The need for operando modelling of 27Al NMR in zeolites: the effect of temperature, topology and water

. 2023 Aug 30 ; 14 (34) : 9101-9113. [epub] 20230803

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37655014

Solid state (ss-) 27Al NMR is one of the most valuable tools for the experimental characterization of zeolites, owing to its high sensitivity and the detailed structural information which can be extracted from the spectra. Unfortunately, the interpretation of ss-NMR is complex and the determination of aluminum distributions remains generally unfeasible. As a result, computational modelling of 27Al ss-NMR spectra has grown increasingly popular as a means to support experimental characterization. However, a number of simplifying assumptions are commonly made in NMR modelling, several of which are not fully justified. In this work, we systematically evaluate the effects of various common models on the prediction of 27Al NMR chemical shifts in zeolites CHA and MOR. We demonstrate the necessity of operando modelling; in particular, taking into account the effects of water loading, temperature and the character of the charge-compensating cation. We observe that conclusions drawn from simple, high symmetry model systems such as CHA do not transfer well to more complex zeolites and can lead to qualitatively wrong interpretations of peak positions, Al assignment and even the number of signals. We use machine learning regression to develop a simple yet robust relationship between chemical shift and local structural parameters in Al-zeolites. This work highlights the need for sophisticated models and high-quality sampling in the field of NMR modelling and provides correlations which allow for the accurate prediction of chemical shifts from dynamical simulations.

Erratum v

PubMed

Zobrazit více v PubMed

Grajciar L. Heard C. J. Bondarenko A. A. Polynski M. V. Meeprasert J. Pidko E. A. Nachtigall P. Towards operando computational modeling in heterogeneous catalysis. Chem. Soc. Rev. 2018;47:8307–8348. doi: 10.1039/C8CS00398J. PubMed DOI PMC

Nimlos C. T. Hoffman A. J. Hur Y. G. Lee B. J. Di Iorio J. R. Hibbitts D. D. Gounder R. Experimental and Theoretical Assessments of Aluminum Proximity in MFI Zeolites and Its Alteration by Organic and Inorganic Structure-Directing Agents. Chem. Mater. 2020;32:9277–9298. doi: 10.1021/acs.chemmater.0c03154. DOI

Knott B. C. Nimlos C. T. Robichaud D. J. Nimlos M. R. Kim S. Gounder R. Consideration of the Aluminum Distribution in Zeolites in Theoretical and Experimental Catalysis Research. ACS Catal. 2018;8:770–784. doi: 10.1021/acscatal.7b03676. DOI

Heard C. J. Grajciar L. Nachtigall P. The effect of water on the validity of Löwenstein's rule. Chem. Sci. 2019;10:5705–5711. doi: 10.1039/C9SC00725C. PubMed DOI PMC

Heard C. J. Grajciar L. Rice C. M. Pugh S. M. Nachtigall P. Ashbrook S. E. Morriss R. E. Fast room temperature lability of aluminosilicate zeolites. Nat. Commun. 2019;10:7. doi: 10.1039/C9SC00725C. PubMed DOI PMC

Fernandez C. and Pruski M., Solid State NMR, ed. J. C. C. Chan, Springer Berlin Heidelberg, Berlin, Heidelberg, 2012, pp. 119–188, 10.1007/128_2011_141 DOI

Ashbrook S. E. Griffin J. M. Johnston K. E. Recent Advances in Solid-State Nuclear Magnetic Resonance Spectroscopy. Annu. Rev. Anal. Chem. 2018;11:485–508. doi: 10.1146/annurev-anchem-061417-125852. PubMed DOI

Xin S. Wang Q. Xu J. Chu Y. Wang P. Feng N. Qi G. Trebosc J. Lafon O. Fan W. Deng F. The acidic nature of “NMR-invisible” tri-coordinated framework aluminum species in zeolites. Chem. Sci. 2019;10:10159–10169. doi: 10.1039/C9SC02634G. PubMed DOI PMC

Dib E. Mineva T. Veron E. Sarou-Kanian V. Fayon F. Alonso B. ZSM-5 Zeolite: Complete Al Bond Connectivity and Implications on Structure Formation from Solid-State NMR and Quantum Chemistry Calculations. J. Phys. Chem. Lett. 2018;9:19–24. doi: 10.1021/acs.jpclett.7b03050. PubMed DOI

Al-Nahari S. Dib E. Cammarano C. Saint-Germes E. Massiot D. Sarou-Kanian V. Alonso B. Impact of Mineralizing Agents on Aluminum Distribution and Acidity of ZSM-5 Zeolites. Angew. Chem., Int. Ed. 2023;62:e202217992. doi: 10.1002/anie.202217992. PubMed DOI PMC

Wang W. Xu J. Deng F. Recent advances in solid-state NMR of zeolite catalysts. Natl. Sci. Rev. 2022;9:23. PubMed PMC

Yakimov A. V. Ravi M. Verel R. Sushkevich V. L. van Bokhoven J. A. Copéret C. Structure and Framework Association of Lewis Acid Sites in MOR Zeolite. J. Am. Chem. Soc. 2022;144:10377–10385. doi: 10.1021/jacs.2c02212. PubMed DOI

Ravi M. Sushkevich V. L. van Bokhoven J. A. Lewis Acidity Inherent to the Framework of Zeolite Mordenite. J. Phys. Chem. C. 2019;123:15139–15144. doi: 10.1021/acs.jpcc.9b03620. DOI

Ravi M. Sushkevich V. L. van Bokhoven J. A. On the location of Lewis acidic aluminum in zeolite mordenite and the role of framework-associated aluminum in mediating the switch between Brønsted and Lewis acidity. Chem. Sci. 2021;12:4094–4103. doi: 10.1039/D0SC06130A. PubMed DOI PMC

Fan B. Zhu D. Wang L. Xu S. Wei Y. Liu Z. Dynamic evolution of Al species in the hydrothermal dealumination process of CHA zeolites. Inorg. Chem. Front. 2022;9:3609–3618. doi: 10.1039/D2QI00750A. DOI

Sklenak S. Dědeček J. Li C. Wichterlová B. Gábová V. Sierka M. Sauer J. Aluminum siting in silicon-rich zeolite frameworks: a combined high-resolution 27Al NMR spectroscopy and quantum mechanics/molecular mechanics study of ZSM-5. Angew. Chem., Int. Ed. Engl. 2007;46:7286–7289. doi: 10.1002/anie.200702628. PubMed DOI

Chen K. Gan Z. Horstmeier S. White J. L. Distribution of Aluminum Species in Zeolite Catalysts: 27Al NMR of Framework, Partially-Coordinated Framework, and Non-Framework Moieties. J. Am. Chem. Soc. 2021;143:6669–6680. doi: 10.1021/jacs.1c02361. PubMed DOI PMC

Chen K. Horstmeier S. Nguyen V. T. Wang B. Crossley S. P. Pham T. Gan Z. Hung I. White J. L. Structure and Catalytic Characterization of a Second Framework Al(IV) Site in Zeolite Catalysts Revealed by NMR at 35.2 T. J. Am. Chem. Soc. 2020;142:7514–7523. doi: 10.1021/jacs.0c00590. PubMed DOI PMC

Sklenak S. Dědeček J. Li C. Wichterlová B. Gábová V. Sierka M. Sauer J. Aluminium siting in the ZSM-5 framework by combination of high resolution 27Al NMR and DFT/MM calculations. Phys. Chem. Chem. Phys. 2009;11:1237–1247. doi: 10.1039/B807755J. PubMed DOI

Kučera J. Nachtigall P. A simple correlation between average T–O–T angles and 27Al NMR chemical shifts does not hold in high-silica zeolites. Microporous Mesoporous Mater. 2005;85:279–283. doi: 10.1016/j.micromeso.2005.06.028. DOI

Kučera J. Nachtigall P. 27Al NMR chemical shifts do not correlate with average T-O-T angles: Theoretical study of MCM-58 zeolite. Stud. Surf. Sci. Catal. 2005;158(Part A):917–924. doi: 10.1016/S0167-2991(05)80430-6. DOI

Mazurek A. H. Szeleszczuk Ł. Pisklak D. M. A Review on Combination of Ab Initio Molecular Dynamics and NMR Parameters Calculations. Int. J. Mol. Sci. 2021;22:4378. doi: 10.3390/ijms22094378. PubMed DOI PMC

Blanc F. Middlemiss D. S. Buannic L. Palumbo J. L. Farnan I. Grey C. P. Thermal phase transformations in LaGaO3 and LaAlO3 perovskites: An experimental and computational solid-state NMR study. Solid State Nucl. Magn. Reson. 2012;42:87–97. doi: 10.1016/j.ssnmr.2012.01.003. PubMed DOI

Dračínský M. Bouř P. Hodgkinson P. Temperature Dependence of NMR Parameters Calculated from Path Integral Molecular Dynamics Simulations. J. Chem. Theory Comput. 2016;12:968–973. doi: 10.1021/acs.jctc.5b01131. PubMed DOI

Dračínský M. Hodgkinson P. A molecular dynamics study of the effects of fast molecular motions on solid-state NMR parameters. CrystEngComm. 2013;15:8705–8712. doi: 10.1039/C3CE40612A. DOI

Dračínský M. Bouř P. Vibrational averaging of the chemical shift in crystalline α-glycine. J. Comput. Chem. 2012;33:1080–1089. doi: 10.1002/jcc.22940. PubMed DOI

Folliet N. Roiland C. Bégu S. Aubert A. Mineva T. Goursot A. Selvaraj K. Duma L. Tielens F. Mauri F. Laurent G. Bonhomme C. Gervais C. Babonneau F. Azaïs T. Investigation of the Interface in Silica-Encapsulated Liposomes by Combining Solid State NMR and First Principles Calculations. J. Am. Chem. Soc. 2011;133:16815–16827. doi: 10.1021/ja201002r. PubMed DOI

Vanlommel S. Hoffman A. E. J. Smet S. Radhakrishnan S. Asselman K. Chandran C. V. Breynaert E. Kirschhock C. E. A. Martens J. A. Van Speybroeck V. How Water and Ion Mobility Affect the NMR Fingerprints of the Hydrated JBW Zeolite: A Combined Computational-Experimental Investigation. Chem.–Eur. J. 2022;28:e202202621. doi: 10.1002/chem.202202621. PubMed DOI PMC

Mlekodaj K. Dedecek J. Pashkova V. Tabor E. Klein P. Urbanova M. Karcz R. Sazama P. Whittleton S. R. Thomas H. M. Fishchuk A. V. Sklenak S. Al Organization in the SSZ-13 Zeolite. Al Distribution and Extraframework Sites of Divalent Cations. J. Phys. Chem. C. 2019;123:7968–7987. doi: 10.1021/acs.jpcc.8b07343. DOI

Göltl F. Love A. M. Schuenzel S. C. Wolf P. Mavrikakis M. Hermans I. Computational description of key spectroscopic features of zeolite SSZ-13. Phys. Chem. Chem. Phys. 2019;21:19065–19075. doi: 10.1039/C9CP03146D. PubMed DOI

Holzinger J. Nielsen M. Beato P. Brogaard R. Y. Buono C. Dyballa M. Falsig H. Skibsted J. Svelle S. Identification of Distinct Framework Aluminum Sites in Zeolite ZSM-23: A Combined Computational and Experimental 27Al NMR Study. J. Phys. Chem. C. 2019;123:7831–7844. doi: 10.1021/acs.jpcc.8b06891. DOI

Kresse G. Hafner J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B: Condens. Matter Mater. Phys. 1993;48:13115–13118. doi: 10.1103/PhysRevB.48.13115. PubMed DOI

Kresse G. Furthmuller J. Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996;6:15–50. doi: 10.1016/0927-0256(96)00008-0. PubMed DOI

Kresse G. Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B: Condens. Matter Mater. Phys. 1996;54:11169–11186. doi: 10.1103/PhysRevB.54.11169. PubMed DOI

Kresse G. Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B: Condens. Matter Mater. Phys. 1999;59:1758–1775. doi: 10.1103/PhysRevB.59.1758. DOI

Perdew J. P. Burke K. Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI

Grimme S. Ehrlich S. Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011;32:1456–1465. doi: 10.1002/jcc.21759. PubMed DOI

Gillan M. J. Alfe D. Michaelides A. Perspective: How good is DFT for water? J. Chem. Phys. 2016;144:130901. doi: 10.1063/1.4944633. PubMed DOI

Pickard C. J. Mauri F. All-electron magnetic response with pseudopotentials: NMR chemical shifts. Phys. Rev. B: Condens. Matter Mater. Phys. 2001;63:245101. doi: 10.1103/PhysRevB.63.245101. DOI

Yates J. R. Pickard C. J. Mauri F. Calculation of NMR chemical shifts for extended systems using ultrasoft pseudopotentials. Phys. Rev. B: Condens. Matter Mater. Phys. 2007;76:024401. doi: 10.1103/PhysRevB.76.024401. DOI

Csonka G. I. Perdew J. P. Ruzsinszky A. Philipsen P. H. T. Lebègue S. Paier J. Vydrov O. A. Ángyán J. G. Assessing the performance of recent density functionals for bulk solids. Phys. Rev. B: Condens. Matter Mater. Phys. 2009;79:155107. doi: 10.1103/PhysRevB.79.155107. DOI

