Altered astrocytic swelling in the cortex of α-syntrophin-negative GFAP/EGFP mice

. 2014 ; 9 (11) : e113444. [epub] 20141126

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25426721

Brain edema accompanying ischemic or traumatic brain injuries, originates from a disruption of ionic/neurotransmitter homeostasis that leads to accumulation of K(+) and glutamate in the extracellular space. Their increased uptake, predominantly provided by astrocytes, is associated with water influx via aquaporin-4 (AQP4). As the removal of perivascular AQP4 via the deletion of α-syntrophin was shown to delay edema formation and K(+) clearance, we aimed to elucidate the impact of α-syntrophin knockout on volume changes in individual astrocytes in situ evoked by pathological stimuli using three dimensional confocal morphometry and changes in the extracellular space volume fraction (α) in situ and in vivo in the mouse cortex employing the real-time iontophoretic method. RT-qPCR profiling was used to reveal possible differences in the expression of ion channels/transporters that participate in maintaining ionic/neurotransmitter homeostasis. To visualize individual astrocytes in mice lacking α-syntrophin we crossbred GFAP/EGFP mice, in which the astrocytes are labeled by the enhanced green fluorescent protein under the human glial fibrillary acidic protein promoter, with α-syntrophin knockout mice. Three-dimensional confocal morphometry revealed that α-syntrophin deletion results in significantly smaller astrocyte swelling when induced by severe hypoosmotic stress, oxygen glucose deprivation (OGD) or 50 mM K(+). As for the mild stimuli, such as mild hypoosmotic or hyperosmotic stress or 10 mM K(+), α-syntrophin deletion had no effect on astrocyte swelling. Similarly, evaluation of relative α changes showed a significantly smaller decrease in α-syntrophin knockout mice only during severe pathological conditions, but not during mild stimuli. In summary, the deletion of α-syntrophin markedly alters astrocyte swelling during severe hypoosmotic stress, OGD or high K(+).

Erratum v

PubMed

Zobrazit více v PubMed

Amiry-Moghaddam M, Otsuka T, Hurn PD, Traystman RJ, Haug FM, et al. (2003) An alpha-syntrophin-dependent pool of AQP4 in astroglial end-feet confers bidirectional water flow between blood and brain. Proc Natl Acad Sci U S A 100:2106–2111. PubMed PMC

Saadoun S, Papadopoulos MC (2010) Aquaporin-4 in brain and spinal cord oedema. Neuroscience 168:1036–1046. PubMed

Tait MJ, Saadoun S, Bell BA, Papadopoulos MC (2008) Water movements in the brain: role of aquaporins. Trends Neurosci 31:37–43. PubMed

Manley GT, Fujimura M, Ma T, Noshita N, Filiz F, et al. (2000) Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med 6:159–163. PubMed

Solenov E, Watanabe H, Manley GT, Verkman AS (2004) Sevenfold-reduced osmotic water permeability in primary astrocyte cultures from AQP-4-deficient mice, measured by a fluorescence quenching method. Am J Physiol Cell Physiol 286:C426–432. PubMed

Amiry-Moghaddam M, Frydenlund DS, Ottersen OP (2004) Anchoring of aquaporin-4 in brain: molecular mechanisms and implications for the physiology and pathophysiology of water transport. Neuroscience 129:999–1010. PubMed

Bragg AD, Amiry-Moghaddam M, Ottersen OP, Adams ME, Froehner SC (2006) Assembly of a perivascular astrocyte protein scaffold at the mammalian blood-brain barrier is dependent on alpha-syntrophin. Glia 53:879–890. PubMed

Neely JD, Amiry-Moghaddam M, Ottersen OP, Froehner SC, Agre P, et al. (2001) Syntrophin-dependent expression and localization of Aquaporin-4 water channel protein. Proc Natl Acad Sci U S A 98:14108–14113. PubMed PMC

Connors NC, Adams ME, Froehner SC, Kofuji P (2004) The potassium channel Kir4.1 associates with the dystrophin-glycoprotein complex via alpha-syntrophin in glia. J Biol Chem 279:28387–28392. PubMed

Amiry-Moghaddam M, Williamson A, Palomba M, Eid T, de Lanerolle NC, et al. (2003) Delayed K+ clearance associated with aquaporin-4 mislocalization: phenotypic defects in brains of alpha-syntrophin-null mice. Proc Natl Acad Sci U S A 100:13615–13620. PubMed PMC

Amiry-Moghaddam M, Xue R, Haug FM, Neely JD, Bhardwaj A, et al. (2004) Alpha-syntrophin deletion removes the perivascular but not endothelial pool of aquaporin-4 at the blood-brain barrier and delays the development of brain edema in an experimental model of acute hyponatremia. FASEB J 18:542–544. PubMed

Dmytrenko L, Cicanic M, Anderova M, Vorisek I, Ottersen OP, et al. (2013) The impact of alpha-syntrophin deletion on the changes in tissue structure and extracellular diffusion associated with cell swelling under physiological and pathological conditions. PLoS One 8:e68044. PubMed PMC

Alvestad S, Hammer J, Hoddevik EH, Skare O, Sonnewald U, et al. (2013) Mislocalization of AQP4 precedes chronic seizures in the kainate model of temporal lobe epilepsy. Epilepsy Res 105:30–41. PubMed

Binder DK, Nagelhus EA, Ottersen OP (2012) Aquaporin-4 and epilepsy. Glia 60:1203–1214. PubMed

Benesova J, Rusnakova V, Honsa P, Pivonkova H, Dzamba D, et al. (2012) Distinct expression/function of potassium and chloride channels contributes to the diverse volume regulation in cortical astrocytes of GFAP/EGFP mice. PLoS One 7:e29725. PubMed PMC

Nolte C, Matyash M, Pivneva T, Schipke CG, Ohlemeyer C, et al. (2001) GFAP promoter-controlled EGFP-expressing transgenic mice: a tool to visualize astrocytes and astrogliosis in living brain tissue. Glia 33:72–86. PubMed

Chvatal A, Anderova M, Kirchhoff F (2007) Three-dimensional confocal morphometry - a new approach for studying dynamic changes in cell morphology in brain slices. J Anat 210:671–683. PubMed PMC

Adams ME, Kramarcy N, Krall SP, Rossi SG, Rotundo RL, et al. (2000) Absence of alpha-syntrophin leads to structurally aberrant neuromuscular synapses deficient in utrophin. J Cell Biol 150:1385–1398. PubMed PMC

Benesova J, Hock M, Butenko O, Prajerova I, Anderova M, et al. (2009) Quantification of astrocyte volume changes during ischemia in situ reveals two populations of astrocytes in the cortex of GFAP/EGFP mice. J Neurosci Res 87:96–111. PubMed

Vorisek I, Sykova E (1997) Ischemia-induced changes in the extracellular space diffusion parameters, K+, and pH in the developing rat cortex and corpus callosum. J Cereb Blood Flow Metab 17:191–203. PubMed

Sykova E (1992) Ion-selective electrodes. In: York SJN, editor Monitoring neuronal activity: a practical approach: Oxford Univ Press. pp. 261–282

Nicholson C, Phillips JM (1981) Ion diffusion modified by tortuosity and volume fraction in the extracellular microenvironment of the rat cerebellum. J Physiol 321:225–257. PubMed PMC

Anderova M, Vorisek I, Pivonkova H, Benesova J, Vargova L, et al. (2011) Cell death/proliferation and alterations in glial morphology contribute to changes in diffusivity in the rat hippocampus after hypoxia-ischemia. J Cereb Blood Flow Metab 31:894–907. PubMed PMC

Chvatal A, Anderova M, Hock M, Prajerova I, Neprasova H, et al. (2007) Three-dimensional confocal morphometry reveals structural changes in astrocyte morphology in situ. J Neurosci Res 85:260–271. PubMed

Pivonkova H, Benesova J, Butenko O, Chvatal A, Anderova M (2010) Impact of global cerebral ischemia on K+ channel expression and membrane properties of glial cells in the rat hippocampus. Neurochem Int 57:783–794. PubMed

Matthias K, Kirchhoff F, Seifert G, Huttmann K, Matyash M, et al. (2003) Segregated expression of AMPA-type glutamate receptors and glutamate transporters defines distinct astrocyte populations in the mouse hippocampus. J Neurosci 23:1750–1758. PubMed PMC

Rusnakova V, Honsa P, Dzamba D, Stahlberg A, Kubista M, et al. (2013) Heterogeneity of astrocytes: from development to injury - single cell gene expression. PLoS One 8:e69734. PubMed PMC

Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250. PubMed

Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, et al. (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:RESEARCH0034. PubMed PMC

Takano T, He W, Han X, Wang F, Xu Q, et al. (2014) Rapid manifestation of reactive astrogliosis in acute hippocampal brain slices. Glia 62:78–95. PubMed PMC

Kimelberg HK, Goderie SK, Higman S, Pang S, Waniewski RA (1990) Swelling-induced release of glutamate, aspartate, and taurine from astrocyte cultures. J Neurosci 10:1583–1591. PubMed PMC

Pasantes-Morales H (1996) Volume regulation in brain cells: cellular and molecular mechanisms. Metab Brain Dis 11:187–204. PubMed

Vargova L, Chvatal A, Anderova M, Kubinova S, Ziak D, et al. (2001) Effect of osmotic stress on potassium accumulation around glial cells and extracellular space volume in rat spinal cord slices. J Neurosci Res 65:129–138. PubMed

Lindinger MI, Leung M, Trajcevski KE, Hawke TJ (2011) Volume regulation in mammalian skeletal muscle: the role of sodium-potassium-chloride cotransporters during exposure to hypertonic solutions. J Physiol 589:2887–2899. PubMed PMC

Ross SB, Fuller CM, Bubien JK, Benos DJ (2007) Amiloride-sensitive Na+ channels contribute to regulatory volume increases in human glioma cells. Am J Physiol Cell Physiol 293:C1181–1185. PubMed

Song D, Xu J, Hertz L, Peng L (2014) Regulatory volume increase in astrocytes exposed to hypertonic medium requires beta -adrenergic Na/K -ATPase stimulation and glycogenolysis. J Neurosci Res. PubMed

Moody WJ, Futamachi KJ, Prince DA (1974) Extracellular potassium activity during epileptogenesis. Exp Neurol 42:248–263. PubMed

Zoremba N, Homola A, Slais K, Vorisek I, Rossaint R, et al. (2008) Extracellular diffusion parameters in the rat somatosensory cortex during recovery from transient global ischemia/hypoxia. J Cereb Blood Flow Metab 28:1665–1673. PubMed

Frydenlund DS, Bhardwaj A, Otsuka T, Mylonakou MN, Yasumura T, et al. (2006) Temporary loss of perivascular aquaporin-4 in neocortex after transient middle cerebral artery occlusion in mice. Proc Natl Acad Sci U S A 103:13532–13536. PubMed PMC

Zeynalov E, Chen CH, Froehner SC, Adams ME, Ottersen OP, et al. (2008) The perivascular pool of aquaporin-4 mediates the effect of osmotherapy in postischemic cerebral edema. Crit Care Med 36:2634–2640. PubMed PMC

Ransom CB, Ransom BR, Sontheimer H (2000) Activity-dependent extracellular K+ accumulation in rat optic nerve: the role of glial and axonal Na+ pumps. J Physiol 522 Pt 3:427–442. PubMed PMC

Heinemann U, Lux HD (1977) Ceiling of stimulus induced rises in extracellular potassium concentration in the cerebral cortex of cat. Brain Res 120:231–249. PubMed

Walz W (2000) Role of astrocytes in the clearance of excess extracellular potassium. Neurochem Int 36:291–300. PubMed

MacAulay N, Hamann S, Zeuthen T (2004) Water transport in the brain: role of cotransporters. Neuroscience 129:1031–1044. PubMed

Florence CM, Baillie LD, Mulligan SJ (2012) Dynamic volume changes in astrocytes are an intrinsic phenomenon mediated by bicarbonate ion flux. PLoS One 7:e51124. PubMed PMC

McManus ML, Soriano SG (1998) Rebound swelling of astroglial cells exposed to hypertonic mannitol. Anesthesiology 88:1586–1591. PubMed

Binder DK, Yao X, Zador Z, Sick TJ, Verkman AS, et al. (2006) Increased seizure duration and slowed potassium kinetics in mice lacking aquaporin-4 water channels. Glia 53:631–636. PubMed

Potokar M, Stenovec M, Jorgacevski J, Holen T, Kreft M, et al. (2013) Regulation of AQP4 surface expression via vesicle mobility in astrocytes. Glia 61:917–928. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...