The deletion of AQP4 and TRPV4 affects astrocyte swelling/volume recovery in response to ischemia-mimicking pathologies
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38818517
PubMed Central
PMC11138210
DOI
10.3389/fncel.2024.1393751
Knihovny.cz E-zdroje
- Klíčová slova
- aquaporin 4, astrocytes, brain edema, ischemia, transient receptor potential vanilloid 4,
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: Astrocytic Transient receptor potential vanilloid 4 (TRPV4) channels, together with Aquaporin 4 (AQP4), are suspected to be the key players in cellular volume regulation, and therefore may affect the development and severity of cerebral edema during ischemia. In this study, we examined astrocytic swelling/volume recovery in mice with TRPV4 and/or AQP4 deletion in response to in vitro ischemic conditions, to determine how the deletion of these channels can affect the development of cerebral edema. METHODS: We used three models of ischemia-related pathological conditions: hypoosmotic stress, hyperkalemia, and oxygenglucose deprivation (OGD), and observed their effect on astrocyte volume changes in acute brain slices of Aqp4-/-, Trpv4-/- and double knockouts. In addition, we employed single-cell RT-qPCR to assess the effect of TRPV4 and AQP4 deletion on the expression of other ion channels and transporters involved in the homeostatic functioning of astrocytes. RESULTS: Quantification of astrocyte volume changes during OGD revealed that the deletion of AQP4 reduces astrocyte swelling, while simultaneous deletion of both AQP4 and TRPV4 leads to a disruption of astrocyte volume recovery during the subsequent washout. Of note, astrocyte exposure to hypoosmotic stress or hyperkalemia revealed no differences in astrocyte swelling in the absence of AQP4, TRPV4, or both channels. Moreover, under ischemia-mimicking conditions, we identified two distinct subpopulations of astrocytes with low and high volumetric responses (LRA and HRA), and their analyses revealed that mainly HRA are affected by the deletion of AQP4, TRPV4, or both channels. Furthermore, gene expression analysis revealed reduced expression of the ion transporters KCC1 and ClC2 as well as the receptors GABAB and NMDA in Trpv4-/- mice. The deletion of AQP4 instead caused reduced expression of the serine/cysteine peptidase inhibitor Serpina3n. DISCUSSION: Thus, we showed that in AQP4 or TRPV4 knockouts, not only the specific function of these channels is affected, but also the expression of other proteins, which may modulate the ischemic cascade and thus influence the final impact of ischemia.
2nd Faculty of Medicine Charles University Prague Czechia
Department of Cellular Neurophysiology Institute of Experimental Medicine CAS Prague Czechia
Laboratory of Gene Expression Institute of Biotechnology CAS Vestec Czechia
Zobrazit více v PubMed
Amiry-Moghaddam M., Otsuka T., Hurn P. D., Traystman R. J., Haug F. M., Froehner S. C., et al. (2003). An alpha-syntrophin-dependent pool of AQP4 in astroglial end-feet confers bidirectional water flow between blood and brain. Proc. Natl. Acad. Sci. U.S.A. 100 2106–2111. 10.1073/pnas.0437946100 PubMed DOI PMC
Anderova M., Benesova J., Mikesova M., Dzamba D., Honsa P., Kriska J., et al. (2014). Altered astrocytic swelling in the cortex of α-syntrophin-negative GFAP/EGFP mice. PLoS One 9:e113444. 10.1371/journal.pone.0113444 PubMed DOI PMC
Awadová T., Pivoňková H., Heřmanová Z., Kirdajová D., Anděrová M., Malínský J. (2018). Cell volume changes as revealed by fluorescence microscopy: Global vs local approaches. J. Neurosci. Methods 306 38–44. 10.1016/j.jneumeth.2018.05.026 PubMed DOI
Barile B., Mola M. G., Formaggio F., Saracino E., Cibelli A., Gargano C. D., et al. (2023). AQP4-independent TRPV4 modulation of plasma membrane water permeability. Front. Cell Neurosci. 17:1247761. 10.3389/fncel.2023.1247761 PubMed DOI PMC
Bender A. S., Schousboe A., Reichelt W., Norenberg M. D. (1998). Ionic mechanisms in glutamate-induced astrocyte swelling: Role of K+ influx. J. Neurosci. Res. 52 307–321. 10.1002/(SICI)1097-4547(19980501)52:3<307::AID-JNR7<3.0.CO;2-H PubMed DOI
Benesova J., Hock M., Butenko O., Prajerova I., Anderova M., Chvatal A. (2009). Quantification of astrocyte volume changes during ischemia in situ reveals two populations of astrocytes in the cortex of GFAP/EGFP mice. J. Neurosci. Res. 87 96–111. 10.1002/jnr.21828 PubMed DOI
Benesova J., Rusnakova V., Honsa P., Pivonkova H., Dzamba D., Kubista M., et al. (2012). Distinct expression/function of potassium and chloride channels contributes to the diverse volume regulation in cortical astrocytes of GFAP/EGFP mice. PLoS One 7:e29725. 10.1371/journal.pone.0029725 PubMed DOI PMC
Benfenati V., Caprini M., Dovizio M., Mylonakou M. N., Ferroni S., Ottersen O. P., et al. (2011). An aquaporin-4/transient receptor potential vanilloid 4 (AQP4/TRPV4) complex is essential for cell-volume control in astrocytes. Proc. Natl. Acad. Sci. U.S.A. 108 2563–2568. 10.1073/pnas.1012867108 PubMed DOI PMC
Brouwer I., Lenstra T. L. (2019). Visualizing transcription: Key to understanding gene expression dynamics. Curr. Opin. Chem. Biol. 51 122–129. 10.1016/j.cbpa.2019.05.031 PubMed DOI
Chan P. H., Chu L. (1990). Mechanisms underlying glutamate-induced swelling of astrocytes in primary culture. Acta Neurochir. Suppl. 51 7–10. 10.1007/978-3-7091-9115-6_3 PubMed DOI
Chan P. H., Chu L., Chen S. (1990). Effects of MK-801 on glutamate-induced swelling of astrocytes in primary cell culture. J. Neurosci. Res. 25 87–93. 10.1002/jnr.490250111 PubMed DOI
Charles K. J., Deuchars J., Davies C. H., Pangalos M. N. (2003). GABA B receptor subunit expression in glia. Mol. Cell Neurosci. 24 214–223. 10.1016/s1044-7431(03)00162-3 PubMed DOI
Chmelova M., Sucha P., Bochin M., Vorisek I., Pivonkova H., Hermanova Z., et al. (2019). The role of aquaporin-4 and transient receptor potential vaniloid isoform 4 channels in the development of cytotoxic edema and associated extracellular diffusion parameter changes. Eur. J. Neurosci. 50 1685–1699. 10.1111/ejn.14338 PubMed DOI
Dijkstra K., Hofmeijer J., van Gils S. A., van Putten M. J. A. (2016). Biophysical model for cytotoxic cell swelling. J. Neurosci. 36 11881–11890. 10.1523/JNEUROSCI.1934-16.2016 PubMed DOI PMC
Dmytrenko L., Cicanic M., Anderova M., Vorisek I., Ottersen O. P., Sykova E., et al. (2013). The impact of alpha-syntrophin deletion on the changes in tissue structure and extracellular diffusion associated with cell swelling under physiological and pathological conditions. PLoS One 8:e68044. 10.1371/journal.pone.0068044 PubMed DOI PMC
Du Y., Wang W., Lutton A. D., Kiyoshi C. M., Ma B., Taylor A. T., et al. (2018). Dissipation of transmembrane potassium gradient is the main cause of cerebral ischemia-induced depolarization in astrocytes and neurons. Exp. Neurol. 303 1–11. 10.1016/j.expneurol.2018.01.019 PubMed DOI PMC
Ernest N. J., Weaver A. K., Van Duyn L. B., Sontheimer H. W. (2005). Relative contribution of chloride channels and transporters to regulatory volume decrease in human glioma cells. Am. J. Physiol. Cell Physiol. 288 C1451–C1460. 10.1152/ajpcell.00503.2004 PubMed DOI PMC
Everaerts K., Thapaliya P., Pape N., Durry S., Eitelmann S., Roussa E., et al. (2023). Inward operation of sodium-bicarbonate cotransporter 1 promotes astrocytic Na+ loading and loss of ATP in mouse neocortex during brief chemical ischemia. Cells 12:2675. 10.3390/cells12232675 PubMed DOI PMC
Filipi T., Hermanova Z., Tureckova J., Vanatko O., Anderova A. M. (2020). Glial cells-the strategic targets in amyotrophic lateral sclerosis treatment. J. Clin. Med. 9:261. 10.3390/jcm9010261 PubMed DOI PMC
Florence C. M., Baillie L. D., Mulligan S. J. (2012). Dynamic volume changes in astrocytes are an intrinsic phenomenon mediated by bicarbonate ion flux. PLoS One 7:e51124. 10.1371/journal.pone.0051124 PubMed DOI PMC
Formaggio F., Saracino E., Mola M. G., Rao S. B., Amiry-Moghaddam M., Muccini M., et al. (2019). LRRC8A is essential for swelling-activated chloride current and for regulatory volume decrease in astrocytes. FASEB J. 33 101–113. 10.1096/fj.201701397RR PubMed DOI
Habib N., McCabe C., Medina S., Varshavsky M., Kitsberg D., Dvir-Szternfeld R., et al. (2020). Disease-associated astrocytes in Alzheimer’s disease and aging. Nat. Neurosci. 23 701–706. 10.1038/s41593-020-0624-8 PubMed DOI PMC
Hafner A. S., Donlin-Asp P. G., Leitch B., Herzog E., Schuman E. M. (2019). Local protein synthesis is a ubiquitous feature of neuronal pre- and postsynaptic compartments. Science 364:eaau3644. 10.1126/science.aau3644 PubMed DOI
Hansson E. (1994). Metabotropic glutamate receptor activation induces astroglial swelling. J. Biol. Chem. 269 21955–21961. PubMed
Hirrlinger P. G., Wurm A., Hirrlinger J., Bringmann A., Reichenbach A. (2008). Osmotic swelling characteristics of glial cells in the murine hippocampus, cerebellum, and retina in situ. J. Neurochem. 105 1405–1417. 10.1111/j.1471-4159.2008.05243.x PubMed DOI
Hoshi Y., Okabe K., Shibasaki K., Funatsu T., Matsuki N., Ikegaya Y., et al. (2018). Ischemic brain injury leads to brain edema via hyperthermia-induced TRPV4 activation. J. Neurosci. 38 5700–5709. 10.1523/JNEUROSCI.2888-17.2018 PubMed DOI PMC
Ikeshima-Kataoka H., Abe Y., Abe T., Yasui M. (2013). Immunological function of aquaporin-4 in stab-wounded mouse brain in concert with a pro-inflammatory cytokine inducer, osteopontin. Mol. Cell Neurosci. 56 65–75. 10.1016/j.mcn.2013.02.002 PubMed DOI
Illarionova N. B., Gunnarson E., Li Y., Brismar H., Bondar A., Zelenin S., et al. (2010). Functional and molecular interactions between aquaporins and Na,K-ATPase. Neuroscience 168 915–925. 10.1016/j.neuroscience.2009.11.062 PubMed DOI
Ishibashi M., Egawa K., Fukuda A. (2019). Diverse actions of astrocytes in gabaergic signaling. Int. J. Mol. Sci. 20:2964. 10.3390/ijms20122964 PubMed DOI PMC
Iuso A., Križaj D. (2016). TRPV4-AQP4 interactions ‘turbocharge’ astroglial sensitivity to small osmotic gradients. Channels 10 172–174. 10.1080/19336950.2016.1140956 PubMed DOI PMC
Jayakumar A. R., Norenberg M. D. (2010). The Na-K-Cl Co-transporter in astrocyte swelling. Metab. Brain Dis. 25 31–38. 10.1007/s11011-010-9180-3 PubMed DOI
Jha R. M., Kochanek P. M., Simard J. M. (2019). Pathophysiology and treatment of cerebral edema in traumatic brain injury. Neuropharmacology 14 230–246. 10.1016/j.neuropharm.2018.08.004 PubMed DOI PMC
Jie P., Lu Z., Hong Z., Li L., Zhou L., Li Y., et al. (2016). Activation of transient receptor potential vanilloid 4 is involved in neuronal injury in middle cerebral artery occlusion in mice. Mol. Neurobiol. 53 8–17. 10.1007/s12035-014-8992-2 PubMed DOI
Jie P., Tian Y., Hong Z., Li L., Zhou L., Chen L., et al. (2015). Blockage of transient receptor potential vanilloid 4 inhibits brain edema in middle cerebral artery occlusion mice. Front. Cell Neurosci. 9:141. 10.3389/fncel.2015.00141 PubMed DOI PMC
Jo A. O., Ryskamp D. A., Phuong T. T., Verkman A. S., Yarishkin O., MacAulay N., et al. (2015). TRPV4 and AQP4 channels synergistically regulate cell volume and calcium homeostasis in retinal Müller glia. J. Neurosci. 35 13525–13537. 10.1523/JNEUROSCI.1987-15.2015 PubMed DOI PMC
Kimelberg H. K., MacVicar B. A., Sontheimer H. (2006). Anion channels in astrocytes: Biophysics, pharmacology, and function. Glia 54 747–757. 10.1002/glia.20423 PubMed DOI PMC
Kitchen P., Conner M. T., Bill R. M., Conner A. C. (2016). Structural determinants of oligomerization of the aquaporin-4 channel. J. Biol. Chem. 291 6858–6871. 10.1074/jbc.M115.694729 PubMed DOI PMC
Kitchen P., Salman M. M., Halsey A. M., Clarke-Bland C., MacDonald J. A., Ishida H., et al. (2020). Targeting aquaporin-4 subcellular localization to treat central nervous system edema. Cell 181:784–799.e19. 10.1016/j.cell.2020.03.037 PubMed DOI PMC
Köhler S., Winkler U., Sicker M., Hirrlinger J. (2018). NBCe1 mediates the regulation of the NADH/NAD+ redox state in cortical astrocytes by neuronal signals. Glia 66 2233–2245. 10.1002/glia.23504 PubMed DOI
Kolenicova D., Tureckova J., Pukajova B., Harantova L., Kriska J., Kirdajova D., et al. (2020). High potassium exposure reveals the altered ability of astrocytes to regulate their volume in the aged hippocampus of GFAP/EGFP mice. Neurobiol. Aging 86 162–181. 10.1016/j.neurobiolaging.2019.10.009 PubMed DOI
Lafrenaye A. D., Simard J. M. (2019). Bursting at the seams: Molecular mechanisms mediating astrocyte swelling. Int. J. Mol. Sci. 20:330. 10.3390/ijms20020330 PubMed DOI PMC
Larsen B. R., MacAulay N. (2017). Activity-dependent astrocyte swelling is mediated by pH-regulating mechanisms. Glia 65 1668–1681. 10.1002/glia.23187 PubMed DOI
Le H. T., Sin W. C., Lozinsky S., Bechberger J., Vega J. L., Guo X. Q., et al. (2014). Gap junction intercellular communication mediated by connexin43 in astrocytes is essential for their resistance to oxidative stress. J. Biol. Chem. 289 1345–1354. 10.1074/jbc.M113.508390 PubMed DOI PMC
Leis J. A., Bekar L. K., Walz W. (2005). Potassium homeostasis in the ischemic brain. Glia 50 407–416. 10.1002/glia.20145 PubMed DOI
Lenstra T. L., Rodriguez J., Chen H., Larson D. R. (2016). Transcription dynamics in living cells. Annu. Rev. Biophys. 45 25–47. 10.1146/annurev-biophys-062215-010838 PubMed DOI PMC
Leoni G., Rattray M., Butt A. M. (2009). NG2 cells differentiate into astrocytes in cerebellar slices. Mol. Cell Neurosci. 42 208–218. 10.1016/j.mcn.2009.07.007 PubMed DOI
Li L., Qu W., Zhou L., Lu Z., Jie P., Chen L., et al. (2013). Activation of transient receptor potential vanilloid 4 increases NMDA-activated current in hippocampal pyramidal neurons. Front. Cell Neurosci. 7:17. 10.3389/fncel.2013.00017 PubMed DOI PMC
Li S., Hu X., Zhang M., Zhou F., Lin N., Xia Q., et al. (2015). Remote ischemic post-conditioning improves neurological function by AQP4 down-regulation in astrocytes. Behav. Brain Res. 289 1–8. 10.1016/j.bbr.2015.04.024 PubMed DOI
Liedtke W., Friedman J. M. (2003). Abnormal osmotic regulation in trpv4-/- mice. Proc. Natl. Acad. Sci. U.S.A. 100 13698–13703. 10.1073/pnas.1735416100 PubMed DOI PMC
Lisjak M., Potokar M., Zorec R., Jorgačevski J. (2020). Indirect role of AQP4b and AQP4d isoforms in dynamics of astrocyte volume and orthogonal arrays of particles. Cells 9:735. 10.3390/cells9030735 PubMed DOI PMC
Liu C., Zhao X. M., Wang Q., Du T. T., Zhang M. X., Wang H. Z., et al. (2023). Astrocyte-derived SerpinA3N promotes neuroinflammation and epileptic seizures by activating the NF-κB signaling pathway in mice with temporal lobe epilepsy. J. Neuroinflamm. 20:161. 10.1186/s12974-023-02840-8 PubMed DOI PMC
Liu J., Feng X., Wang Y., Xia X., Zheng J. C. (2022). Astrocytes: GABAceptive and GABAergic cells in the brain. Front. Cell Neurosci. 16:892497. 10.3389/fncel.2022.892497 PubMed DOI PMC
Liu N., Yan F., Ma Q., Zhao J. (2020b). Modulation of TRPV4 and BKCa for treatment of brain diseases. Bioorg. Med. Chem. 28:115609. 10.1016/j.bmc.2020.115609 PubMed DOI
Liu N., Wu J., Chen Y., Zhao J. (2020a). Channels that cooperate with TRPV4 in the brain. J. Mol. Neurosci. 70 1812–1820. 10.1007/s12031-020-01574-z PubMed DOI
Liu S., Mao J., Wang T., Fu X. (2017). Downregulation of aquaporin-4 protects brain against hypoxia ischemia via anti-inflammatory mechanism. Mol. Neurobiol. 54 6426–6435. 10.1007/s12035-016-0185-8 PubMed DOI
Liu Y., Beyer A., Aebersold R. (2016). On the dependency of cellular protein levels on mRNA abundance. Cell 165 535–550. 10.1016/j.cell.2016.03.014 PubMed DOI
Macaulay N., Zeuthen T. (2012). Glial K+ clearance and cell swelling: Key roles for cotransporters and pumps. Neurochem. Res. 37 2299–2309. 10.1007/s11064-012-0731-3 PubMed DOI
Manley G. T., Binder D. K., Papadopoulos M. C., Verkman A. S. (2004). New insights into water transport and edema in the central nervous system from phenotype analysis of aquaporin-4 null mice. Neuroscience 129 983–991. 10.1016/j.neuroscience.2004.06.088 PubMed DOI
Manley G. T., Fujimura M., Ma T., Noshita N., Filiz F., Bollen A. W., et al. (2000). Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat. Med. 6 159–163. 10.1038/72256 PubMed DOI
Mola M. G., Sparaneo A., Gargano C. D., Spray D. C., Svelto M., Frigeri A., et al. (2016). The speed of swelling kinetics modulates cell volume regulation and calcium signaling in astrocytes: A different point of view on the role of aquaporins. Glia 64 139–154. 10.1002/glia.22921 PubMed DOI PMC
Murakami S., Kurachi Y. (2016). Mechanisms of astrocytic K(+) clearance and swelling under high extracellular K(+) concentrations. J. Physiol. Sci. 66 127–142. 10.1007/s12576-015-0404-5 PubMed DOI PMC
Murphy C. E., Kondo Y., Walker A. K., Rothmond D. A., Matsumoto M., Shannon Weickert C. (2020). Regional, cellular and species difference of two key neuroinflammatory genes implicated in schizophrenia. Brain Behav. Immun. 88 826–839. 10.1016/j.bbi.2020.05.055 PubMed DOI
Murphy T. R., Davila D., Cuvelier N., Young L. R., Lauderdale K., Binder D. K., et al. (2017). Hippocampal and cortical pyramidal neurons swell in parallel with astrocytes during acute hypoosmolar stress. Front. Cell Neurosci. 11:275. 10.3389/fncel.2017.00275 PubMed DOI PMC
Nase G., Helm P. J., Enger R., Ottersen O. P. (2008). Water entry into astrocytes during brain edema formation. Glia 56 895–902. PubMed
Neprasova H., Anderova M., Petrik D., Vargova L., Kubinova S., Chvatal A., et al. (2007). High extracellular K(+) evokes changes in voltage-dependent K(+) and Na (+) currents and volume regulation in astrocytes. Pflugers Arch. 453 839–849. 10.1007/s00424-006-0151-9 PubMed DOI
Nicchia G. P., Srinivas M., Li W., Brosnan C. F., Frigeri A., Spray D. C. (2005). New possible roles for aquaporin-4 in astrocytes: Cell cytoskeleton and functional relationship with connexin43. FASEB J. 19 1674–1676. 10.1096/fj.04-3281fje PubMed DOI
Nielsen S., Nagelhus E. A., Amiry-Moghaddam M., Bourque C., Agre P., Ottersen O. P. (1997). Specialized membrane domains for water transport in glial cells: High-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J. Neurosci. 17 171–180. 10.1523/JNEUROSCI.17-01-00171.1997 PubMed DOI PMC
Nolan T., Hands R. E., Bustin S. A. (2006). Quantification of mRNA using real-time RT-PCR. Nat. Protoc. 1 1559–1582. 10.1038/nprot.2006.236 PubMed DOI
Nolte C., Matyash M., Pivneva T., Schipke C. G., Ohlemeyer C., Hanisch U. K., et al. (2001). GFAP promoter-controlled EGFP-expressing transgenic mice: A tool to visualize astrocytes and astrogliosis in living brain tissue. Glia 33 72–86. PubMed
Okada Y., Okada T., Sato-Numata K., Islam M. R., Ando-Akatsuka Y., Numata T., et al. (2019). Cell volume-activated and volume-correlated anion channels in mammalian cells: Their biophysical, molecular, and pharmacological properties. Pharmacol. Rev. 71 49–88. 10.1124/pr.118.015917 PubMed DOI
Parkerson K. A., Sontheimer H. (2004). Biophysical and pharmacological characterization of hypotonically activated chloride currents in cortical astrocytes. Glia 46 419–436. 10.1002/glia.10361 PubMed DOI PMC
Pasantes-Morales H., Vázquez-Juárez E. (2012). Transporters and channels in cytotoxic astrocyte swelling. Neurochem. Res. 37 2379–2387. 10.1007/s11064-012-0777-2 PubMed DOI
Pivonkova H., Hermanova Z., Kirdajova D., Awadova T., Malinsky J., Valihrach L., et al. (2018). The contribution of TRPV4 channels to astrocyte volume regulation and brain edema formation. Neuroscience 394 127–143. 10.1016/j.neuroscience.2018.10.028 PubMed DOI
Przybyło M., Drabik D., Doskocz J., Iglič A., Langner M. (2021). The effect of the osmotically active compound concentration difference on the passive water and proton fluxes across a lipid bilayer. Int. J. Mol. Sci. 22:11099. 10.3390/ijms222011099 PubMed DOI PMC
Rash J. E., Yasumura T., Hudson C. S., Agre P., Nielsen S. (1998). Direct immunogold labeling of aquaporin-4 in square arrays of astrocyte and ependymocyte plasma membranes in rat brain and spinal cord. Proc. Natl. Acad. Sci. U.S.A. 95 11981–11986. 10.1073/pnas.95.20.11981 PubMed DOI PMC
Reinehr R., Görg B., Becker S., Qvartskhava N., Bidmon H. J., Selbach O., et al. (2007). Hypoosmotic swelling and ammonia increase oxidative stress by NADPH oxidase in cultured astrocytes and vital brain slices. Glia 55 758–771. 10.1002/glia.20504 PubMed DOI
Risher W. C., Andrew R. D., Kirov S. A. (2009). Real-time passive volume responses of astrocytes to acute osmotic and ischemic stress in cortical slices and in vivo revealed by two-photon microscopy. Glia 57 207–221. 10.1002/glia.20747 PubMed DOI PMC
Rosic B., Dukefoss D. B., Åbjørsbråten K. S., Tang W., Jensen V., Ottersen O. P., et al. (2019). Aquaporin-4-independent volume dynamics of astroglial endfeet during cortical spreading depression. Glia 67 1113–1121. 10.1002/glia.23604 PubMed DOI PMC
Rusnakova V., Honsa P., Dzamba D., Ståhlberg A., Kubista M., Anderova M. (2013). Heterogeneity of astrocytes: From development to injury - single cell gene expression. PLoS One 8:e69734. 10.1371/journal.pone.0069734 PubMed DOI PMC
Sakers K., Lake A. M., Khazanchi R., Ouwenga R., Vasek M. J., Dani A., et al. (2017). Astrocytes locally translate transcripts in their peripheral processes. Proc. Natl. Acad. Sci. U.S.A. 114 E3830–E3838. 10.1073/pnas.1617782114 PubMed DOI PMC
Salman M. M., Kitchen P., Woodroofe M. N., Brown J. E., Bill R. M., Conner A. C., et al. (2017). Hypothermia increases aquaporin 4 (AQP4) plasma membrane abundance in human primary cortical astrocytes via a calcium/transient receptor potential vanilloid 4 (TRPV4)- and calmodulin-mediated mechanism. Eur. J. Neurosci. 46 2542–2547. 10.1111/ejn.13723 PubMed DOI PMC
Scemes E., Spray D. C. (2012). Extracellular K+ and astrocyte signaling via connexin and pannexin channels. Neurochem. Res. 37 2310–2316. 10.1007/s11064-012-0759-4 PubMed DOI PMC
Shibasaki K. (2016). TRPV4 ion channel as important cell sensors. J. Anesth. 30 1014–1019. 10.1007/s00540-016-2225-y PubMed DOI
Shibasaki K., Sugio S., Takao K., Yamanaka A., Miyakawa T., Tominaga M., et al. (2015). TRPV4 activation at the physiological temperature is a critical determinant of neuronal excitability and behavior. Pflugers Arch. 467 2495–2507. 10.1007/s00424-015-1726-0 PubMed DOI
Shibasaki K., Suzuki M., Mizuno A., Tominaga M. (2007). Effects of body temperature on neural activity in the hippocampus: Regulation of resting membrane potentials by transient receptor potential vanilloid 4. J. Neurosci. 27 1566–1575. 10.1523/JNEUROSCI.4284-06.2007 PubMed DOI PMC
Simard J. M., Kent T. A., Chen M., Tarasov K. V., Gerzanich V. (2007). Brain oedema in focal ischaemia: Molecular pathophysiology and theoretical implications. Lancet Neurol. 6 258–268. 10.1016/S1474-4422(07)70055-8 PubMed DOI PMC
Sofroniew M. V., Vinters H. V. (2010). Astrocytes: Biology and pathology. Acta Neuropathol. 119 7–35. 10.1007/s00401-009-0619-8 PubMed DOI PMC
Song Y., Gunnarson E. (2012). Potassium dependent regulation of astrocyte water permeability is mediated by cAMP signaling. PLoS One 7:e34936. 10.1371/journal.pone.0034936 PubMed DOI PMC
Stokum J. A., Gerzanich V., Simard J. M. (2016). Molecular pathophysiology of cerebral edema. J. Cereb. Blood Flow Metab. 36 513–538. 10.1177/0271678X15617172 PubMed DOI PMC
Stokum J. A., Kurland D. B., Gerzanich V., Simard J. M. (2015). Mechanisms of astrocyte-mediated cerebral edema. Neurochem. Res. 40 317–328. 10.1007/s11064-014-1374-3 PubMed DOI PMC
Stokum J. A., Kwon M. S., Woo S. K., Tsymbalyuk O., Vennekens R., Gerzanich V., et al. (2018). SUR1-TRPM4 and AQP4 form a heteromultimeric complex that amplifies ion/water osmotic coupling and drives astrocyte swelling. Glia 66 108–125. 10.1002/glia.23231 PubMed DOI PMC
Strohschein S., Hüttmann K., Gabriel S., Binder D. K., Heinemann U., Steinhäuser C. (2011). Impact of aquaporin-4 channels on K+ buffering and gap junction coupling in the hippocampus. Glia 59 973–980. 10.1002/glia.21169 PubMed DOI
Sucha P., Hermanova Z., Chmelova M., Kirdajova D., Camacho Garcia S., Marchetti V., et al. (2022). The absence of AQP4/TRPV4 complex substantially reduces acute cytotoxic edema following ischemic injury. Front. Cell Neurosci. 16:1054919. 10.3389/fncel.2022.1054919 PubMed DOI PMC
Tait M. J., Saadoun S., Bell B. A., Verkman A. S., Papadopoulos M. C. (2010). Increased brain edema in aqp4-null mice in an experimental model of subarachnoid hemorrhage. Neuroscience 167 60–67. 10.1016/j.neuroscience.2010.01.053 PubMed DOI PMC
Takamiya A., Takeda M., Yoshida A., Kiyama H. (2002). Inflammation induces serine protease inhibitor 3 expression in the rat pineal gland. Neuroscience 113 387–394. 10.1016/s0306-4522(02)00198-7 PubMed DOI
Toft-Bertelsen T. L., Larsen B. R., MacAulay N. (2018). Sensing and regulation of cell volume - we know so much and yet understand so little: TRPV4 as a sensor of volume changes but possibly without a volume-regulatory role? Channels 12 100–108. 10.1080/19336950.2018.1438009 PubMed DOI PMC
Toft-Bertelsen T. L., Larsen B. R., Christensen S. K., Khandelia H., Waagepetersen H. S., MacAulay N. (2021). Clearance of activity-evoked K+ transients and associated glia cell swelling occur independently of AQP4: A study with an isoform-selective AQP4 inhibitor. Glia 69 28–41. 10.1002/glia.23851 PubMed DOI
Tureckova J., Hermanova Z., Marchetti V., Anderova M. (2023). Astrocytic TRPV4 Channels and Their Role in Brain Ischemia. Int. J. Mol. Sci. 24:7101. 10.3390/ijms24087101 PubMed DOI PMC
Turovsky E. A., Braga A., Yu Y., Esteras N., Korsak A., Theparambil S. M., et al. (2020). Mechanosensory signaling in astrocytes. J. Neurosci. 40 9364–9371. 10.1523/JNEUROSCI.1249-20.2020 PubMed DOI PMC
Valny M., Honsa P., Waloschkova E., Matuskova H., Kriska J., Kirdajova D., et al. (2018). A single-cell analysis reveals multiple roles of oligodendroglial lineage cells during post-ischemic regeneration. Glia 66 1068–1081. 10.1002/glia.23301 PubMed DOI
Vasile F., Dossi E., Rouach N. (2017). Human astrocytes: Structure and functions in the healthy brain. Brain Struct. Funct. 222 2017–2029. 10.1007/s00429-017-1383-5 PubMed DOI PMC
Vicuña L., Strochlic D. E., Latremoliere A., Bali K. K., Simonetti M., Husainie D., et al. (2015). The serine protease inhibitor SerpinA3N attenuates neuropathic pain by inhibiting T cell-derived leukocyte elastase. Nat. Med. 21 518–523. 10.1038/nm.3852 PubMed DOI PMC
Walch E., Fiacco T. A. (2022). Honey, I shrunk the extracellular space: Measurements and mechanisms of astrocyte swelling. Glia 70 2013–2031. 10.1002/glia.24224 PubMed DOI PMC
Walch E., Murphy T. R., Cuvelier N., Aldoghmi M., Morozova C., Donohue J., et al. (2020). Astrocyte-selective volume increase in elevated extracellular potassium conditions is mediated by the Na+/K+ ATPase and occurs independently of aquaporin 4. ASN Neuro 12:1759091420967152. 10.1177/1759091420967152 PubMed DOI PMC
Wan Y., Anastasakis D. G., Rodriguez J., Palangat M., Gudla P., Zaki G., et al. (2021). Dynamic imaging of nascent RNA reveals general principles of transcription dynamics and stochastic splice site selection. Cell 184:2878–2895.e20. 10.1016/j.cell.2021.04.012 PubMed DOI PMC
Wilson C. S., Mongin A. A. (2018). Cell volume control in healthy brain and neuropathologies. Curr. Top. Membr. 81 385–455. 10.1016/bs.ctm.2018.07.006 PubMed DOI PMC
Wilson C. S., Bach M. D., Ashkavand Z., Norman K. R., Martino N., Adam A. P., et al. (2019). Metabolic constraints of swelling-activated glutamate release in astrocytes and their implication for ischemic tissue damage. J. Neurochem. 151 255–272. 10.1111/jnc.14711 PubMed DOI PMC
Wu L. Y., Yu X. L., Feng L. Y. (2015). Connexin 43 stabilizes astrocytes in a stroke-like milieu to facilitate neuronal recovery. Acta Pharmacol. Sin. 36 928–938. 10.1038/aps.2015.39 PubMed DOI PMC
Xi Y., Liu M., Xu S., Hong H., Chen M., Tian L., et al. (2019). Inhibition of SERPINA3N-dependent neuroinflammation is essential for melatonin to ameliorate trimethyltin chloride-induced neurotoxicity. J. Pineal Res. 67:e12596. 10.1111/jpi.12596 PubMed DOI
Yaguchi T., Nishizaki T. (2010). Extracellular high K+ stimulates vesicular glutamate release from astrocytes by activating voltage-dependent calcium channels. J. Cell Physiol. 225 512–518. 10.1002/jcp.22231 PubMed DOI
Yang C., Liu Z., Li H., Zhai F., Liu J., Bian J. (2015). Aquaporin-4 knockdown ameliorates hypoxic-ischemic cerebral edema in newborn piglets. IUBMB Life 67 182–190. 10.1002/iub.1356 PubMed DOI
Yuan F., Wang T. (1996). Glutamate-induced swelling of cultured astrocytes is mediated by metabotropic glutamate receptor. Sci. China C Life Sci. 39 517–522. PubMed
Zamanian J. L., Xu L., Foo L. C., Nouri N., Zhou L., Giffard R. G., et al. (2012). Genomic analysis of reactive astrogliosis. J. Neurosci. 32 6391–6410. 10.1523/JNEUROSCI.6221-11.2012 PubMed DOI PMC
Zhang Y., Chen Q., Chen D., Zhao W., Wang H., Yang M., et al. (2022). SerpinA3N attenuates ischemic stroke injury by reducing apoptosis and neuroinflammation. CNS Neurosci. Ther. 28 566–579. 10.1111/cns.13776 PubMed DOI PMC