The need for operando modelling of 27Al NMR in zeolites: the effect of temperature, topology and water
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37655014
PubMed Central
PMC10466278
DOI
10.1039/d3sc02492j
PII: d3sc02492j
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Solid state (ss-) 27Al NMR is one of the most valuable tools for the experimental characterization of zeolites, owing to its high sensitivity and the detailed structural information which can be extracted from the spectra. Unfortunately, the interpretation of ss-NMR is complex and the determination of aluminum distributions remains generally unfeasible. As a result, computational modelling of 27Al ss-NMR spectra has grown increasingly popular as a means to support experimental characterization. However, a number of simplifying assumptions are commonly made in NMR modelling, several of which are not fully justified. In this work, we systematically evaluate the effects of various common models on the prediction of 27Al NMR chemical shifts in zeolites CHA and MOR. We demonstrate the necessity of operando modelling; in particular, taking into account the effects of water loading, temperature and the character of the charge-compensating cation. We observe that conclusions drawn from simple, high symmetry model systems such as CHA do not transfer well to more complex zeolites and can lead to qualitatively wrong interpretations of peak positions, Al assignment and even the number of signals. We use machine learning regression to develop a simple yet robust relationship between chemical shift and local structural parameters in Al-zeolites. This work highlights the need for sophisticated models and high-quality sampling in the field of NMR modelling and provides correlations which allow for the accurate prediction of chemical shifts from dynamical simulations.
Zobrazit více v PubMed
Grajciar L. Heard C. J. Bondarenko A. A. Polynski M. V. Meeprasert J. Pidko E. A. Nachtigall P. Towards operando computational modeling in heterogeneous catalysis. Chem. Soc. Rev. 2018;47:8307–8348. doi: 10.1039/C8CS00398J. PubMed DOI PMC
Nimlos C. T. Hoffman A. J. Hur Y. G. Lee B. J. Di Iorio J. R. Hibbitts D. D. Gounder R. Experimental and Theoretical Assessments of Aluminum Proximity in MFI Zeolites and Its Alteration by Organic and Inorganic Structure-Directing Agents. Chem. Mater. 2020;32:9277–9298. doi: 10.1021/acs.chemmater.0c03154. DOI
Knott B. C. Nimlos C. T. Robichaud D. J. Nimlos M. R. Kim S. Gounder R. Consideration of the Aluminum Distribution in Zeolites in Theoretical and Experimental Catalysis Research. ACS Catal. 2018;8:770–784. doi: 10.1021/acscatal.7b03676. DOI
Heard C. J. Grajciar L. Nachtigall P. The effect of water on the validity of Löwenstein's rule. Chem. Sci. 2019;10:5705–5711. doi: 10.1039/C9SC00725C. PubMed DOI PMC
Heard C. J. Grajciar L. Rice C. M. Pugh S. M. Nachtigall P. Ashbrook S. E. Morriss R. E. Fast room temperature lability of aluminosilicate zeolites. Nat. Commun. 2019;10:7. doi: 10.1039/C9SC00725C. PubMed DOI PMC
Fernandez C. and Pruski M., Solid State NMR, ed. J. C. C. Chan, Springer Berlin Heidelberg, Berlin, Heidelberg, 2012, pp. 119–188, 10.1007/128_2011_141 DOI
Ashbrook S. E. Griffin J. M. Johnston K. E. Recent Advances in Solid-State Nuclear Magnetic Resonance Spectroscopy. Annu. Rev. Anal. Chem. 2018;11:485–508. doi: 10.1146/annurev-anchem-061417-125852. PubMed DOI
Xin S. Wang Q. Xu J. Chu Y. Wang P. Feng N. Qi G. Trebosc J. Lafon O. Fan W. Deng F. The acidic nature of “NMR-invisible” tri-coordinated framework aluminum species in zeolites. Chem. Sci. 2019;10:10159–10169. doi: 10.1039/C9SC02634G. PubMed DOI PMC
Dib E. Mineva T. Veron E. Sarou-Kanian V. Fayon F. Alonso B. ZSM-5 Zeolite: Complete Al Bond Connectivity and Implications on Structure Formation from Solid-State NMR and Quantum Chemistry Calculations. J. Phys. Chem. Lett. 2018;9:19–24. doi: 10.1021/acs.jpclett.7b03050. PubMed DOI
Al-Nahari S. Dib E. Cammarano C. Saint-Germes E. Massiot D. Sarou-Kanian V. Alonso B. Impact of Mineralizing Agents on Aluminum Distribution and Acidity of ZSM-5 Zeolites. Angew. Chem., Int. Ed. 2023;62:e202217992. doi: 10.1002/anie.202217992. PubMed DOI PMC
Wang W. Xu J. Deng F. Recent advances in solid-state NMR of zeolite catalysts. Natl. Sci. Rev. 2022;9:23. PubMed PMC
Yakimov A. V. Ravi M. Verel R. Sushkevich V. L. van Bokhoven J. A. Copéret C. Structure and Framework Association of Lewis Acid Sites in MOR Zeolite. J. Am. Chem. Soc. 2022;144:10377–10385. doi: 10.1021/jacs.2c02212. PubMed DOI
Ravi M. Sushkevich V. L. van Bokhoven J. A. Lewis Acidity Inherent to the Framework of Zeolite Mordenite. J. Phys. Chem. C. 2019;123:15139–15144. doi: 10.1021/acs.jpcc.9b03620. DOI
Ravi M. Sushkevich V. L. van Bokhoven J. A. On the location of Lewis acidic aluminum in zeolite mordenite and the role of framework-associated aluminum in mediating the switch between Brønsted and Lewis acidity. Chem. Sci. 2021;12:4094–4103. doi: 10.1039/D0SC06130A. PubMed DOI PMC
Fan B. Zhu D. Wang L. Xu S. Wei Y. Liu Z. Dynamic evolution of Al species in the hydrothermal dealumination process of CHA zeolites. Inorg. Chem. Front. 2022;9:3609–3618. doi: 10.1039/D2QI00750A. DOI
Sklenak S. Dědeček J. Li C. Wichterlová B. Gábová V. Sierka M. Sauer J. Aluminum siting in silicon-rich zeolite frameworks: a combined high-resolution 27Al NMR spectroscopy and quantum mechanics/molecular mechanics study of ZSM-5. Angew. Chem., Int. Ed. Engl. 2007;46:7286–7289. doi: 10.1002/anie.200702628. PubMed DOI
Chen K. Gan Z. Horstmeier S. White J. L. Distribution of Aluminum Species in Zeolite Catalysts: 27Al NMR of Framework, Partially-Coordinated Framework, and Non-Framework Moieties. J. Am. Chem. Soc. 2021;143:6669–6680. doi: 10.1021/jacs.1c02361. PubMed DOI PMC
Chen K. Horstmeier S. Nguyen V. T. Wang B. Crossley S. P. Pham T. Gan Z. Hung I. White J. L. Structure and Catalytic Characterization of a Second Framework Al(IV) Site in Zeolite Catalysts Revealed by NMR at 35.2 T. J. Am. Chem. Soc. 2020;142:7514–7523. doi: 10.1021/jacs.0c00590. PubMed DOI PMC
Sklenak S. Dědeček J. Li C. Wichterlová B. Gábová V. Sierka M. Sauer J. Aluminium siting in the ZSM-5 framework by combination of high resolution 27Al NMR and DFT/MM calculations. Phys. Chem. Chem. Phys. 2009;11:1237–1247. doi: 10.1039/B807755J. PubMed DOI
Kučera J. Nachtigall P. A simple correlation between average T–O–T angles and 27Al NMR chemical shifts does not hold in high-silica zeolites. Microporous Mesoporous Mater. 2005;85:279–283. doi: 10.1016/j.micromeso.2005.06.028. DOI
Kučera J. Nachtigall P. 27Al NMR chemical shifts do not correlate with average T-O-T angles: Theoretical study of MCM-58 zeolite. Stud. Surf. Sci. Catal. 2005;158(Part A):917–924. doi: 10.1016/S0167-2991(05)80430-6. DOI
Mazurek A. H. Szeleszczuk Ł. Pisklak D. M. A Review on Combination of Ab Initio Molecular Dynamics and NMR Parameters Calculations. Int. J. Mol. Sci. 2021;22:4378. doi: 10.3390/ijms22094378. PubMed DOI PMC
Blanc F. Middlemiss D. S. Buannic L. Palumbo J. L. Farnan I. Grey C. P. Thermal phase transformations in LaGaO3 and LaAlO3 perovskites: An experimental and computational solid-state NMR study. Solid State Nucl. Magn. Reson. 2012;42:87–97. doi: 10.1016/j.ssnmr.2012.01.003. PubMed DOI
Dračínský M. Bouř P. Hodgkinson P. Temperature Dependence of NMR Parameters Calculated from Path Integral Molecular Dynamics Simulations. J. Chem. Theory Comput. 2016;12:968–973. doi: 10.1021/acs.jctc.5b01131. PubMed DOI
Dračínský M. Hodgkinson P. A molecular dynamics study of the effects of fast molecular motions on solid-state NMR parameters. CrystEngComm. 2013;15:8705–8712. doi: 10.1039/C3CE40612A. DOI
Dračínský M. Bouř P. Vibrational averaging of the chemical shift in crystalline α-glycine. J. Comput. Chem. 2012;33:1080–1089. doi: 10.1002/jcc.22940. PubMed DOI
Folliet N. Roiland C. Bégu S. Aubert A. Mineva T. Goursot A. Selvaraj K. Duma L. Tielens F. Mauri F. Laurent G. Bonhomme C. Gervais C. Babonneau F. Azaïs T. Investigation of the Interface in Silica-Encapsulated Liposomes by Combining Solid State NMR and First Principles Calculations. J. Am. Chem. Soc. 2011;133:16815–16827. doi: 10.1021/ja201002r. PubMed DOI
Vanlommel S. Hoffman A. E. J. Smet S. Radhakrishnan S. Asselman K. Chandran C. V. Breynaert E. Kirschhock C. E. A. Martens J. A. Van Speybroeck V. How Water and Ion Mobility Affect the NMR Fingerprints of the Hydrated JBW Zeolite: A Combined Computational-Experimental Investigation. Chem.–Eur. J. 2022;28:e202202621. doi: 10.1002/chem.202202621. PubMed DOI PMC
Mlekodaj K. Dedecek J. Pashkova V. Tabor E. Klein P. Urbanova M. Karcz R. Sazama P. Whittleton S. R. Thomas H. M. Fishchuk A. V. Sklenak S. Al Organization in the SSZ-13 Zeolite. Al Distribution and Extraframework Sites of Divalent Cations. J. Phys. Chem. C. 2019;123:7968–7987. doi: 10.1021/acs.jpcc.8b07343. DOI
Göltl F. Love A. M. Schuenzel S. C. Wolf P. Mavrikakis M. Hermans I. Computational description of key spectroscopic features of zeolite SSZ-13. Phys. Chem. Chem. Phys. 2019;21:19065–19075. doi: 10.1039/C9CP03146D. PubMed DOI
Holzinger J. Nielsen M. Beato P. Brogaard R. Y. Buono C. Dyballa M. Falsig H. Skibsted J. Svelle S. Identification of Distinct Framework Aluminum Sites in Zeolite ZSM-23: A Combined Computational and Experimental 27Al NMR Study. J. Phys. Chem. C. 2019;123:7831–7844. doi: 10.1021/acs.jpcc.8b06891. DOI
Kresse G. Hafner J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B: Condens. Matter Mater. Phys. 1993;48:13115–13118. doi: 10.1103/PhysRevB.48.13115. PubMed DOI
Kresse G. Furthmuller J. Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996;6:15–50. doi: 10.1016/0927-0256(96)00008-0. PubMed DOI
Kresse G. Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B: Condens. Matter Mater. Phys. 1996;54:11169–11186. doi: 10.1103/PhysRevB.54.11169. PubMed DOI
Kresse G. Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B: Condens. Matter Mater. Phys. 1999;59:1758–1775. doi: 10.1103/PhysRevB.59.1758. DOI
Perdew J. P. Burke K. Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI
Grimme S. Ehrlich S. Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011;32:1456–1465. doi: 10.1002/jcc.21759. PubMed DOI
Gillan M. J. Alfe D. Michaelides A. Perspective: How good is DFT for water? J. Chem. Phys. 2016;144:130901. doi: 10.1063/1.4944633. PubMed DOI
Pickard C. J. Mauri F. All-electron magnetic response with pseudopotentials: NMR chemical shifts. Phys. Rev. B: Condens. Matter Mater. Phys. 2001;63:245101. doi: 10.1103/PhysRevB.63.245101. DOI
Yates J. R. Pickard C. J. Mauri F. Calculation of NMR chemical shifts for extended systems using ultrasoft pseudopotentials. Phys. Rev. B: Condens. Matter Mater. Phys. 2007;76:024401. doi: 10.1103/PhysRevB.76.024401. DOI
Csonka G. I. Perdew J. P. Ruzsinszky A. Philipsen P. H. T. Lebègue S. Paier J. Vydrov O. A. Ángyán J. G. Assessing the performance of recent density functionals for bulk solids. Phys. Rev. B: Condens. Matter Mater. Phys. 2009;79:155107. doi: 10.1103/PhysRevB.79.155107. DOI
Hartman J. D. Kudla R. A. Day G. M. Mueller L. J. Beran G. J. Benchmark fragment-based 1H, 13C, 15N and 17O chemical shift predictions in molecular crystals. Phys. Chem. Chem. Phys. 2016;18:21686–21709. doi: 10.1039/C6CP01831A. PubMed DOI PMC
Sun H. Dwaraknath S. Ling H. Qu X. Huck P. Persson K. A. Hayes S. E. Enabling materials informatics for 29Si solid-state NMR of crystalline materials. npj Comput. Mater. 2020;6:53. doi: 10.1038/s41524-020-0328-3. DOI
Hjorth Larsen A. Jorgen Mortensen J. Blomqvist J. Castelli I. E. Christensen R. Dulak M. Friis J. Groves M. N. Hammer B. Hargus C. Hermes E. D. Jennings P. C. Bjerre Jensen P. Kermode J. Kitchin J. R. Leonhard Kolsbjerg E. Kubal J. Kaasbjerg K. Lysgaard S. Bergmann Maronsson J. Maxson T. Olsen T. Pastewka L. Peterson A. Rostgaard C. Schiotz J. Schutt O. Strange M. Thygesen K. S. Vegge T. Vilhelmsen L. Walter M. Zeng Z. Jacobsen K. W. The atomic simulation environment-a Python library for working with atoms. J. Phys.: Condens. Matter. 2017;29:273002. doi: 10.1088/1361-648X/aa680e. PubMed DOI
Pedregosa F. Varoquaux G. Gramfort A. Michel V. Thirion B. Grisel O. Blondel M. Prettenhofer P. Weiss R. Dubourg V. Vanderplas J. Passos A. Cournapeau D. Brucher M. Perrot M. Duchesnay E. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011;12:2825–2830.
Grey C. P. Vega A. J. Determination of the Quadrupole Coupling Constant of the Invisible Aluminum Spins in Zeolite HY with 1H/27Al TRAPDOR NMR. J. Am. Chem. Soc. 1995;117:8232–8242. doi: 10.1021/ja00136a022. DOI
Kentgens A. P. M. Iuga D. Kalwei M. Koller H. Direct Observation of Brønsted Acidic Sites in Dehydrated Zeolite H-ZSM5 Using DFS-Enhanced 27Al MQMAS NMR Spectroscopy. J. Am. Chem. Soc. 2001;123:2925–2926. doi: 10.1021/ja005917c. PubMed DOI
Ernst H. Freude D. Wolf I. Multinuclear Solid-State NMR Studies of Brønsted Sites in Zeolites. Chem. Phys. Lett. 1993;212(6):588–596. doi: 10.1016/0009-2614(93)85490-F. DOI
Klein P. Pashkova V. Thomas H. M. Whittleton S. R. Brus J. Kobera L. Dedecek J. Sklenak S. Local Structure of Cationic Sites in Dehydrated Zeolites Inferred from 27Al Magic-Angle Spinning NMR and Density Functional Theory Calculations. A Study on Li-, Na-, and K-Chabazite. J. Phys. Chem. C. 2016;120:14216–14225. doi: 10.1021/acs.jpcc.6b04391. DOI
Lippmaa E. Samoson A. Magi M. High-resolution 27Al NMR of aluminosilicates. J. Am. Chem. Soc. 1986;108:1730–1735. doi: 10.1021/ja00268a002. DOI
Li Y. Yu J. Xu R. Criteria for Zeolite Frameworks Realizable for Target Synthesis. Angew. Chem., Int. Ed. 2013;52:1673–1677. doi: 10.1002/anie.201206340. PubMed DOI
Huntley G. M. Luck R. L. Mullins M. E. Newberry N. K. Hydrochloric Acid Modification and Lead Removal Studies on Naturally Occurring Zeolites from Nevada, New Mexico, and Arizona. Processes. 2021;9:1238. doi: 10.3390/pr9071238. DOI
Holzinger J. Beato P. Lundegaard L. F. Skibsted J. Distribution of Aluminum over the Tetrahedral Sites in ZSM-5 Zeolites and Their Evolution after Steam Treatment. J. Phys. Chem. C. 2018;122:15595–15613. doi: 10.1021/acs.jpcc.8b05277. DOI
Willimetz D., Theoretical investigation of 27Al chemical shifts dependence on water amount and temperature in zeolite MFI, Bachelor thesis, Charles University, https://dspace.cuni.cz/bitstream/handle/20.500.11956/181975/130361065.pdf?sequence=1&isAllowed=y, 2023
Gaumard R. Dragún D. Pedroza-Montero J. N. Alonso B. Guesmi H. Malkin Ondík I. Mineva T. Regression Machine Learning Models Used to Predict DFT-Computed NMR Parameters of Zeolites. Computation. 2022;10:74. doi: 10.3390/computation10050074. DOI
Venetos M. C. Wen M. Persson K. A. Machine Learning Full NMR Chemical Shift Tensors of Silicon Oxides with Equivariant Graph Neural Networks. J. Phys. Chem. A. 2023;127:2388–2398. doi: 10.1021/acs.jpca.2c07530. PubMed DOI PMC
Cuny J. Xie Y. Pickard C. J. Hassanali A. A. Ab Initio Quality NMR Parameters in Solid-State Materials Using a High-Dimensional Neural-Network Representation. J. Chem. Theory Comput. 2016;12:765–773. doi: 10.1021/acs.jctc.5b01006. PubMed DOI
Schroeder C. Siozios V. Mück-Lichtenfeld C. Hunger M. Hansen M. R. Koller H. Hydrogen Bond Formation of Bronsted Acid Sites in Zeolites. Chem. Mater. 2020;32:1564–1574. doi: 10.1021/acs.chemmater.9b04714. DOI
Hack J. H. Dombrowski J. P. Ma X. Chen Y. Lewis N. H. C. Carpenter W. B. Li C. Voth G. A. Kung H. H. Tokmakoff A. Structural Characterization of Protonated Water Clusters Confined in HZSM-5 Zeolites. J. Am. Chem. Soc. 2021;143:10203–10213. doi: 10.1021/jacs.1c03205. PubMed DOI
Dědeček J. Sobalík Z. Wichterlová B. Siting and Distribution of Framework Aluminium Atoms in Silicon-Rich Zeolites and Impact on Catalysis. Catal. Rev.: Sci. Eng. 2012;54:135–223. doi: 10.1080/01614940.2012.632662. DOI
Zhu L. Seff K. Olson D. H. Cohen B. J. Von Dreele R. B. Hydronium Ions in Zeolites. 1. Structures of Partially and Fully Dehydrated Na,H3O−X by X-ray and Neutron Diffraction. J. Phys. Chem. B. 1999;103:10365–10372. doi: 10.1021/jp991070z. DOI
Vjunov A. Wang M. Govind N. Huthwelker T. Shi H. Mei D. Fulton J. L. Lercher J. A. Tracking the Chemical Transformations at the Brønsted Acid Site upon Water-Induced Deprotonation in a Zeolite Pore. Chem. Mater. 2017;29:9030–9042. doi: 10.1021/acs.chemmater.7b02133. DOI
Sarv P. Fernandez C. Amoureux J.-P. Keskinen K. Distribution of Tetrahedral Aluminium Sites in ZSM-5 Type Zeolites: An 27Al (Multiquantum) Magic Angle Spinning NMR Study. J. Phys. Chem. 1996;100:19223–19226. doi: 10.1021/jp962519g. DOI
Dedecek J. Lucero M. J. Li C. B. Gao F. Klein P. Urbanova M. Tvaruzkova Z. Sazama P. Sklenak S. Complex Analysis of the Aluminum Siting in the Framework of Silicon-Rich Zeolites. A Case Study on Ferrierite. J. Phys. Chem. C. 2011;115:11056–11064. doi: 10.1021/jp200310b. DOI
Saha I. E., Erlebach A., Nachtigall P., Heard C. J. and Grajciar L., Reactive Neural Network Potential for Aluminosilicate Zeolites and Water: Quantifying the Effect of Si/Al Ratio on Proton Solvation and Water Diffusion in H-FAU, ChemRxiv, 2022, 10.26434/chemrxiv-2022-d1sj9 DOI
Maurin G. Bell R. G. Devautour S. Henn F. Giuntini J. C. Modeling the Effect of Hydration in Zeolite Na+−Mordenite. J. Phys. Chem. B. 2004;108:3739–3745. doi: 10.1021/jp034151a. DOI
Erlebach A. Nachtigall P. Grajciar L. Accurate large-scale simulations of siliceous zeolites by neural network potentials. npj Comput. Mater. 2022;8:174. doi: 10.1038/s41524-022-00865-w. DOI
Erlebach A., Šípka M., Saha I., Nachtigall P., Heard C. J. and Grajciar L., A reactive neural network framework for water-loaded acidic zeolites, arXiv, 2023, preprint, arXiv:2307.00911, 10.48550/arXiv.2307.00911 PubMed DOI PMC