A view of the genetic and proteomic profile of extracellular matrix molecules in aging and stroke
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38107409
PubMed Central
PMC10723838
DOI
10.3389/fncel.2023.1296455
Knihovny.cz E-zdroje
- Klíčová slova
- aging, extracellular matrix, genes, proteins, stroke,
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: Modification of the extracellular matrix (ECM) is one of the major processes in the pathology of brain damage following an ischemic stroke. However, our understanding of how age-related ECM alterations may affect stroke pathophysiology and its outcome is still very limited. METHODS: We conducted an ECM-targeted re-analysis of our previously obtained RNA-Seq dataset of aging, ischemic stroke and their interactions in young adult (3-month-old) and aged (18-month-old) mice. The permanent middle cerebral artery occlusion (pMCAo) in rodents was used as a model of ischemic stroke. Altogether 56 genes of interest were chosen for this study. RESULTS: We identified an increased activation of the genes encoding proteins related to ECM degradation, such as matrix metalloproteinases (MMPs), proteases of a disintegrin and metalloproteinase with the thrombospondin motifs (ADAMTS) family and molecules that regulate their activity, tissue inhibitors of metalloproteinases (TIMPs). Moreover, significant upregulation was also detected in the mRNA of other ECM molecules, such as proteoglycans, syndecans and link proteins. Notably, we identified 8 genes where this upregulation was enhanced in aged mice in comparison with the young ones. Ischemia evoked a significant downregulation in only 6 of our genes of interest, including those encoding proteins associated with the protective function of ECM molecules (e.g., brevican, Hapln4, Sparcl1); downregulation in brevican was more prominent in aged mice. The study was expanded by proteome analysis, where we observed an ischemia-induced overexpression in three proteins, which are associated with neuroinflammation (fibronectin and vitronectin) and neurodegeneration (link protein Hapln2). In fibronectin and Hapln2, this overexpression was more pronounced in aged post-ischemic animals. CONCLUSION: Based on these results, we can conclude that the ratio between the protecting and degrading mechanisms in the aged brain is shifted toward degradation and contributes to the aged tissues' increased sensitivity to ischemic insults. Altogether, our data provide fresh perspectives on the processes underlying ischemic injury in the aging brain and serve as a freely accessible resource for upcoming research.
Zobrazit více v PubMed
Allen N. J., Bennett M. L., Foo L. C., Wang G. X., Chakraborty C., Smith S. J., et al. (2012). Astrocyte glypicans 4 and 6 promote formation of excitatory synapses via GluA1 AMPA receptors. Nature 486 410–414. 10.1038/nature11059 PubMed DOI PMC
Alonso G. (2005). NG2 proteoglycan-expressing cells of the adult rat brain: Possible involvement in the formation of glial scar astrocytes following stab wound. Glia 49 318–338. 10.1002/glia.20121 PubMed DOI
Ampofo E., Schmitt B. M., Menger M. D., Laschke M. W. (2017). The regulatory mechanisms of NG2/CSPG4 expression. Cell Mol. Biol. Lett. 22:4. 10.1186/s11658-017-0035-3 PubMed DOI PMC
Anderova M., Antonova T., Petrik D., Neprasova H., Chvatal A., Sykova E. (2004). Voltage-dependent potassium currents in hypertrophied rat astrocytes after a cortical stab wound. Glia 48 311–326. 10.1002/glia.20076 PubMed DOI
Anderova M., Benesova J., Mikesova M., Dzamba D., Honsa P., Kriska J., et al. (2014). Altered astrocytic swelling in the cortex of alpha-syntrophin-negative GFAP/EGFP mice. PLoS One 9:e113444. 10.1371/journal.pone.0113444 PubMed DOI PMC
Anders S., Pyl P. T., Huber W. (2015). HTSeq–a python framework to work with high-throughput sequencing data. Bioinformatics 31 166–169. 10.1093/bioinformatics/btu638 PubMed DOI PMC
Androvic P., Kirdajova D., Tureckova J., Zucha D., Rohlova E., Abaffy P., et al. (2020). Decoding the transcriptional response to ischemic stroke in young and aged mouse brain. Cell. Rep. 31:107777. 10.1016/j.celrep.2020.107777 PubMed DOI
Asher R. A., Morgenstern D. A., Fidler P. S., Adcock K. H., Oohira A., Braistead J. E., et al. (2000). Neurocan is upregulated in injured brain and in cytokine-treated astrocytes. J. Neurosci. 20 2427–2438. 10.1523/jneurosci.20-07-02427.2000 PubMed DOI PMC
Barrett H., O’Keeffe M., Kavanagh E., Walsh M., O’Connor E. M. (2018). Is matrix gla protein associated with vascular calcification? A systematic review. Nutrients 10:415. 10.3390/nu10040415 PubMed DOI PMC
Bartlett A. H., Hayashida K., Park P. W. (2007). Molecular and cellular mechanisms of syndecans in tissue injury and inflammation. Mol. Cells 24 153–166. PubMed
Bekku Y., Su W. D., Hirakawa S., Fassler R., Ohtsuka A., Kang J. S., et al. (2003). Molecular cloning of Bral2, a novel brain-specific link protein, and immunohistochemical colocalization with brevican in perineuronal nets. Mol. Cell. Neurosci. 24 148–159. 10.1016/S1044-7431(03)00133-7 PubMed DOI
Bekku Y., Vargova L., Goto Y., Vorisek I., Dmytrenko L., Narasaki M., et al. (2010). Bral1: Its role in diffusion barrier formation and conduction velocity in the CNS. J. Neurosci. 30 3113–3123. 10.1523/Jneurosci.5598-09.2010 PubMed DOI PMC
Benjamin E. J., Virani S. S., Callaway C. W., Chamberlain A. M., Chang A. R., Cheng S., et al. (2018). Heart disease and stroke statistics-2018 update: A report from the American Heart Association. Circulation 137 e67–e492. 10.1161/cir.0000000000000558 PubMed DOI
Berti R., Williams A. J., Moffett J. R., Hale S. L., Velarde L. C., Elliott P. J., et al. (2002). Quantitative real-time RT-PCR analysis of inflammatory gene expression associated with ischemia-reperfusion brain injury. J. Cereb. Blood Flow Metab. 22 1068–1079. 10.1097/00004647-200209000-00004 PubMed DOI
Bolger A. M., Lohse M., Usadel B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30 2114–2120. 10.1093/bioinformatics/btu170 PubMed DOI PMC
Bousman C. A., Chana G., Glatt S. J., Chandler S. D., Lucero G. R., Tatro E., et al. (2010). Preliminary evidence of ubiquitin proteasome system dysregulation in schizophrenia and bipolar disorder: Convergent pathway analysis findings from two independent samples. Am. J. Med. Genet. B Neuropsychiatr. Genet. 153B 494–502. 10.1002/ajmg.b.31006 PubMed DOI PMC
Brenneman M., Sharma S., Harting M., Strong R., Cox C. S., Jr., Aronowski J., et al. (2010). Autologous bone marrow mononuclear cells enhance recovery after acute ischemic stroke in young and middle-aged rats. J. Cereb. Blood Flow Metab. 30 140–149. 10.1038/jcbfm.2009.198 PubMed DOI PMC
Brew K., Nagase H. (2010). The tissue inhibitors of metalloproteinases (TIMPs): An ancient family with structural and functional diversity. Biochim. Biophys. Acta 1803 55–71. 10.1016/j.bbamcr.2010.01.003 PubMed DOI PMC
Bridel C., Koel-Simmelink M. J. A., Peferoen L., Derada Troletti C., Durieux S., Gorter R., et al. (2018). Brain endothelial cell expression of SPARCL-1 is specific to chronic multiple sclerosis lesions and is regulated by inflammatory mediators in vitro. Neuropathol. Appl. Neurobiol. 44 404–416. 10.1111/nan.12412 PubMed DOI
Carmichael S. T., Archibeque I., Luke L., Nolan T., Momiy J., Li S. (2005). Growth-associated gene expression after stroke: Evidence for a growth-promoting region in peri-infarct cortex. Exp. Neurol. 193 291–311. 10.1016/j.expneurol.2005.01.004 PubMed DOI
Carulli D., Pizzorusso T., Kwok J. C., Putignano E., Poli A., Forostyak S., et al. (2010). Animals lacking link protein have attenuated perineuronal nets and persistent plasticity. Brain 133(Pt 8) 2331–2347. 10.1093/brain/awq145 PubMed DOI
Carulli D., Rhodes K. E., Brown D. J., Bonnert T. P., Pollack S. J., Oliver K., et al. (2006). Composition of perineuronal nets in the adult rat cerebellum and the cellular origin of their components. J. Comp. Neurol. 494 559–577. 10.1002/cne.20822 PubMed DOI
Chakravarti S. (2002). Functions of lumican and fibromodulin: Lessons from knockout mice. Glycoconj. J. 19 287–293. 10.1023/A:1025348417078 PubMed DOI
Changyaleket B., Chong Z. Z., Dull R. O., Nanegrungsunk D., Xu H. (2017). Heparanase promotes neuroinflammatory response during subarachnoid hemorrhage in rats. J. Neuroinflamm. 14:137. 10.1186/s12974-017-0912-8 PubMed DOI PMC
Chen S., Zou Q., Chen Y., Kuang X., Wu W., Guo M., et al. (2020). Regulation of SPARC family proteins in disorders of the central nervous system. Brain Res. Bull. 163 178–189. 10.1016/j.brainresbull.2020.05.005 PubMed DOI
Cicanic M., Edamatsu M., Bekku Y., Vorisek I., Oohashi T., Vargova L. (2018). A deficiency of the link protein Bral2 affects the size of the extracellular space in the thalamus of aged mice. J. Neurosci. Res. 96 313–327. 10.1002/jnr.24136 PubMed DOI
Cox J., Mann M. (2008). MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26 1367–1372. 10.1038/nbt.1511 PubMed DOI
Cross A. K., Haddock G., Stock C. J., Allan S., Surr J., Bunning R. A., et al. (2006). ADAMTS-1 and -4 are up-regulated following transient middle cerebral artery occlusion in the rat and their expression is modulated by TNF in cultured astrocytes. Brain Res. 1088 19–30. 10.1016/j.brainres.2006.02.136 PubMed DOI
Cunningham L. A., Wetzel M., Rosenberg G. A. (2005). Multiple roles for MMPs and TIMPs in cerebral ischemia. Glia 50 329–339. 10.1002/glia.20169 PubMed DOI
Daghals I., Sargurupremraj M., Danning R., Gormley P., Malik R., Amouyel P., et al. (2022). Migraine, stroke, and cervical arterial dissection: Shared genetics for a triad of brain disorders with vascular involvement. Neurol. Genet. 8:e653. 10.1212/NXG.0000000000000653 PubMed DOI PMC
Dansie L. E., Ethell I. M. (2011). Casting a net on dendritic spines: The extracellular matrix and its receptors. Dev. Neurobiol. 71 956–981. 10.1002/dneu.20963 PubMed DOI PMC
De Rubeis S., He X., Goldberg A. P., Poultney C. S., Samocha K., Cicek A. E., et al. (2014). Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 515 209–215. 10.1038/nature13772 PubMed DOI PMC
Deguchi K., Takaishi M., Hayashi T., Oohira A., Nagotani S., Li F., et al. (2005). Expression of neurocan after transient middle cerebral artery occlusion in adult rat brain. Brain Res. 1037 194–199. 10.1016/j.brainres.2004.12.016 PubMed DOI
del Zoppo G. J., Frankowski H., Gu Y. H., Osada T., Kanazawa M., Milner R., et al. (2012). Microglial cell activation is a source of metalloproteinase generation during hemorrhagic transformation. J. Cereb. Blood Flow Metab. 32 919–932. 10.1038/jcbfm.2012.11 PubMed DOI PMC
Deleidi M., Jaggle M., Rubino G. (2015). Immune aging, dysmetabolism, and inflammation in neurological diseases. Front. Neurosci. 9:172. 10.3389/fnins.2015.00172 PubMed DOI PMC
Dimou L., Gallo V. (2015). NG2-glia and their functions in the central nervous system. Glia 63 1429–1451. 10.1002/glia.22859 PubMed DOI PMC
Ding Y., Xiong S., Chen X., Pan Q., Fan J., Guo J. (2023). HAPLN3 inhibits apoptosis and promotes EMT of clear cell renal cell carcinoma via ERK and Bcl-2 signal pathways. J. Cancer Res. Clin. Oncol. 149 79–90. 10.1007/s00432-022-04421-3 PubMed DOI
Dityatev A., Schachner M., Sonderegger P. (2010). The dual role of the extracellular matrix in synaptic plasticity and homeostasis. Nat. Rev. Neurosci. 11 735–746. 10.1038/nrn2898 PubMed DOI
Dobin A., Davis C. A., Schlesinger F., Drenkow J., Zaleski C., Jha S., et al. (2013). STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29 15–21. 10.1093/bioinformatics/bts635 PubMed DOI PMC
Duan W. M., Zhao L. R., Westerman M., Lovick D., Furcht L. T., McCarthy J. B., et al. (2000). Enhancement of nigral graft survival in rat brain with the systemic administration of synthetic fibronectin peptide V. Neuroscience 100 521–530. 10.1016/s0306-4522(00)00299-2 PubMed DOI
Dzyubenko E., Manrique-Castano D., Kleinschnitz C., Faissner A., Hermann D. M. (2018a). Role of immune responses for extracellular matrix remodeling in the ischemic brain. Ther. Adv. Neurol. Disord. 11:1756286418818092. 10.1177/1756286418818092 PubMed DOI PMC
Dzyubenko E., Manrique-Castano D., Kleinschnitz C., Faissner A., Hermann D. M. (2018b). Topological remodeling of cortical perineuronal nets in focal cerebral ischemia and mild hypoperfusion. Matrix Biol. 74 121–132. 10.1016/j.matbio.2018.08.001 PubMed DOI
Echtermeyer F., Streit M., Wilcox-Adelman S., Saoncella S., Denhez F., Detmar M., et al. (2001). Delayed wound repair and impaired angiogenesis in mice lacking syndecan-4. J. Clin. Invest. 107 R9–R14. 10.1172/JCI10559 PubMed DOI PMC
Edwards D. N., Bix G. J. (2019). Roles of blood-brain barrier integrins and extracellular matrix in stroke. Am. J. Physiol. Cell. Physiol. 316 C252–C263. 10.1152/ajpcell.00151.2018 PubMed DOI PMC
Elenius K., Vainio S., Laato M., Salmivirta M., Thesleff I., Jalkanen M. (1991). Induced expression of syndecan in healing wounds. J. Cell. Biol. 114 585–595. 10.1083/jcb.114.3.585 PubMed DOI PMC
Ewald C. Y. (2020). The matrisome during aging and longevity: A systems-level approach toward defining matreotypes promoting healthy aging. Gerontology 66 266–274. 10.1159/000504295 PubMed DOI PMC
Faissner A., Roll L., Theocharidis U. (2017). Tenascin-C in the matrisome of neural stem and progenitor cells. Mol. Cell. Neurosci. 81 22–31. 10.1016/j.mcn.2016.11.003 PubMed DOI
Fawcett J. W., Oohashi T., Pizzorusso T. (2019). The roles of perineuronal nets and the perinodal extracellular matrix in neuronal function. Nat. Rev. Neurosci. 20 451–465. 10.1038/s41583-019-0196-3 PubMed DOI
Foscarin S., Raha-Chowdhury R., Fawcett J. W., Kwok J. C. F. (2017). Brain ageing changes proteoglycan sulfation, rendering perineuronal nets more inhibitory. Aging (Albany NY) 9 1607–1622. 10.18632/aging.101256 PubMed DOI PMC
Galtrey C. M., Kwok J. C., Carulli D., Rhodes K. E., Fawcett J. W. (2008). Distribution and synthesis of extracellular matrix proteoglycans, hyaluronan, link proteins and tenascin-R in the rat spinal cord. Eur. J. Neurosci. 27 1373–1390. 10.1111/j.1460-9568.2008.06108.x PubMed DOI
Gasche Y., Fujimura M., Morita-Fujimura Y., Copin J. C., Kawase M., Massengale J., et al. (1999). Early appearance of activated matrix metalloproteinase-9 after focal cerebral ischemia in mice: A possible role in blood-brain barrier dysfunction. J. Cereb. Blood Flow Metab. 19 1020–1028. 10.1097/00004647-199909000-00010 PubMed DOI
George N., Geller H. M. (2018). Extracellular matrix and traumatic brain injury. J. Neurosci. Res. 96 573–588. 10.1002/jnr.24151 PubMed DOI PMC
Giamanco K. A., Matthews R. T. (2012). Deconstructing the perineuronal net: Cellular contributions and molecular composition of the neuronal extracellular matrix. Neuroscience 218 367–384. 10.1016/j.neuroscience.2012.05.055 PubMed DOI PMC
Giancotti F. G., Ruoslahti E. (1999). Integrin signaling. Science 285 1028–1032. 10.1126/science.285.5430.1028 PubMed DOI
Gopal S. (2020). Syndecans in inflammation at a glance. Front. Immunol. 11:227. 10.3389/fimmu.2020.00227 PubMed DOI PMC
Gottschall P. E., Howell M. D. (2015). ADAMTS expression and function in central nervous system injury and disorders. Matrix Biol. 44–46 70–76. 10.1016/j.matbio.2015.01.014 PubMed DOI PMC
Graham S. H., Liu H. (2017). Life and death in the trash heap: The ubiquitin proteasome pathway and UCHL1 in brain aging, neurodegenerative disease and cerebral Ischemia. Ageing Res. Rev. 34 30–38. 10.1016/j.arr.2016.09.011 PubMed DOI PMC
Hamann G. F., Burggraf D., Martens H. K., Liebetrau M., Jager G., Wunderlich N., et al. (2004). Mild to moderate hypothermia prevents microvascular basal lamina antigen loss in experimental focal cerebral ischemia. Stroke 35 764–769. 10.1161/01.STR.0000116866.60794.21 PubMed DOI
Hansen S. M., Kohler L. B., Li S., Kiselyov V., Christensen C., Owczarek S., et al. (2008). NCAM-derived peptides function as agonists for the fibroblast growth factor receptor. J. Neurochem. 106 2030–2041. 10.1111/j.1471-4159.2008.05544.x PubMed DOI
Hebert A. S., Richards A. L., Bailey D. J., Ulbrich A., Coughlin E. E., Westphall M. S., et al. (2014). The one hour yeast proteome. Mol. Cell. Proteomics 13 339–347. 10.1074/mcp.M113.034769 PubMed DOI PMC
Heo J. H., Lucero J., Abumiya T., Koziol J. A., Copeland B. R., del Zoppo G. J. (1999). Matrix metalloproteinases increase very early during experimental focal cerebral ischemia. J. Cereb. Blood Flow Metab. 19 624–633. 10.1097/00004647-199906000-00005 PubMed DOI
Hienola A., Tumova S., Kulesskiy E., Rauvala H. (2006). N-syndecan deficiency impairs neural migration in brain. J. Cell. Biol. 174 569–580. 10.1083/jcb.200602043 PubMed DOI PMC
Hobohm C., Gunther A., Grosche J., Rossner S., Schneider D., Bruckner G. (2005). Decomposition and long-lasting downregulation of extracellular matrix in perineuronal nets induced by focal cerebral ischemia in rats. J. Neurosci. Res. 80 539–548. 10.1002/jnr.20459 PubMed DOI
Honsa P., Pivonkova H., Dzamba D., Filipova M., Anderova M. (2012). Polydendrocytes display large lineage plasticity following focal cerebral ischemia. PLoS One 7:e36816. 10.1371/journal.pone.0036816 PubMed DOI PMC
Hsueh Y. P., Sheng M. (1999). Regulated expression and subcellular localization of syndecan heparan sulfate proteoglycans and the syndecan-binding protein CASK/LIN-2 during rat brain development. J. Neurosci. 19 7415–7425. 10.1523/JNEUROSCI.19-17-07415.1999 PubMed DOI PMC
Hu J., Deng L., Wang X., Xu X. M. (2009). Effects of extracellular matrix molecules on the growth properties of oligodendrocyte progenitor cells in vitro. J. Neurosci. Res. 87 2854–2862. 10.1002/jnr.22111 PubMed DOI
Hughes C. S., Moggridge S., Muller T., Sorensen P. H., Morin G. B., Krijgsveld J. (2019). Single-pot, solid-phase-enhanced sample preparation for proteomics experiments. Nat. Protoc. 14 68–85. 10.1038/s41596-018-0082-x PubMed DOI
Humphries J. D., Byron A., Humphries M. J. (2006). Integrin ligands at a glance. J. Cell. Sci. 119(Pt 19) 3901–3903. 10.1242/jcs.03098 PubMed DOI PMC
Jia C., Keasey M. P., Malone H. M., Lovins C., Hagg T. (2020). Vitronectin mitigates stroke-increased neurogenesis only in female mice and through FAK-regulated IL-6. Exp. Neurol. 323:113088. 10.1016/j.expneurol.2019.113088 PubMed DOI PMC
Jia C., Keasey M. P., Malone H. M., Lovins C., Sante R. R., Razskazovskiy V., et al. (2019). Vitronectin from brain pericytes promotes adult forebrain neurogenesis by stimulating CNTF. Exp. Neurol. 312 20–32. 10.1016/j.expneurol.2018.11.002 PubMed DOI PMC
Kang S. S., Keasey M. P., Arnold S. A., Reid R., Geralds J., Hagg T. (2013). Endogenous CNTF mediates stroke-induced adult CNS neurogenesis in mice. Neurobiol. Dis. 49 68–78. 10.1016/j.nbd.2012.08.020 PubMed DOI PMC
Kaur C., Sivakumar V., Yip G. W., Ling E. A. (2009). Expression of syndecan-2 in the amoeboid microglial cells and its involvement in inflammation in the hypoxic developing brain. Glia 57 336–349. 10.1002/glia.20764 PubMed DOI
Kazanis I., Belhadi A., Faissner A., Ffrench-Constant C. (2007). The adult mouse subependymal zone regenerates efficiently in the absence of tenascin-C. J. Neurosci. 27 13991–13996. 10.1523/JNEUROSCI.3279-07.2007 PubMed DOI PMC
