The Effect of Hapln4 Link Protein Deficiency on Extracellular Space Diffusion Parameters and Perineuronal Nets in the Auditory System During Aging
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
16-10214S
Grantová Agentura České Republiky
19H04754
Grant-in-Aid for Scientific Research on Innovative Areas
PubMed
31664654
DOI
10.1007/s11064-019-02894-2
PII: 10.1007/s11064-019-02894-2
Knihovny.cz E-zdroje
- Klíčová slova
- Aging, Diffusion, Extracellular matrix, Extracellular space, Hapln4,
- MeSH
- corpus trapezoideum metabolismus patologie MeSH
- difuze * MeSH
- extracelulární matrix - proteiny nedostatek MeSH
- extracelulární matrix metabolismus patologie MeSH
- extracelulární prostor metabolismus MeSH
- myši inbrední C57BL MeSH
- myši knockoutované MeSH
- myši MeSH
- nedostatek proteinů metabolismus patologie MeSH
- orgánové kultury - kultivační techniky MeSH
- periferní nervy metabolismus patologie MeSH
- proteiny nervové tkáně nedostatek MeSH
- sluchová dráha metabolismus patologie MeSH
- stárnutí metabolismus patologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- extracelulární matrix - proteiny MeSH
- Hapln4 protein, mouse MeSH Prohlížeč
- proteiny nervové tkáně MeSH
Hapln4 is a link protein which stabilizes the binding between lecticans and hyaluronan in perineuronal nets (PNNs) in specific brain regions, including the medial nucleus of the trapezoid body (MNTB). The aim of this study was: (1) to reveal possible age-related alterations in the extracellular matrix composition in the MNTB and inferior colliculus, which was devoid of Hapln4 and served as a negative control, (2) to determine the impact of the Hapln4 deletion on the values of the ECS diffusion parameters in young and aged animals and (3) to verify that PNNs moderate age-related changes in the ECS diffusion, and that Hapln4-brevican complex is indispensable for the correct protective function of the PNNs. To achieve this, we evaluated the ECS diffusion parameters using the real-time iontophoretic method in the selected region in young adult (3 to 6-months-old) and aged (12 to 18-months-old) wild type and Hapln4 knock-out (KO) mice. The results were correlated with an immunohistochemical analysis of the ECM composition and astrocyte morphology. We report that the ECM composition is altered in the aged MNTB and aging is a critical point, revealing the effect of Hapln4 deficiency on the ECS diffusion. All of our findings support the hypothesis that the ECM changes in the MNTB of aged KO animals affect the ECS parameters indirectly, via morphological changes of astrocytes, which are in direct contact with synapses and can be influenced by the ongoing synaptic transmission altered by shifts in the ECM composition.
Zobrazit více v PubMed
Trends Neurosci. 2010 Jun;33(6):259-66 PubMed
J Physiol. 1974 Apr;238(1):1-15 PubMed
IBRO Rep. 2016 Dec;1:54-60 PubMed
J Neurosci Res. 2018 Feb;96(2):313-327 PubMed
Brain. 2010 Aug;133(Pt 8):2331-47 PubMed
J Neurosci. 2006 Apr 19;26(16):4406-14 PubMed
Aging (Albany NY). 2017 Jun 28;9(6):1607-1622 PubMed
Cell Mol Life Sci. 2004 Aug;61(16):2031-45 PubMed
J Gen Physiol. 2010 Jun;135(6):583-94 PubMed
Philos Trans R Soc Lond B Biol Sci. 2014 Oct 19;369(1654):20140046 PubMed
Eur J Neurosci. 2008 Mar;27(6):1373-90 PubMed
Neuroscience. 1999;92(3):791-805 PubMed
PLoS One. 2011 Jan 31;6(1):e16666 PubMed
Proc Natl Acad Sci U S A. 1997 Sep 16;94(19):10116-21 PubMed
PLoS One. 2013 Jul 05;8(7):e68044 PubMed
J Neurochem. 2018 Dec;147(6):748-763 PubMed
Hum Brain Mapp. 2005 Aug;25(4):391-401 PubMed
J Biol Chem. 2003 Oct 17;278(42):41205-12 PubMed
Neuropathol Appl Neurobiol. 2004 Aug;30(4):338-50 PubMed
J Neurosci Methods. 1993 Jul;48(3):199-213 PubMed
J Biol Chem. 2003 Jun 6;278(23):21083-91 PubMed
Exp Gerontol. 1998 Nov-Dec;33(7-8):837-51 PubMed
Pflugers Arch. 2004 May;448(2):248-58 PubMed
Front Neural Circuits. 2014 Jul 29;8:83 PubMed
J Physiol. 1981 Dec;321:225-57 PubMed
J Physiol. 2015 Oct 1;593(19):4341-60 PubMed
Eur J Neurosci. 2005 Oct;22(8):1873-80 PubMed
J Neurocytol. 1983 Aug;12(4):697-712 PubMed
Hear Res. 2015 Nov;329:21-32 PubMed
Eur J Neurosci. 2012 Jul;36(1):2017-24 PubMed
PLoS One. 2014 Nov 26;9(11):e113444 PubMed
Physiol Res. 2017 Nov 24;66(5):867-880 PubMed
Glia. 1999 Oct;28(1):40-8 PubMed
Neuroscience. 2016 May 26;323:170-82 PubMed
Front Neuroanat. 2014 Jan 08;7:53 PubMed
J Comp Neurol. 2006 Feb 1;494(4):559-77 PubMed
Physiol Rev. 2008 Oct;88(4):1277-340 PubMed
Acta Neuropathol. 2013 Feb;125(2):215-29 PubMed
Mol Cell Neurosci. 2003 Sep;24(1):148-59 PubMed
J Neurophysiol. 1993 Nov;70(5):2035-44 PubMed
J Comp Neurol. 2012 Jun 1;520(8):1721-36 PubMed
Pharmacol Ther. 2013 Sep;139(3):313-26 PubMed
Adv Exp Med Biol. 2015;821:11-7 PubMed
J Biol Chem. 2006 Jun 30;281(26):17789-800 PubMed
Cell Tissue Res. 2006 Nov;326(2):311-37 PubMed
Nat Rev Neurosci. 2019 Aug;20(8):451-465 PubMed
Exp Neurol. 2015 Dec;274(Pt B):134-44 PubMed
eNeuro. 2018 Nov 14;5(5): PubMed
Hear Res. 2018 Sep;367:32-47 PubMed
Mol Neurobiol. 2016 Jan;53(1):73-82 PubMed
J Neurochem. 2010 Sep 1;114(5):1447-59 PubMed
J Neurosci. 2010 Feb 24;30(8):3113-23 PubMed
Hippocampus. 2002;12(2):269-79 PubMed
ALS-like pathology diminishes swelling of spinal astrocytes in the SOD1 animal model
A view of the genetic and proteomic profile of extracellular matrix molecules in aging and stroke