The effect of water on the validity of Löwenstein's rule

. 2019 Jun 14 ; 10 (22) : 5705-5711. [epub] 20190506

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31293755

The common understanding of zeolite acidity is based on Löwenstein's rule, which states that Al-O-Al aluminium pairs are forbidden in zeolites. This rule is generally accepted to be inviolate in zeolites. However, recent computational research using a 0 K DFT model has suggested that the rule is violated for the acid form of several zeolites under anhydrous conditions [Fletcher et al., Chem. Sci., 8, (2017), 7483]. The effect of water loading on the preferred aluminium distribution in zeolites, however, has so far not been taken into account. In this article, we show by way of ab initio molecular dynamics simulations that Löwenstein's rule is obeyed under high water solvation for acid chabazite (H-CHA) but disobeyed under anhydrous conditions. We find that varying the water loading in the pores leads to dramatic effects on the structure of the active sites and the dynamics of solvation. The solvation of Brønsted protons in the surrounding water was found to be the energetic driving force for the preferred Löwenstein Al distribution and this driving force is absent in non-Löwenstein (Al-O(H)-Al) moieties. The preference for solvated protons further implies that the catalytically active species in zeolites is a protonated water cluster, rather than a framework Brønsted site. Hence, an accurate treatment of the solvation conditions is crucial to capture the behaviour of zeolites and to properly connect simulations to experiments. This work should lead to a change in modelling paradigm for zeolites, from single molecules towards high solvation models where appropriate.

Zobrazit více v PubMed

Li Y., Li L., Yu J. Chem. 2017;3:928–949.

Loewenstein R. Am. Mineral. 1954;39:92–96.

Depmeier W. Phys. Chem. Miner. 1988;15:419–426.

Stebbins J. F., Zhao P. D., Lee S. K., Cheng X. Am. Mineral. 1999;84:1680–1684.

Dann S. E., Mead P. J., Weller M. T. Inorg. Chem. 1996;35:1427–1428. PubMed

Gupta A. K., Chatterjee N. D. Am. Mineral. 1978;63:58–65.

Sahl K. Fiz. Krist. 1980;152:13–21.

Florian P., Veron E., Green T. F. G., Yates J. R., Massiot D. Chem. Mater. 2012;24:4068–4079.

Allu A. R., Gaddam A., Ganisetti S., Balaji S., Siegel R., Mather G. C., Fabian M., Pascual M. J., Ditaranto N., Milius W., Senker J., Agarkov D. A., Kharton V. V., Ferreira J. M. F. J. Phys. Chem. B. 2018;122:4737–4747. PubMed

Dubinsky E. V., Stebbins J. F. Am. Mineral. 2006;91:753–761.

Putnis A., Fyfe C. A., Gobbi G. C. Phys. Chem. Miner. 1985;12:211–216.

Phillips B. L., Kirkpatrick R. J., Carpenter M. A. Am. Mineral. 1992;77:484–494.

Pavón E., Osuna F. J., Alba M. D., Delevoye L. Chem. Commun. 2014;50:6984–6986. PubMed

Dann S. E., Mead P. J., Weller M. T. Angew. Chem., Int. Ed. Engl. 1995;34:2414–2416.

Klinowski J., Thomas J. M., Fyfe C. A., Hartman J. S. J. Phys. Chem. 1981;85:2590–2594.

Tarling S. E., Barnes P., Klinowski J. Acta Crystallogr., Sect. B: Struct. Sci. 1988;44:128–135.

Schaack B. B., Ph.D. thesis, Ruhr Universitaet Bochum, 2009.

Bell R. G., Jackson R. A., Catlow C. R. A. Zeolites. 1992;12:870–871.

Catlow C. R. A., George A. R., Freeman C. M. Chem. Commun. 1996:1311–1312. doi: 10.1039/cc9960001311. DOI

Fletcher R. E., Ling S., Slater B. Chem. Sci. 2017;8:7483–7491. PubMed PMC

Zhang L., Chen K., Chen B., White J. L., Resasco D. E. J. Am. Chem. Soc. 2015;137:11810–11819. PubMed

Cundy C. S., Cox P. A. Microporous Mesoporous Mater. 2005;82:1–78.

Ravenelle R. M., Schüβler F., D'Amico A., Danilina N., van Bokhoven J. A., Lercher J. A., Jones C. W., Sievers C. J. Phys. Chem. C. 2010;114:19582–19595.

Vjunov A., Derewinski M. A., Fulton J. L., Camaioni D. M., Lercher J. A. J. Am. Chem. Soc. 2015;137:10374–10382. PubMed

Silaghi M.-C., Chizallet C., Petracovschi E., Kerber T., Sauer J., Raybaud P. ACS Catal. 2014;5:11–15.

Nielsen M., Brogaard R. Y., Falsig H., Beato P., Swang O., Svelle S. ACS Catal. 2015;5:7131–7139.

Eliášová P., Opanasenko M., Wheatley P. S., Shamzhy M., Mazur M., Nachtigall P., Roth W. J., Morris R. E., Čejka J. Chem. Soc. Rev. 2015;44:7177–7206. PubMed

Roth W. J., Nachtigall P., Morris R. E., Wheatley P. S., Seymour V. R., Ashbrook S. E. M., Chlubna P., Grajciar L., Polozij M., Zukal A., Shvets O., Cejka J. Nat. Chem. 2013;5:628–633. PubMed

Solans-Monfort X., Sodupe M., Branchadell V., Sauer J., Orlando R., Ugliengo P. J. Phys. Chem. B. 2005;109:3539–3545. PubMed

Krossner M., Sauer J. J. Phys. Chem. 1996;100:6199–6211.

Koller H., Engelhardt G., van Santen R. A. Top. Catal. 1999;9:163–180.

Jeanvoine Y., Ángyán J. G., Kresse G., Hafner J. J. Phys. Chem. B. 1998;102:5573–5580.

Termath V., Haase F., Sauer J., Hutter J., Parrinello M. J. Am. Chem. Soc. 1998;120:8512–8516.

Schwarz K., Nusterer E., Blöchl P. E. Catal. Today. 1999;50:501–509.

Vener M. V., Rozanska X., Sauer J. Phys. Chem. Chem. Phys. 2009;11:1702–1712. PubMed

Joshi K. L., Psofogiannakis G., van Duin A. C. T., Raman S. Phys. Chem. Chem. Phys. 2014;16:18433–18441. PubMed

De Wispelaere K., Ensing B., Ghysels A., Meijer E. J., Van Speybroeck V. Chem.–Eur. J. 2015;21:9385–9396. PubMed

Fischer M. Phys. Chem. Chem. Phys. 2016;18:15738–15750. PubMed

De Wispelaere K., Wondergem C. S., Ensing B., Hemelsoet K., Meijer E. J., Weckhuysen B. M., Van Speybroeck V., Ruiz-Martínez J. ACS Catal. 2016;6:1991–2002.

Vjunov A., Wang M., Govind N., Huthwelker T., Shi H., Mei D., Fulton J. L., Lercher J. A. Chem. Mater. 2017;29:9030–9042.

Grajciar L., Heard C. J., Bondarenko A. A., Polynski M. V., Meeprasert J., Pidko E. A., Nachtigall P. Chem. Soc. Rev. 2018;47:8307–8348. PubMed PMC

http://www.iza-structure.org/databases/, 2017.

Berendsen H. J. C., van der Spoel D., van Drunen R. Comput. Phys. Commun. 1995;91:43–56.

Kresse G., Hafner J. Phys. Rev. B: Condens. Matter Mater. Phys. 1993;47:558–561. PubMed

Kresse G., Hafner J. Phys. Rev. B: Condens. Matter Mater. Phys. 1994;49:14251–14269. PubMed

Kresse G., Furthmüller J. Phys. Rev. B: Condens. Matter Mater. Phys. 1996;54:11169–11186. PubMed

Kresse G., Furthmüller J. Comput. Mater. Sci. 1996;6:15–50.

Perdew J. P., Burke K., Ernzerhof M. Phys. Rev. Lett. 1996;77:3865–3868. PubMed

Grimme S., Antony J., Ehrlich S., Krieg H. J. Chem. Phys. 2010;132:154104. PubMed

Grimme S., Ehrlich S., Goerigk L. J. Comput. Chem. 2011;32:1456–1465. PubMed

Gillan M. J., Alfè D., Michaelides A. J. Chem. Phys. 2016;144:130901. PubMed

Borfecchia E., Beato P., Svelle S., Olsbye U., Lamberti C., Bordiga S. Chem. Soc. Rev. 2018;47:8097–8133. PubMed

Pappas D. K., Borfecchia E., Dyballa M., Pankin I. A., Lomachenko K. A., Martini A., Signorile M., Teketel S., Arstad B., Berlier G., Lamberti C., Bordiga S., Olsbye U., Lillerud K. P., Svelle S., Beato P. J. Am. Chem. Soc. 2017;139:14961–14975. PubMed

Groothaert M. H., Smeets P. J., Sels B. F., Jacobs P. A., Schoonheydt R. A. J. Am. Chem. Soc. 2005;127:1394–1395. PubMed

Grajciar L., Areán C. O., Pulido A., Nachtigall P. Phys. Chem. Chem. Phys. 2010;12:1497–1506. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

A reactive neural network framework for water-loaded acidic zeolites

. 2024 May 17 ; 15 (1) : 4215. [epub] 20240517

The need for operando modelling of 27Al NMR in zeolites: the effect of temperature, topology and water

. 2023 Aug 30 ; 14 (34) : 9101-9113. [epub] 20230803

Fast room temperature lability of aluminosilicate zeolites

. 2019 Oct 16 ; 10 (1) : 4690. [epub] 20191016

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...