King V. R., Alovskaya A., Wei D. Y., Brown R. A., Priestley J. V. (2010). The use of injectable forms of fibrin and fibronectin to support axonal ingrowth after spinal cord injury. Biomaterials 31 4447–4456. 10.1016/j.biomaterials.2010.02.018 PubMed DOI
King V. R., Phillips J. B., Hunt-Grubbe H., Brown R., Priestley J. V. (2006). Characterization of non-neuronal elements within fibronectin mats implanted into the damaged adult rat spinal cord. Biomaterials 27 485–496. 10.1016/j.biomaterials.2005.06.033 PubMed DOI
Kirdajova D., Anderova M. (2020). NG2 cells and their neurogenic potential. Curr. Opin. Pharmacol. 50 53–60. 10.1016/j.coph.2019.11.005 PubMed DOI
Kirdajova D., Valihrach L., Valny M., Kriska J., Krocianova D., Benesova S., et al. (2021). Transient astrocyte-like NG2 glia subpopulation emerges solely following permanent brain ischemia. Glia 69 2658–2681. 10.1002/glia.24064 PubMed DOI PMC
Kjell J., Fischer-Sternjak J., Thompson A. J., Friess C., Sticco M. J., Salinas F., et al. (2020). Defining the adult neural stem cell niche proteome identifies key regulators of adult neurogenesis. Cell Stem Cell 26 277.e8–293.e8. 10.1016/j.stem.2020.01.002 PubMed DOI PMC
Klein T., Bischoff R. (2011). Physiology and pathophysiology of matrix metalloproteases. Amino Acids 41 271–290. 10.1007/s00726-010-0689-x PubMed DOI PMC
Kolenicova D., Tureckova J., Pukajova B., Harantova L., Kriska J., Kirdajova D., et al. (2020). High potassium exposure reveals the altered ability of astrocytes to regulate their volume in the aged hippocampus of GFAP/EGFP mice. Neurobiol. Aging 86 162–181. 10.1016/j.neurobiolaging.2019.10.009 PubMed DOI
Kopylova E., Noé L., Touzet H. (2012). SortMeRNA: Fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28 3211–3217. 10.1093/bioinformatics/bts611 PubMed DOI
Kwon I., Kim E. H., del Zoppo G. J., Heo J. H. (2009). Ultrastructural and temporal changes of the microvascular basement membrane and astrocyte interface following focal cerebral ischemia. J. Neurosci. Res. 87 668–676. 10.1002/jnr.21877 PubMed DOI PMC
Lam Y. A., Pickart C. M., Alban A., Landon M., Jamieson C., Ramage R., et al. (2000). Inhibition of the ubiquitin-proteasome system in Alzheimer’s disease. Proc. Natl. Acad. Sci. U.S.A. 97 9902–9906. 10.1073/pnas.170173897 PubMed DOI PMC
Lathia J. D., Chigurupati S., Thundyil J., Selvaraj P. K., Mughal M. R., Woodruff T. M., et al. (2010). Pivotal role for beta-1 integrin in neurovascular remodelling after ischemic stroke. Exp. Neurol. 221 107–114. 10.1016/j.expneurol.2009.10.007 PubMed DOI
Lau L. W., Cua R., Keough M. B., Haylock-Jacobs S., Yong V. W. (2013). Pathophysiology of the brain extracellular matrix: A new target for remyelination. Nat. Rev. Neurosci. 14 722–729. 10.1038/nrn3550 PubMed DOI
Law H. C., Szeto S. S., Quan Q., Zhao Y., Zhang Z., Krakovska O., et al. (2017). Characterization of the molecular mechanisms underlying the chronic phase of stroke in a cynomolgus monkey model of induced cerebral ischemia. J. Proteome Res. 16 1150–1166. 10.1021/acs.jproteome.6b00651 PubMed DOI
Lee S. R., Kim H. Y., Rogowska J., Zhao B. Q., Bhide P., Parent J. M., et al. (2006). Involvement of matrix metalloproteinase in neuroblast cell migration from the subventricular zone after stroke. J. Neurosci. 26 3491–3495. 10.1523/JNEUROSCI.4085-05.2006 PubMed DOI PMC
Lemarchant S., Pomeshchik Y., Kidin I., Karkkainen V., Valonen P., Lehtonen S., et al. (2016). ADAMTS-4 promotes neurodegeneration in a mouse model of amyotrophic lateral sclerosis. Mol. Neurodegener. 11:10. 10.1186/s13024-016-0078-3 PubMed DOI PMC
Lemarchant S., Pruvost M., Montaner J., Emery E., Vivien D., Kanninen K., et al. (2013). ADAMTS proteoglycanases in the physiological and pathological central nervous system. J. Neuroinflamm. 10:133. 10.1186/1742-2094-10-133 PubMed DOI PMC
Levi N., Papismadov N., Solomonov I., Sagi I., Krizhanovsky V. (2020). The ECM path of senescence in aging: Components and modifiers. FEBS J. 287 2636–2646. 10.1111/febs.15282 PubMed DOI
Li F., Liu W. C., Wang Q., Sun Y., Wang H., Jin X. (2020). NG2-glia cell proliferation and differentiation by glial growth factor 2 (GGF2), a strategy to promote functional recovery after ischemic stroke. Biochem. Pharmacol. 171:113720. 10.1016/j.bcp.2019.113720 PubMed DOI
Li J., Li J. P., Zhang X., Lu Z., Yu S. P., Wei L. (2012). Expression of heparanase in vascular cells and astrocytes of the mouse brain after focal cerebral ischemia. Brain Res. 1433 137–144. 10.1016/j.brainres.2011.11.032 PubMed DOI PMC
Lin C. Y., Lee Y. S., Lin V. W., Silver J. (2012). Fibronectin inhibits chronic pain development after spinal cord injury. J. Neurotrauma 29 589–599. 10.1089/neu.2011.2059 PubMed DOI PMC
Lively S., Moxon-Emre I., Schlichter L. C. (2011). SC1/hevin and reactive gliosis after transient ischemic stroke in young and aged rats. J. Neuropathol. Exp. Neurol. 70 913–929. 10.1097/NEN.0b013e318231151e PubMed DOI
Love M. I., Huber W., Anders S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15:550. 10.1186/s13059-014-0550-8 PubMed DOI PMC
Malemud C. J. (2006). Matrix metalloproteinases (MMPs) in health and disease: An overview. Front. Biosci. Landmark 11:1696–1701. 10.2741/1915 PubMed DOI
Massey J. M., Hubscher C. H., Wagoner M. R., Decker J. A., Amps J., Silver J., et al. (2006). Chondroitinase ABC digestion of the perineuronal net promotes functional collateral sprouting in the cuneate nucleus after cervical spinal cord injury. J. Neurosci. 26 4406–4414. 10.1523/JNEUROSCI.5467-05.2006 PubMed DOI PMC
McKeon R. J., Jurynec M. J., Buck C. R. (1999). The chondroitin sulfate proteoglycans neurocan and phosphacan are expressed by reactive astrocytes in the chronic CNS glial scar. J. Neurosci. 19 10778–10788. 10.1523/jneurosci.19-24-10778.1999 PubMed DOI PMC
Mertsch S., Schurgers L. J., Weber K., Paulus W., Senner V. (2009). Matrix gla protein (MGP): An overexpressed and migration-promoting mesenchymal component in glioblastoma. BMC Cancer 9:302. 10.1186/1471-2407-9-302 PubMed DOI PMC
Meyer-Puttlitz B., Junker E., Margolis R. U., Margolis R. K. (1996). Chondroitin sulfate proteoglycans in the developing central nervous system. II. Immunocytochemical localization of neurocan and phosphacan. J. Comp. Neurol. 366 44–54. 10.1002/(SICI)1096-9861(19960226)366:1<44::AID-CNE4<3.0.CO;2-K PubMed DOI
Milner R., Campbell I. L. (2003). The extracellular matrix and cytokines regulate microglial integrin expression and activation. J. Immunol. 170 3850–3858. 10.4049/jimmunol.170.7.3850 PubMed DOI
Milner R., Crocker S. J., Hung S., Wang X., Frausto R. F., del Zoppo G. J. (2007). Fibronectin- and vitronectin-induced microglial activation and matrix metalloproteinase-9 expression is mediated by integrins alpha5beta1 and alphavbeta5. J. Immunol. 178 8158–8167. 10.4049/jimmunol.178.12.8158 PubMed DOI
Moraga A., Pradillo J. M., Garcia-Culebras A., Palma-Tortosa S., Ballesteros I., Hernandez-Jimenez M., et al. (2015). Aging increases microglial proliferation, delays cell migration, and decreases cortical neurogenesis after focal cerebral ischemia. J. Neuroinflamm. 12:87. 10.1186/s12974-015-0314-8 PubMed DOI PMC
Morawski M., Filippov M., Tzinia A., Tsilibary E., Vargova L. (2014). ECM in brain aging and dementia. Brain Extracell. Matrix Health Dis. 214 207–227. 10.1016/B978-0-444-63486-3.00010-4 PubMed DOI
Morello R., Rauch F. (2010). Role of cartilage-associated protein in skeletal development. Curr. Osteoporos. Rep. 8 77–83. 10.1007/s11914-010-0010-7 PubMed DOI PMC
Naba A., Clauser K. R., Hoersch S., Liu H., Carr S. A., Hynes R. O. (2012). The matrisome: In silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Mol. Cell Proteomics 11:M111.014647. 10.1074/mcp.M111.014647 PubMed DOI PMC
Nagase H., Visse R., Murphy G. (2006). Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc. Res. 69 562–573. 10.1016/j.cardiores.2005.12.002 PubMed DOI
Nahirney P. C., Reeson P., Brown C. E. (2016). Ultrastructural analysis of blood-brain barrier breakdown in the peri-infarct zone in young adult and aged mice. J. Cereb. Blood Flow Metab. 36 413–425. 10.1177/0271678X15608396 PubMed DOI PMC
Nakamura K., Ikeuchi T., Nara K., Rhodes C. S., Zhang P., Chiba Y., et al. (2019). Perlecan regulates pericyte dynamics in the maintenance and repair of the blood-brain barrier. J. Cell. Biol. 218 3506–3525. 10.1083/jcb.201807178 PubMed DOI PMC
Neiiendam J. L., Kohler L. B., Christensen C., Li S., Pedersen M. V., Ditlevsen D. K., et al. (2004). An NCAM-derived FGF-receptor agonist, the FGL-peptide, induces neurite outgrowth and neuronal survival in primary rat neurons. J. Neurochem. 91 920–935. 10.1111/j.1471-4159.2004.02779.x PubMed DOI
Okada T., Suzuki H. (2020). The role of Tenascin-c in tissue injury and repair after stroke. Front. Immunol. 11:607587. 10.3389/fimmu.2020.607587 PubMed DOI PMC
Oohashi T., Hirakawa S., Bekku Y., Rauch U., Zimmermann D. R., Su W. D., et al. (2002). Bral1, a brain-specific link protein, colocalizing with the versican V2 isoform at the nodes of Ranvier in developing and adult mouse central nervous systems. Mol. Cell. Neurosci. 19 43–57. 10.1006/mcne.2001.1061 PubMed DOI
Parikshak N. N., Luo R., Zhang A., Won H., Lowe J. K., Chandran V., et al. (2013). Integrative functional genomic analyses implicate specific molecular pathways and circuits in autism. Cell 155 1008–1021. 10.1016/j.cell.2013.10.031 PubMed DOI PMC
Rauch U., Karthikeyan L., Maurel P., Margolis R. U., Margolis R. K. (1992). Cloning and primary structure of neurocan, a developmentally regulated, aggregating chondroitin sulfate proteoglycan of brain. J. Biol. Chem. 267 19536–19547. PubMed
Raulo E., Chernousov M. A., Carey D. J., Nolo R., Rauvala H. (1994). Isolation of a neuronal cell surface receptor of heparin binding growth-associated molecule (HB-GAM). Identification as N-syndecan (syndecan-3). J. Biol. Chem. 269 12999–13004. PubMed
Reed M. J., Damodarasamy M., Pathan J. L., Erickson M. A., Banks W. A., Vernon R. B. (2018). The effects of normal aging on regional accumulation of hyaluronan and chondroitin sulfate proteoglycans in the mouse brain. J. Histochem. Cytochem. 66 697–707. 10.1369/0022155418774779 PubMed DOI PMC
Resnick S. M., Pham D. L., Kraut M. A., Zonderman A. B., Davatzikos C. (2003). Longitudinal magnetic resonance imaging studies of older adults: A shrinking brain. J. Neurosci. 23 3295–3301. 10.1523/jneurosci.23-08-03295.2003 PubMed DOI PMC
Risau W., Lemmon V. (1988). Changes in the vascular extracellular matrix during embryonic vasculogenesis and angiogenesis. Dev. Biol. 125 441–450. 10.1016/0012-1606(88)90225-4 PubMed DOI
Roberts J., Kahle M. P., Bix G. J. (2012). Perlecan and the blood-brain barrier: Beneficial proteolysis? Front. Pharmacol. 3:155. 10.3389/fphar.2012.00155 PubMed DOI PMC
Rodriguez J. J., Yeh C. Y., Terzieva S., Olabarria M., Kulijewicz-Nawrot M., Verkhratsky A. (2014). Complex and region-specific changes in astroglial markers in the aging brain. Neurobiol. Aging 35 15–23. 10.1016/j.neurobiolaging.2013.07.002 PubMed DOI
Rosenberg G. A. (2002). Matrix metalloproteinases in neuroinflammation. Glia 39 279–291. 10.1002/glia.10108 PubMed DOI
Rosenberg G. A., Estrada E. Y., Dencoff J. E. (1998). Matrix metalloproteinases and TIMPs are associated with blood-brain barrier opening after reperfusion in rat brain. Stroke 29 2189–2195. 10.1161/01.str.29.10.2189 PubMed DOI
Rosenberg G. A., Navratil M., Barone F., Feuerstein G. (1996). Proteolytic cascade enzymes increase in focal cerebral ischemia in rat. J. Cereb. Blood Flow Metab. 16 360–366. 10.1097/00004647-199605000-00002 PubMed DOI
Sato S., Omori Y., Katoh K., Kondo M., Kanagawa M., Miyata K., et al. (2008). Pikachurin, a dystroglycan ligand, is essential for photoreceptor ribbon synapse formation. Nat. Neurosci. 11 923–931. 10.1038/nn.2160 PubMed DOI
Schiffer D., Mellai M., Boldorini R., Bisogno I., Grifoni S., Corona C., et al. (2018). The Significance of chondroitin sulfate proteoglycan 4 (CSPG4) in human gliomas. Int. J. Mol. Sci. 19:2724. 10.3390/ijms19092724 PubMed DOI PMC
Schmidt S., Arendt T., Morawski M., Sonntag M. (2020). Neurocan contributes to perineuronal net development. Neuroscience 442 69–86. 10.1016/j.neuroscience.2020.06.040 PubMed DOI
Schwarzacher S. W., Vuksic M., Haas C. A., Burbach G. J., Sloviter R. S., Deller T. (2006). Neuronal hyperactivity induces astrocytic expression of neurocan in the adult rat hippocampus. Glia 53 704–714. 10.1002/glia.20329 PubMed DOI
Shen Y. F., Tang Y., Zhang X. J., Huang K. X., Le W. D. (2013). Adaptive changes in autophagy after UPS impairment in Parkinson’s disease. Acta Pharmacol. Sin. 34 667–673. 10.1038/aps.2012.203 PubMed DOI PMC
Smith G. M., Strunz C. (2005). Growth factor and cytokine regulation of chondroitin sulfate proteoglycans by astrocytes. Glia 52 209–218. 10.1002/glia.20236 PubMed DOI
Song I., Dityatev A. (2018). Crosstalk between glia, extracellular matrix and neurons. Brain Res. Bull. 136 101–108. 10.1016/j.brainresbull.2017.03.003 PubMed DOI
Spicer A. P., Joo A., Bowling R. A. (2003). A hyaluronan binding link protein gene family whose members are physically linked adjacent to chrondroitin sulfate proteoglycan core protein genes - The missing links. J. Biol. Chem. 278 21083–21091. 10.1074/jbc.M213100200 PubMed DOI
Stepp M. A., Gibson H. E., Gala P. H., Iglesia D. D., Pajoohesh-Ganji A., Pal-Ghosh S., et al. (2002). Defects in keratinocyte activation during wound healing in the syndecan-1-deficient mouse. J. Cell. Sci. 115(Pt 23) 4517–4531. 10.1242/jcs.00128 PubMed DOI
Strand S. H., Orntoft T. F., Sorensen K. D. (2014). Prognostic DNA methylation markers for prostate cancer. Int. J. Mol. Sci. 15 16544–16576. 10.3390/ijms150916544 PubMed DOI PMC
Sucha P., Chmelova M., Kamenicka M., Bochin M., Oohashi T., Vargova L. (2020). The effect of Hapln4 link protein deficiency on extracellular space diffusion parameters and perineuronal nets in the auditory system during aging. Neurochem. Res. 45 68–82. 10.1007/s11064-019-02894-2 PubMed DOI
Sullivan M. M., Barker T. H., Funk S. E., Karchin A., Seo N. S., Hook M., et al. (2006). Matricellular hevin regulates decorin production and collagen assembly. J. Biol. Chem. 281 27621–27632. 10.1074/jbc.M510507200 PubMed DOI
Susuki K., Chang K. J., Zollinger D. R., Liu Y., Ogawa Y., Eshed-Eisenbach Y., et al. (2013). Three mechanisms assemble central nervous system nodes of Ranvier. Neuron 78 469–482. 10.1016/j.neuron.2013.03.005 PubMed DOI PMC
Suttkus A., Rohn S., Weigel S., Glockner P., Arendt T., Morawski M. (2014). Aggrecan, link protein and tenascin-R are essential components of the perineuronal net to protect neurons against iron-induced oxidative stress. Cell Death Dis. 5:e1119. 10.1038/cddis.2014.25 PubMed DOI PMC
Suzuki H., Nishikawa H., Kawakita F. (2018). Matricellular proteins as possible biomarkers for early brain injury after aneurysmal subarachnoid hemorrhage. Neural Regen. Res. 13 1175–1178. 10.4103/1673-5374.235022 PubMed DOI PMC
Syková E., Mazel T., Hasenöhrl R. U., Harvey A. R., Simonová Z., Mulders W. H., et al. (2002). Learning deficits in aged rats related to decrease in extracellular volume and loss of diffusion anisotropy in hippocampus. Hippocampus 12 269–279. 10.1002/hipo.1101 PubMed DOI
Takahashi H., Matsumoto H., Kumon Y., Ohnishi T., Freeman C., Imai Y., et al. (2007). Expression of heparanase in nestin-positive reactive astrocytes in ischemic lesions of rat brain after transient middle cerebral artery occlusion. Neurosci. Lett. 417 250–254. 10.1016/j.neulet.2007.02.075 PubMed DOI
Tamburini E., Dallatomasina A., Quartararo J., Cortelazzi B., Mangieri D., Lazzaretti M., et al. (2019). Structural deciphering of the NG2/CSPG4 proteoglycan multifunctionality. FASEB J. 33 3112–3128. 10.1096/fj.201801670R PubMed DOI
Tate C. C., Tate M. C., LaPlaca M. C. (2007b). Fibronectin and laminin increase in the mouse brain after controlled cortical impact injury. J. Neurotrauma 24 226–230. 10.1089/neu.2006.0043 PubMed DOI
Tate C. C., Garcia A. J., LaPlaca M. C. (2007a). Plasma fibronectin is neuroprotective following traumatic brain injury. Exp. Neurol. 207 13–22. 10.1016/j.expneurol.2007.05.008 PubMed DOI
Taylor R. A., Sansing L. H. (2013). Microglial responses after ischemic stroke and intracerebral hemorrhage. Clin. Dev. Immunol. 2013:746068. 10.1155/2013/746068 PubMed DOI PMC
Tewari B. P., Chaunsali L., Prim C. E., Sontheimer H. (2022). A glial perspective on the extracellular matrix and perineuronal net remodeling in the central nervous system. Front. Cell Neurosci. 16:1022754. 10.3389/fncel.2022.1022754 PubMed DOI PMC
Theocharis A. D., Skandalis S. S., Gialeli C., Karamanos N. K. (2016). Extracellular matrix structure. Adv. Drug Deliv. Rev. 97 4–27. 10.1016/j.addr.2015.11.001 PubMed DOI
Tsuda M., Toyomitsu E., Komatsu T., Masuda T., Kunifusa E., Nasu-Tada K., et al. (2008). Fibronectin/integrin system is involved in P2X(4) receptor upregulation in the spinal cord and neuropathic pain after nerve injury. Glia 56 579–585. 10.1002/glia.20641 PubMed DOI
Tuo Q. Z., Lei P., Jackman K. A., Li X. L., Xiong H., Li X. L., et al. (2017). Tau-mediated iron export prevents ferroptotic damage after ischemic stroke. Mol. Psychiatry 22 1520–1530. 10.1038/mp.2017.171 PubMed DOI
Tyanova S., Temu T., Sinitcyn P., Carlson A., Hein M. Y., Geiger T., et al. (2016). The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13 731–740. 10.1038/nmeth.3901 PubMed DOI
Vafadari B., Salamian A., Kaczmarek L. (2016). MMP-9 in translation: From molecule to brain physiology, pathology, and therapy. J. Neurochem. 139 91–114. 10.1111/jnc.13415 PubMed DOI
Venstrom K. A., Reichardt L. F. (1993). Extracellular matrix. 2: Role of extracellular matrix molecules and their receptors in the nervous system. FASEB J. 7 996–1003. 10.1096/fasebj.7.11.8370483 PubMed DOI
Vigano F., Dimou L. (2016). The heterogeneous nature of NG2-glia. Brain Res. 1638(Pt B) 129–137. 10.1016/j.brainres.2015.09.012 PubMed DOI
Wang M. Y., Huang M., Wang C. Y., Tang X. Y., Wang J. G., Yang Y. D., et al. (2021). Transcriptome analysis reveals MFGE8-HAPLN3 fusion as a novel biomarker in triple-negative breast cancer. Front. Oncol. 11:682021. 10.3389/fonc.2021.682021 PubMed DOI PMC
Wang Q., Wang C., Ji B., Zhou J., Yang C., Chen J. (2019). Hapln2 in neurological diseases and its potential as therapeutic target. Front. Aging Neurosci. 11:60. 10.3389/fnagi.2019.00060 PubMed DOI PMC
Wei R., Wang J., Su M., Jia E., Chen S., Chen T., et al. (2018). Missing value imputation approach for mass spectrometry-based metabolomics data. Sci. Rep. 8:663. 10.1038/s41598-017-19120-0 PubMed DOI PMC
Woods A., Couchman J. R. (2001). Syndecan-4 and focal adhesion function. Curr. Opin. Cell. Biol. 13 578–583. 10.1016/s0955-0674(00)00254-4 PubMed DOI
Yepes M., Sandkvist M., Wong M. K., Coleman T. A., Smith E., Cohan S. L., et al. (2000). Neuroserpin reduces cerebral infarct volume and protects neurons from ischemia-induced apoptosis. Blood 96 569–576. PubMed
Zhou X. H., Brakebusch C., Matthies H., Oohashi T., Hirsch E., Moser M., et al. (2001). Neurocan is dispensable for brain development. Mol. Cell. Biol. 21 5970–5978. 10.1128/MCB.21.17.5970-5978.2001 PubMed DOI PMC