfate proteoglycans and the syndecan-binding protein CASK/LIN-2 during rat brain development. PubMed DOI PMC
Hu J., Deng L., Wang X., Xu X. M. (2009). Effects of extracellular matrix molecules on the growth properties of oligodendrocyte progenitor cells in vitro. PubMed DOI
Hughes C. S., Moggridge S., Muller T., Sorensen P. H., Morin G. B., Krijgsveld J. (2019). Single-pot, solid-phase-enhanced sample preparation for proteomics experiments. PubMed DOI
Humphries J. D., Byron A., Humphries M. J. (2006). Integrin ligands at a glance. PubMed DOI PMC
Jia C., Keasey M. P., Malone H. M., Lovins C., Hagg T. (2020). Vitronectin mitigates stroke-increased neurogenesis only in female mice and through FAK-regulated IL-6. PubMed DOI PMC
Jia C., Keasey M. P., Malone H. M., Lovins C., Sante R. R., Razskazovskiy V., et al. (2019). Vitronectin from brain pericytes promotes adult forebrain neurogenesis by stimulating CNTF. PubMed DOI PMC
Kang S. S., Keasey M. P., Arnold S. A., Reid R., Geralds J., Hagg T. (2013). Endogenous CNTF mediates stroke-induced adult CNS neurogenesis in mice. PubMed DOI PMC
Kaur C., Sivakumar V., Yip G. W., Ling E. A. (2009). Expression of syndecan-2 in the amoeboid microglial cells and its involvement in inflammation in the hypoxic developing brain. PubMed DOI
Kazanis I., Belhadi A., Faissner A., Ffrench-Constant C. (2007). The adult mouse subependymal zone regenerates efficiently in the absence of tenascin-C. PubMed DOI PMC
King V. R., Alovskaya A., Wei D. Y., Brown R. A., Priestley J. V. (2010). The use of injectable forms of fibrin and fibronectin to support axonal ingrowth after spinal cord injury. PubMed DOI
King V. R., Phillips J. B., Hunt-Grubbe H., Brown R., Priestley J. V. (2006). Characterization of non-neuronal elements within fibronectin mats implanted into the damaged adult rat spinal cord. PubMed DOI
Kirdajova D., Anderova M. (2020). NG2 cells and their neurogenic potential. PubMed DOI
Kirdajova D., Valihrach L., Valny M., Kriska J., Krocianova D., Benesova S., et al. (2021). Transient astrocyte-like NG2 glia subpopulation emerges solely following permanent brain ischemia. PubMed DOI PMC
Kjell J., Fischer-Sternjak J., Thompson A. J., Friess C., Sticco M. J., Salinas F., et al. (2020). Defining the adult neural stem cell niche proteome identifies key regulators of adult neurogenesis. PubMed DOI PMC
Klein T., Bischoff R. (2011). Physiology and pathophysiology of matrix metalloproteases. PubMed DOI PMC
Kolenicova D., Tureckova J., Pukajova B., Harantova L., Kriska J., Kirdajova D., et al. (2020). High potassium exposure reveals the altered ability of astrocytes to regulate their volume in the aged hippocampus of GFAP/EGFP mice. PubMed DOI
Kopylova E., Noé L., Touzet H. (2012). SortMeRNA: Fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. PubMed DOI
Kwon I., Kim E. H., del Zoppo G. J., Heo J. H. (2009). Ultrastructural and temporal changes of the microvascular basement membrane and astrocyte interface following focal cerebral ischemia. PubMed DOI PMC
Lam Y. A., Pickart C. M., Alban A., Landon M., Jamieson C., Ramage R., et al. (2000). Inhibition of the ubiquitin-proteasome system in Alzheimer’s disease. PubMed DOI PMC
Lathia J. D., Chigurupati S., Thundyil J., Selvaraj P. K., Mughal M. R., Woodruff T. M., et al. (2010). Pivotal role for beta-1 integrin in neurovascular remodelling after ischemic stroke. PubMed DOI
Lau L. W., Cua R., Keough M. B., Haylock-Jacobs S., Yong V. W. (2013). Pathophysiology of the brain extracellular matrix: A new target for remyelination. PubMed DOI
Law H. C., Szeto S. S., Quan Q., Zhao Y., Zhang Z., Krakovska O., et al. (2017). Characterization of the molecular mechanisms underlying the chronic phase of stroke in a cynomolgus monkey model of induced cerebral ischemia. PubMed DOI
Lee S. R., Kim H. Y., Rogowska J., Zhao B. Q., Bhide P., Parent J. M., et al. (2006). Involvement of matrix metalloproteinase in neuroblast cell migration from the subventricular zone after stroke. PubMed DOI PMC
Lemarchant S., Pomeshchik Y., Kidin I., Karkkainen V., Valonen P., Lehtonen S., et al. (2016). ADAMTS-4 promotes neurodegeneration in a mouse model of amyotrophic lateral sclerosis. PubMed DOI PMC
Lemarchant S., Pruvost M., Montaner J., Emery E., Vivien D., Kanninen K., et al. (2013). ADAMTS proteoglycanases in the physiological and pathological central nervous system. PubMed DOI PMC
Levi N., Papismadov N., Solomonov I., Sagi I., Krizhanovsky V. (2020). The ECM path of senescence in aging: Components and modifiers. PubMed DOI
Li F., Liu W. C., Wang Q., Sun Y., Wang H., Jin X. (2020). NG2-glia cell proliferation and differentiation by glial growth factor 2 (GGF2), a strategy to promote functional recovery after ischemic stroke. PubMed DOI
Li J., Li J. P., Zhang X., Lu Z., Yu S. P., Wei L. (2012). Expression of heparanase in vascular cells and astrocytes of the mouse brain after focal cerebral ischemia. PubMed DOI PMC
Lin C. Y., Lee Y. S., Lin V. W., Silver J. (2012). Fibronectin inhibits chronic pain development after spinal cord injury. PubMed DOI PMC
Lively S., Moxon-Emre I., Schlichter L. C. (2011). SC1/hevin and reactive gliosis after transient ischemic stroke in young and aged rats. PubMed DOI
Love M. I., Huber W., Anders S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. PubMed DOI PMC
Malemud C. J. (2006). Matrix metalloproteinases (MMPs) in health and disease: An overview. PubMed DOI
Massey J. M., Hubscher C. H., Wagoner M. R., Decker J. A., Amps J., Silver J., et al. (2006). Chondroitinase ABC digestion of the perineuronal net promotes functional collateral sprouting in the cuneate nucleus after cervical spinal cord injury. PubMed DOI PMC
McKeon R. J., Jurynec M. J., Buck C. R. (1999). The chondroitin sulfate proteoglycans neurocan and phosphacan are expressed by reactive astrocytes in the chronic CNS glial scar. PubMed DOI PMC
Mertsch S., Schurgers L. J., Weber K., Paulus W., Senner V. (2009). Matrix gla protein (MGP): An overexpressed and migration-promoting mesenchymal component in glioblastoma. PubMed DOI PMC
Meyer-Puttlitz B., Junker E., Margolis R. U., Margolis R. K. (1996). Chondroitin sulfate proteoglycans in the developing central nervous system. II. Immunocytochemical localization of neurocan and phosphacan. PubMed DOI
Milner R., Campbell I. L. (2003). The extracellular matrix and cytokines regulate microglial integrin expression and activation. PubMed DOI
Milner R., Crocker S. J., Hung S., Wang X., Frausto R. F., del Zoppo G. J. (2007). Fibronectin- and vitronectin-induced microglial activation and matrix metalloproteinase-9 expression is mediated by integrins alpha5beta1 and alphavbeta5. PubMed DOI
Moraga A., Pradillo J. M., Garcia-Culebras A., Palma-Tortosa S., Ballesteros I., Hernandez-Jimenez M., et al. (2015). Aging increases microglial proliferation, delays cell migration, and decreases cortical neurogenesis after focal cerebral ischemia. PubMed DOI PMC
Morawski M., Filippov M., Tzinia A., Tsilibary E., Vargova L. (2014). ECM in brain aging and dementia. PubMed DOI
Morello R., Rauch F. (2010). Role of cartilage-associated protein in skeletal development. PubMed DOI PMC
Naba A., Clauser K. R., Hoersch S., Liu H., Carr S. A., Hynes R. O. (2012). The matrisome: In silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. PubMed DOI PMC
Nagase H., Visse R., Murphy G. (2006). Structure and function of matrix metalloproteinases and TIMPs. PubMed DOI
Nahirney P. C., Reeson P., Brown C. E. (2016). Ultrastructural analysis of blood-brain barrier breakdown in the peri-infarct zone in young adult and aged mice. PubMed DOI PMC
Nakamura K., Ikeuchi T., Nara K., Rhodes C. S., Zhang P., Chiba Y., et al. (2019). Perlecan regulates pericyte dynamics in the maintenance and repair of the blood-brain barrier. PubMed DOI PMC
Neiiendam J. L., Kohler L. B., Christensen C., Li S., Pedersen M. V., Ditlevsen D. K., et al. (2004). An NCAM-derived FGF-receptor agonist, the FGL-peptide, induces neurite outgrowth and neuronal survival in primary rat neurons. PubMed DOI
Okada T., Suzuki H. (2020). The role of Tenascin-c in tissue injury and repair after stroke. PubMed DOI PMC
Oohashi T., Hirakawa S., Bekku Y., Rauch U., Zimmermann D. R., Su W. D., et al. (2002). Bral1, a brain-specific link protein, colocalizing with the versican V2 isoform at the nodes of Ranvier in developing and adult mouse central nervous systems. PubMed DOI
Parikshak N. N., Luo R., Zhang A., Won H., Lowe J. K., Chandran V., et al. (2013). Integrative functional genomic analyses implicate specific molecular pathways and circuits in autism. PubMed DOI PMC
Rauch U., Karthikeyan L., Maurel P., Margolis R. U., Margolis R. K. (1992). Cloning and primary structure of neurocan, a developmentally regulated, aggregating chondroitin sulfate proteoglycan of brain. PubMed
Raulo E., Chernousov M. A., Carey D. J., Nolo R., Rauvala H. (1994). Isolation of a neuronal cell surface receptor of heparin binding growth-associated molecule (HB-GAM). Identification as N-syndecan (syndecan-3). PubMed
Reed M. J., Damodarasamy M., Pathan J. L., Erickson M. A., Banks W. A., Vernon R. B. (2018). The effects of normal aging on regional accumulation of hyaluronan and chondroitin sulfate proteoglycans in the mouse brain. PubMed DOI PMC
Resnick S. M., Pham D. L., Kraut M. A., Zonderman A. B., Davatzikos C. (2003). Longitudinal magnetic resonance imaging studies of older adults: A shrinking brain. PubMed DOI PMC
Risau W., Lemmon V. (1988). Changes in the vascular extracellular matrix during embryonic vasculogenesis and angiogenesis. PubMed DOI
Roberts J., Kahle M. P., Bix G. J. (2012). Perlecan and the blood-brain barrier: Beneficial proteolysis? PubMed DOI PMC
Rodriguez J. J., Yeh C. Y., Terzieva S., Olabarria M., Kulijewicz-Nawrot M., Verkhratsky A. (2014). Complex and region-specific changes in astroglial markers in the aging brain. PubMed DOI
Rosenberg G. A. (2002). Matrix metalloproteinases in neuroinflammation. PubMed DOI
Rosenberg G. A., Estrada E. Y., Dencoff J. E. (1998). Matrix metalloproteinases and TIMPs are associated with blood-brain barrier opening after reperfusion in rat brain. PubMed DOI
Rosenberg G. A., Navratil M., Barone F., Feuerstein G. (1996). Proteolytic cascade enzymes increase in focal cerebral ischemia in rat. PubMed DOI
Sato S., Omori Y., Katoh K., Kondo M., Kanagawa M., Miyata K., et al. (2008). Pikachurin, a dystroglycan ligand, is essential for photoreceptor ribbon synapse formation. PubMed DOI
Schiffer D., Mellai M., Boldorini R., Bisogno I., Grifoni S., Corona C., et al. (2018). The Significance of chondroitin sulfate proteoglycan 4 (CSPG4) in human gliomas. PubMed DOI PMC
Schmidt S., Arendt T., Morawski M., Sonntag M. (2020). Neurocan contributes to perineuronal net development. PubMed DOI
Schwarzacher S. W., Vuksic M., Haas C. A., Burbach G. J., Sloviter R. S., Deller T. (2006). Neuronal hyperactivity induces astrocytic expression of neurocan in the adult rat hippocampus. PubMed DOI
Shen Y. F., Tang Y., Zhang X. J., Huang K. X., Le W. D. (2013). Adaptive changes in autophagy after UPS impairment in Parkinson’s disease. PubMed DOI PMC
Smith G. M., Strunz C. (2005). Growth factor and cytokine regulation of chondroitin sulfate proteoglycans by astrocytes. PubMed DOI
Song I., Dityatev A. (2018). Crosstalk between glia, extracellular matrix and neurons. PubMed DOI
Spicer A. P., Joo A., Bowling R. A. (2003). A hyaluronan binding link protein gene family whose members are physically linked adjacent to chrondroitin sulfate proteoglycan core protein genes - The missing links. PubMed DOI
Stepp M. A., Gibson H. E., Gala P. H., Iglesia D. D., Pajoohesh-Ganji A., Pal-Ghosh S., et al. (2002). Defects in keratinocyte activation during wound healing in the syndecan-1-deficient mouse. PubMed DOI
Strand S. H., Orntoft T. F., Sorensen K. D. (2014). Prognostic DNA methylation markers for prostate cancer. PubMed DOI PMC
Sucha P., Chmelova M., Kamenicka M., Bochin M., Oohashi T., Vargova L. (2020). The effect of Hapln4 link protein deficiency on extracellular space diffusion parameters and perineuronal nets in the auditory system during aging. PubMed DOI
Sullivan M. M., Barker T. H., Funk S. E., Karchin A., Seo N. S., Hook M., et al. (2006). Matricellular hevin regulates decorin production and collagen assembly. PubMed DOI
Susuki K., Chang K. J., Zollinger D. R., Liu Y., Ogawa Y., Eshed-Eisenbach Y., et al. (2013). Three mechanisms assemble central nervous system nodes of Ranvier. PubMed DOI PMC
Suttkus A., Rohn S., Weigel S., Glockner P., Arendt T., Morawski M. (2014). Aggrecan, link protein and tenascin-R are essential components of the perineuronal net to protect neurons against iron-induced oxidative stress. PubMed DOI PMC
Suzuki H., Nishikawa H., Kawakita F. (2018). Matricellular proteins as possible biomarkers for early brain injury after aneurysmal subarachnoid hemorrhage. PubMed DOI PMC
Syková E., Mazel T., Hasenöhrl R. U., Harvey A. R., Simonová Z., Mulders W. H., et al. (2002). Learning deficits in aged rats related to decrease in extracellular volume and loss of diffusion anisotropy in hippocampus. PubMed DOI
Takahashi H., Matsumoto H., Kumon Y., Ohnishi T., Freeman C., Imai Y., et al. (2007). Expression of heparanase in nestin-positive reactive astrocytes in ischemic lesions of rat brain after transient middle cerebral artery occlusion. PubMed DOI
Tamburini E., Dallatomasina A., Quartararo J., Cortelazzi B., Mangieri D., Lazzaretti M., et al. (2019). Structural deciphering of the NG2/CSPG4 proteoglycan multifunctionality. PubMed DOI
Tate C. C., Tate M. C., LaPlaca M. C. (2007b). Fibronectin and laminin increase in the mouse brain after controlled cortical impact injury. PubMed DOI
Tate C. C., Garcia A. J., LaPlaca M. C. (2007a). Plasma fibronectin is neuroprotective following traumatic brain injury. PubMed DOI
Taylor R. A., Sansing L. H. (2013). Microglial responses after ischemic stroke and intracerebral hemorrhage. PubMed DOI PMC
Tewari B. P., Chaunsali L., Prim C. E., Sontheimer H. (2022). A glial perspective on the extracellular matrix and perineuronal net remodeling in the central nervous system. PubMed DOI PMC
Theocharis A. D., Skandalis S. S., Gialeli C., Karamanos N. K. (2016). Extracellular matrix structure. PubMed DOI
Tsuda M., Toyomitsu E., Komatsu T., Masuda T., Kunifusa E., Nasu-Tada K., et al. (2008). Fibronectin/integrin system is involved in P2X(4) receptor upregulation in the spinal cord and neuropathic pain after nerve injury. PubMed DOI
Tuo Q. Z., Lei P., Jackman K. A., Li X. L., Xiong H., Li X. L., et al. (2017). Tau-mediated iron export prevents ferroptotic damage after ischemic stroke. PubMed DOI
Tyanova S., Temu T., Sinitcyn P., Carlson A., Hein M. Y., Geiger T., et al. (2016). The Perseus computational platform for comprehensive analysis of (prote)omics data. PubMed DOI
Vafadari B., Salamian A., Kaczmarek L. (2016). MMP-9 in translation: From molecule to brain physiology, pathology, and therapy. PubMed DOI
Venstrom K. A., Reichardt L. F. (1993). Extracellular matrix. 2: Role of extracellular matrix molecules and their receptors in the nervous system. PubMed DOI
Vigano F., Dimou L. (2016). The heterogeneous nature of NG2-glia. PubMed DOI
Wang M. Y., Huang M., Wang C. Y., Tang X. Y., Wang J. G., Yang Y. D., et al. (2021). Transcriptome analysis reveals MFGE8-HAPLN3 fusion as a novel biomarker in triple-negative breast cancer. PubMed DOI PMC
Wang Q., Wang C., Ji B., Zhou J., Yang C., Chen J. (2019). Hapln2 in neurological diseases and its potential as therapeutic target. PubMed DOI PMC
Wei R., Wang J., Su M., Jia E., Chen S., Chen T., et al. (2018). Missing value imputation approach for mass spectrometry-based metabolomics data. PubMed DOI PMC
Woods A., Couchman J. R. (2001). Syndecan-4 and focal adhesion function. PubMed DOI
Yepes M., Sandkvist M., Wong M. K., Coleman T. A., Smith E., Cohan S. L., et al. (2000). Neuroserpin reduces cerebral infarct volume and protects neurons from ischemia-induced apoptosis. PubMed
Zhou X. H., Brakebusch C., Matthies H., Oohashi T., Hirsch E., Moser M., et al. (2001). Neurocan is dispensable for brain development. PubMed DOI PMC