Hartman J. D. Kudla R. A. Day G. M. Mueller L. J. Beran G. J. Benchmark fragment-based 1H, 13C, 15N and 17O chemical shift predictions in molecular crystals. Phys. Chem. Chem. Phys. 2016;18:21686–21709. doi: 10.1039/C6CP01831A. PubMed DOI PMC

Sun H. Dwaraknath S. Ling H. Qu X. Huck P. Persson K. A. Hayes S. E. Enabling materials informatics for 29Si solid-state NMR of crystalline materials. npj Comput. Mater. 2020;6:53. doi: 10.1038/s41524-020-0328-3. DOI

Hjorth Larsen A. Jorgen Mortensen J. Blomqvist J. Castelli I. E. Christensen R. Dulak M. Friis J. Groves M. N. Hammer B. Hargus C. Hermes E. D. Jennings P. C. Bjerre Jensen P. Kermode J. Kitchin J. R. Leonhard Kolsbjerg E. Kubal J. Kaasbjerg K. Lysgaard S. Bergmann Maronsson J. Maxson T. Olsen T. Pastewka L. Peterson A. Rostgaard C. Schiotz J. Schutt O. Strange M. Thygesen K. S. Vegge T. Vilhelmsen L. Walter M. Zeng Z. Jacobsen K. W. The atomic simulation environment-a Python library for working with atoms. J. Phys.: Condens. Matter. 2017;29:273002. doi: 10.1088/1361-648X/aa680e. PubMed DOI

Pedregosa F. Varoquaux G. Gramfort A. Michel V. Thirion B. Grisel O. Blondel M. Prettenhofer P. Weiss R. Dubourg V. Vanderplas J. Passos A. Cournapeau D. Brucher M. Perrot M. Duchesnay E. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011;12:2825–2830.

Grey C. P. Vega A. J. Determination of the Quadrupole Coupling Constant of the Invisible Aluminum Spins in Zeolite HY with 1H/27Al TRAPDOR NMR. J. Am. Chem. Soc. 1995;117:8232–8242. doi: 10.1021/ja00136a022. DOI

Kentgens A. P. M. Iuga D. Kalwei M. Koller H. Direct Observation of Brønsted Acidic Sites in Dehydrated Zeolite H-ZSM5 Using DFS-Enhanced 27Al MQMAS NMR Spectroscopy. J. Am. Chem. Soc. 2001;123:2925–2926. doi: 10.1021/ja005917c. PubMed DOI

Ernst H. Freude D. Wolf I. Multinuclear Solid-State NMR Studies of Brønsted Sites in Zeolites. Chem. Phys. Lett. 1993;212(6):588–596. doi: 10.1016/0009-2614(93)85490-F. DOI

Klein P. Pashkova V. Thomas H. M. Whittleton S. R. Brus J. Kobera L. Dedecek J. Sklenak S. Local Structure of Cationic Sites in Dehydrated Zeolites Inferred from 27Al Magic-Angle Spinning NMR and Density Functional Theory Calculations. A Study on Li-, Na-, and K-Chabazite. J. Phys. Chem. C. 2016;120:14216–14225. doi: 10.1021/acs.jpcc.6b04391. DOI

Lippmaa E. Samoson A. Magi M. High-resolution 27Al NMR of aluminosilicates. J. Am. Chem. Soc. 1986;108:1730–1735. doi: 10.1021/ja00268a002. DOI

Li Y. Yu J. Xu R. Criteria for Zeolite Frameworks Realizable for Target Synthesis. Angew. Chem., Int. Ed. 2013;52:1673–1677. doi: 10.1002/anie.201206340. PubMed DOI

Huntley G. M. Luck R. L. Mullins M. E. Newberry N. K. Hydrochloric Acid Modification and Lead Removal Studies on Naturally Occurring Zeolites from Nevada, New Mexico, and Arizona. Processes. 2021;9:1238. doi: 10.3390/pr9071238. DOI

Holzinger J. Beato P. Lundegaard L. F. Skibsted J. Distribution of Aluminum over the Tetrahedral Sites in ZSM-5 Zeolites and Their Evolution after Steam Treatment. J. Phys. Chem. C. 2018;122:15595–15613. doi: 10.1021/acs.jpcc.8b05277. DOI

Willimetz D., Theoretical investigation of 27Al chemical shifts dependence on water amount and temperature in zeolite MFI, Bachelor thesis, Charles University, https://dspace.cuni.cz/bitstream/handle/20.500.11956/181975/130361065.pdf?sequence=1&isAllowed=y, 2023

Gaumard R. Dragún D. Pedroza-Montero J. N. Alonso B. Guesmi H. Malkin Ondík I. Mineva T. Regression Machine Learning Models Used to Predict DFT-Computed NMR Parameters of Zeolites. Computation. 2022;10:74. doi: 10.3390/computation10050074. DOI

Venetos M. C. Wen M. Persson K. A. Machine Learning Full NMR Chemical Shift Tensors of Silicon Oxides with Equivariant Graph Neural Networks. J. Phys. Chem. A. 2023;127:2388–2398. doi: 10.1021/acs.jpca.2c07530. PubMed DOI PMC

Cuny J. Xie Y. Pickard C. J. Hassanali A. A. Ab Initio Quality NMR Parameters in Solid-State Materials Using a High-Dimensional Neural-Network Representation. J. Chem. Theory Comput. 2016;12:765–773. doi: 10.1021/acs.jctc.5b01006. PubMed DOI

Schroeder C. Siozios V. Mück-Lichtenfeld C. Hunger M. Hansen M. R. Koller H. Hydrogen Bond Formation of Bronsted Acid Sites in Zeolites. Chem. Mater. 2020;32:1564–1574. doi: 10.1021/acs.chemmater.9b04714. DOI

Hack J. H. Dombrowski J. P. Ma X. Chen Y. Lewis N. H. C. Carpenter W. B. Li C. Voth G. A. Kung H. H. Tokmakoff A. Structural Characterization of Protonated Water Clusters Confined in HZSM-5 Zeolites. J. Am. Chem. Soc. 2021;143:10203–10213. doi: 10.1021/jacs.1c03205. PubMed DOI

Dědeček J. Sobalík Z. Wichterlová B. Siting and Distribution of Framework Aluminium Atoms in Silicon-Rich Zeolites and Impact on Catalysis. Catal. Rev.: Sci. Eng. 2012;54:135–223. doi: 10.1080/01614940.2012.632662. DOI

Zhu L. Seff K. Olson D. H. Cohen B. J. Von Dreele R. B. Hydronium Ions in Zeolites. 1. Structures of Partially and Fully Dehydrated Na,H3O−X by X-ray and Neutron Diffraction. J. Phys. Chem. B. 1999;103:10365–10372. doi: 10.1021/jp991070z. DOI

Vjunov A. Wang M. Govind N. Huthwelker T. Shi H. Mei D. Fulton J. L. Lercher J. A. Tracking the Chemical Transformations at the Brønsted Acid Site upon Water-Induced Deprotonation in a Zeolite Pore. Chem. Mater. 2017;29:9030–9042. doi: 10.1021/acs.chemmater.7b02133. DOI

Sarv P. Fernandez C. Amoureux J.-P. Keskinen K. Distribution of Tetrahedral Aluminium Sites in ZSM-5 Type Zeolites: An 27Al (Multiquantum) Magic Angle Spinning NMR Study. J. Phys. Chem. 1996;100:19223–19226. doi: 10.1021/jp962519g. DOI

Dedecek J. Lucero M. J. Li C. B. Gao F. Klein P. Urbanova M. Tvaruzkova Z. Sazama P. Sklenak S. Complex Analysis of the Aluminum Siting in the Framework of Silicon-Rich Zeolites. A Case Study on Ferrierite. J. Phys. Chem. C. 2011;115:11056–11064. doi: 10.1021/jp200310b. DOI

Saha I. E., Erlebach A., Nachtigall P., Heard C. J. and Grajciar L., Reactive Neural Network Potential for Aluminosilicate Zeolites and Water: Quantifying the Effect of Si/Al Ratio on Proton Solvation and Water Diffusion in H-FAU, ChemRxiv, 2022, 10.26434/chemrxiv-2022-d1sj9 DOI

Maurin G. Bell R. G. Devautour S. Henn F. Giuntini J. C. Modeling the Effect of Hydration in Zeolite Na+−Mordenite. J. Phys. Chem. B. 2004;108:3739–3745. doi: 10.1021/jp034151a. DOI

Erlebach A. Nachtigall P. Grajciar L. Accurate large-scale simulations of siliceous zeolites by neural network potentials. npj Comput. Mater. 2022;8:174. doi: 10.1038/s41524-022-00865-w. DOI

Erlebach A., Šípka M., Saha I., Nachtigall P., Heard C. J. and Grajciar L., A reactive neural network framework for water-loaded acidic zeolites, arXiv, 2023, preprint, arXiv:2307.00911, 10.48550/arXiv.2307.00911 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace