Assessment of Possible Contributions of Hyaluronan and Proteoglycan Binding Link Protein 4 to Differential Perineuronal Net Formation at the Calyx of Held

. 2021 ; 9 () : 730550. [epub] 20210917

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34604231

The calyx of Held is a giant nerve terminal mediating high-frequency excitatory input to principal cells of the medial nucleus of the trapezoid body (MNTB). MNTB principal neurons are enwrapped by densely organized extracellular matrix structures, known as perineuronal nets (PNNs). Emerging evidence indicates the importance of PNNs in synaptic transmission at the calyx of Held. Previously, a unique differential expression of aggrecan and brevican has been reported at this calyceal synapse. However, the role of hyaluronan and proteoglycan binding link proteins (HAPLNs) in PNN formation and synaptic transmission at this synapse remains elusive. This study aimed to assess immunohistochemical evidence for the effect of HAPLN4 on differential PNN formation at the calyx of Held. Genetic deletion of Hapln4 exhibited a clear ectopic shift of brevican localization from the perisynaptic space between the calyx of Held terminals and principal neurons to the neuropil surrounding the whole calyx of Held terminals. In contrast, aggrecan expression showed a consistent localization at the surrounding neuropil, together with HAPLN1 and tenascin-R, in both gene knockout (KO) and wild-type (WT) mice. An in situ proximity ligation assay demonstrated the molecular association of brevican with HAPLN4 in WT and HAPLN1 in gene KO mice. Further elucidation of the roles of HAPLN4 may highlight the developmental and physiological importance of PNN formation in the calyx of Held.

Zobrazit více v PubMed

Aspberg A. (2012). The different roles of aggrecan interaction domains. J. Histochem. Cytochem. 60 987–996. 10.1369/0022155412464376 PubMed DOI PMC

Balmer T. S. (2016). Perineuronal nets enhance the excitability of fast-spiking neurons. eNeuro 3:ENEURO.0112-16.2016. 10.1523/ENEURO.0112-16.2016 PubMed DOI PMC

Bekku Y., Saito M., Moser M., Fuchigami M., Maehara A., Nakayama M., et al. (2012). Bral2 is indispensable for the proper localization of brevican and the structural integrity of the perineuronal net in the brainstem and cerebellum. J. Comp. Neurol. 520 1721–1736. 10.1002/cne.23009 PubMed DOI

Bekku Y., Su W. D., Hirakawa S., Fässler R., Ohtsuka A., Kang J. S., et al. (2003). Molecular cloning of Bral2, a novel brain-specific link protein, and immunohistochemical colocalization with brevican in perineuronal nets. Mol. Cell. Neurosci. 24 148–159. 10.1016/s1044-7431(03)00133-7 PubMed DOI

Bekku Y., Vargová L., Goto Y., Vorísek I., Dmytrenko L., Narasaki M., et al. (2010). Bral1: its role in diffusion barrier formation and conduction velocity in the CNS. J. Neurosci. 30 3113–3123. 10.1523/jneurosci.5598-09.2010 PubMed DOI PMC

Blosa M., Bursch C., Weigel S., Holzer M., Jäger C., Janke C., et al. (2016). Reorganization of synaptic connections and perineuronal nets in the deep cerebellar nuclei of purkinje cell degeneration mutant mice. Neural. Plast. 2016:2828536. 10.1155/2016/2828536 PubMed DOI PMC

Blosa M., Sonntag M., Brückner G., Jäger C., Seeger G., Matthews R. T., et al. (2013). Unique features of extracellular matrix in the mouse medial nucleus of trapezoid body–implications for physiological functions. Neuroscience 228 215–234. 10.1016/j.neuroscience.2012.10.003 PubMed DOI

Blosa M., Sonntag M., Jäger C., Weigel S., Seeger J., Frischknecht R., et al. (2015). The extracellular matrix molecule brevican is an integral component of the machinery mediating fast synaptic transmission at the calyx of Held. J. Physiol. 593 4341–4360. 10.1113/jp270849 PubMed DOI PMC

Borst J. G., Soria van Hoeve J. (2012). The calyx of Held synapse: from model synapse to auditory relay. Annu. Rev. Physiol. 74 199–224. 10.1146/annurev-physiol-020911-153236 PubMed DOI

Carulli D., Verhaagen J. (2021). An extracellular perspective on CNS maturation: perineuronal nets and the control of plasticity. Int. J. Mol. Sci. 22:2434. 10.3390/ijms22052434 PubMed DOI PMC

Carulli D., Pizzorusso T., Kwok J. C., Putignano E., Poli A., Forostyak S., et al. (2010). Animals lacking link protein have attenuated perineuronal nets and persistent plasticity. Brain 133 2331–2347. 10.1093/brain/awq145 PubMed DOI

Carulli D., Rhodes K. E., Fawcett J. W. (2007). Upregulation of aggrecan, link protein 1, and hyaluronan synthases during formation of perineuronal nets in the rat cerebellum. J. Comp. Neurol. 501 83–94. 10.1002/cne.21231 PubMed DOI

Cicanic M., Edamatsu M., Bekku Y., Vorisek I., Oohashi T., Vargova L. (2018). A deficiency of the link protein Bral2 affects the size of the extracellular space in the thalamus of aged mice. J. Neurosci. Res. 96 313–327. 10.1002/jnr.24136 PubMed DOI

Edamatsu M., Miyano R., Fujikawa A., Fujii F., Hori T., Sakaba T., et al. (2018). Hapln4/Bral2 is a selective regulator for formation and transmission of GABAergic synapses between Purkinje and deep cerebellar nuclei neurons. J. Neurochem. 147 748–763. 10.1111/jnc.14571 PubMed DOI

Fawcett J. W., Oohashi T., Pizzorusso T. (2019). The roles of perineuronal nets and the perinodal extracellular matrix in neuronal function. Nat. Rev. Neurosci. 20 451–465. 10.1038/s41583-019-0196-3 PubMed DOI

Gandal M. J., Zhang P., Hadjimichael E., Walker R. L., Chen C., Liu S., et al. (2018). Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science 362:eaat8127. 10.1126/science.aat8127 PubMed DOI PMC

Ji Y., Zhang X., Wang Z., Qin W., Liu H., Xue K., et al. (2021). Genes associated with gray matter volume alterations in schizophrenia. Neuroimage 225:117526. 10.1016/j.neuroimage.2020.117526 PubMed DOI

Joris P. X., Trussell L. O. (2018). The calyx of held: a hypothesis on the need for reliable timing in an intensity-difference encoder. Neuron 100 534–549. 10.1016/j.neuron.2018.10.026 PubMed DOI PMC

Kwok J. C., Carulli D., Fawcett J. W. (2010). In vitro modeling of perineuronal nets: hyaluronan synthase and link protein are necessary for their formation and integrity. J. Neurochem. 114 1447–1459. PubMed

Morawski M., Dityatev A., Hartlage-Rübsamen M., Blosa M., Holzer M., Flach K., et al. (2014). Tenascin-R promotes assembly of the extracellular matrix of perineuronal nets via clustering of aggrecan. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 369:20140046. 10.1098/rstb.2014.0046 PubMed DOI PMC

Mullins N., Forstner A. J., O’Connell K. S., Coombes B., Coleman J. R. I., Qiao Z., et al. (2021). Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. Nat. Genet. 53 817–829. PubMed PMC

Nakakubo Y., Abe S., Yoshida T., Takami C., Isa M., Wojcik S. M., et al. (2020). Vesicular glutamate transporter expression ensures high-fidelity synaptic transmission at the calyx of held synapses. Cell Rep. 32:108040. 10.1016/j.celrep.2020.108040 PubMed DOI

Oohashi T., Edamatsu M., Bekku Y., Carulli D. (2015). The hyaluronan and proteoglycan link proteins: organizers of the brain extracellular matrix and key molecules for neuronal function and plasticity. Exp. Neurol. 274 134–144. 10.1016/j.expneurol.2015.09.010 PubMed DOI

Popelář J., Díaz Gómez M., Lindovský J., Rybalko N., Burianová J., Oohashi T., et al. (2017). The absence of brain-specific link protein Bral2 in perineuronal nets hampers auditory temporal resolution and neural adaptation in mice. Physiol. Res. 66 867–880. 10.33549/physiolres.933605 PubMed DOI

Schizophrenia Working Group of the Psychiatric Genomics Consortium (2014). Biological insights from 108 schizophrenia-associated genetic loci. Nature 511 421–427. 10.1038/nature13595 PubMed DOI PMC

Schmidt S., Arendt T., Morawski M., Sonntag M. (2020). Neurocan contributes to perineuronal net development. Neuroscience. 442 69–86. 10.1016/j.neuroscience.2020.06.040 PubMed DOI

Sonntag M., Blosa M., Schmidt S., Rübsamen R., Morawski M. (2015). Perineuronal nets in the auditory system. Hear. Res. 329 21–32. 10.1016/j.heares.2014.12.012 PubMed DOI

Sonntag M., Englitz B., Typlt M., Rübsamen R. (2011). The calyx of Held develops adult-like dynamics and reliability by hearing onset in the mouse in vivo. J. Neurosci. 31 6699–6709. PubMed PMC

Sucha P., Chmelova M., Kamenicka M., Bochin M., Oohashi T., Vargova L. (2020). The effect of Hapln4 link protein deficiency on extracellular space diffusion parameters and perineuronal nets in the auditory system during aging. Neurochem. Res. 45 68–82. 10.1007/s11064-019-02894-2 PubMed DOI

Thon N., Haas C. A., Rauch U., Merten T., Fässler R., Frotscher M., et al. (2000). The chondroitin sulphate proteoglycan brevican is upregulated by astrocytes after entorhinal cortex lesions in adult rats. Eur. J. Neurosci. 12 2547–2558. 10.1046/j.1460-9568.2000.00109.x PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace