The effect of water on the validity of Löwenstein's rule
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31293755
PubMed Central
PMC6563785
DOI
10.1039/c9sc00725c
PII: c9sc00725c
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The common understanding of zeolite acidity is based on Löwenstein's rule, which states that Al-O-Al aluminium pairs are forbidden in zeolites. This rule is generally accepted to be inviolate in zeolites. However, recent computational research using a 0 K DFT model has suggested that the rule is violated for the acid form of several zeolites under anhydrous conditions [Fletcher et al., Chem. Sci., 8, (2017), 7483]. The effect of water loading on the preferred aluminium distribution in zeolites, however, has so far not been taken into account. In this article, we show by way of ab initio molecular dynamics simulations that Löwenstein's rule is obeyed under high water solvation for acid chabazite (H-CHA) but disobeyed under anhydrous conditions. We find that varying the water loading in the pores leads to dramatic effects on the structure of the active sites and the dynamics of solvation. The solvation of Brønsted protons in the surrounding water was found to be the energetic driving force for the preferred Löwenstein Al distribution and this driving force is absent in non-Löwenstein (Al-O(H)-Al) moieties. The preference for solvated protons further implies that the catalytically active species in zeolites is a protonated water cluster, rather than a framework Brønsted site. Hence, an accurate treatment of the solvation conditions is crucial to capture the behaviour of zeolites and to properly connect simulations to experiments. This work should lead to a change in modelling paradigm for zeolites, from single molecules towards high solvation models where appropriate.
Zobrazit více v PubMed
Li Y., Li L., Yu J. Chem. 2017;3:928–949.
Loewenstein R. Am. Mineral. 1954;39:92–96.
Depmeier W. Phys. Chem. Miner. 1988;15:419–426.
Stebbins J. F., Zhao P. D., Lee S. K., Cheng X. Am. Mineral. 1999;84:1680–1684.
Dann S. E., Mead P. J., Weller M. T. Inorg. Chem. 1996;35:1427–1428. PubMed
Gupta A. K., Chatterjee N. D. Am. Mineral. 1978;63:58–65.
Sahl K. Fiz. Krist. 1980;152:13–21.
Florian P., Veron E., Green T. F. G., Yates J. R., Massiot D. Chem. Mater. 2012;24:4068–4079.
Allu A. R., Gaddam A., Ganisetti S., Balaji S., Siegel R., Mather G. C., Fabian M., Pascual M. J., Ditaranto N., Milius W., Senker J., Agarkov D. A., Kharton V. V., Ferreira J. M. F. J. Phys. Chem. B. 2018;122:4737–4747. PubMed
Dubinsky E. V., Stebbins J. F. Am. Mineral. 2006;91:753–761.
Putnis A., Fyfe C. A., Gobbi G. C. Phys. Chem. Miner. 1985;12:211–216.
Phillips B. L., Kirkpatrick R. J., Carpenter M. A. Am. Mineral. 1992;77:484–494.
Pavón E., Osuna F. J., Alba M. D., Delevoye L. Chem. Commun. 2014;50:6984–6986. PubMed
Dann S. E., Mead P. J., Weller M. T. Angew. Chem., Int. Ed. Engl. 1995;34:2414–2416.
Klinowski J., Thomas J. M., Fyfe C. A., Hartman J. S. J. Phys. Chem. 1981;85:2590–2594.
Tarling S. E., Barnes P., Klinowski J. Acta Crystallogr., Sect. B: Struct. Sci. 1988;44:128–135.
Schaack B. B., Ph.D. thesis, Ruhr Universitaet Bochum, 2009.
Bell R. G., Jackson R. A., Catlow C. R. A. Zeolites. 1992;12:870–871.
Catlow C. R. A., George A. R., Freeman C. M. Chem. Commun. 1996:1311–1312. doi: 10.1039/cc9960001311. DOI
Fletcher R. E., Ling S., Slater B. Chem. Sci. 2017;8:7483–7491. PubMed PMC
Zhang L., Chen K., Chen B., White J. L., Resasco D. E. J. Am. Chem. Soc. 2015;137:11810–11819. PubMed
Cundy C. S., Cox P. A. Microporous Mesoporous Mater. 2005;82:1–78.
Ravenelle R. M., Schüβler F., D'Amico A., Danilina N., van Bokhoven J. A., Lercher J. A., Jones C. W., Sievers C. J. Phys. Chem. C. 2010;114:19582–19595.
Vjunov A., Derewinski M. A., Fulton J. L., Camaioni D. M., Lercher J. A. J. Am. Chem. Soc. 2015;137:10374–10382. PubMed
Silaghi M.-C., Chizallet C., Petracovschi E., Kerber T., Sauer J., Raybaud P. ACS Catal. 2014;5:11–15.
Nielsen M., Brogaard R. Y., Falsig H., Beato P., Swang O., Svelle S. ACS Catal. 2015;5:7131–7139.
Eliášová P., Opanasenko M., Wheatley P. S., Shamzhy M., Mazur M., Nachtigall P., Roth W. J., Morris R. E., Čejka J. Chem. Soc. Rev. 2015;44:7177–7206. PubMed
Roth W. J., Nachtigall P., Morris R. E., Wheatley P. S., Seymour V. R., Ashbrook S. E. M., Chlubna P., Grajciar L., Polozij M., Zukal A., Shvets O., Cejka J. Nat. Chem. 2013;5:628–633. PubMed
Solans-Monfort X., Sodupe M., Branchadell V., Sauer J., Orlando R., Ugliengo P. J. Phys. Chem. B. 2005;109:3539–3545. PubMed
Krossner M., Sauer J. J. Phys. Chem. 1996;100:6199–6211.
Koller H., Engelhardt G., van Santen R. A. Top. Catal. 1999;9:163–180.
Jeanvoine Y., Ángyán J. G., Kresse G., Hafner J. J. Phys. Chem. B. 1998;102:5573–5580.
Termath V., Haase F., Sauer J., Hutter J., Parrinello M. J. Am. Chem. Soc. 1998;120:8512–8516.
Schwarz K., Nusterer E., Blöchl P. E. Catal. Today. 1999;50:501–509.
Vener M. V., Rozanska X., Sauer J. Phys. Chem. Chem. Phys. 2009;11:1702–1712. PubMed
Joshi K. L., Psofogiannakis G., van Duin A. C. T., Raman S. Phys. Chem. Chem. Phys. 2014;16:18433–18441. PubMed
De Wispelaere K., Ensing B., Ghysels A., Meijer E. J., Van Speybroeck V. Chem.–Eur. J. 2015;21:9385–9396. PubMed
Fischer M. Phys. Chem. Chem. Phys. 2016;18:15738–15750. PubMed
De Wispelaere K., Wondergem C. S., Ensing B., Hemelsoet K., Meijer E. J., Weckhuysen B. M., Van Speybroeck V., Ruiz-Martínez J. ACS Catal. 2016;6:1991–2002.
Vjunov A., Wang M., Govind N., Huthwelker T., Shi H., Mei D., Fulton J. L., Lercher J. A. Chem. Mater. 2017;29:9030–9042.
Grajciar L., Heard C. J., Bondarenko A. A., Polynski M. V., Meeprasert J., Pidko E. A., Nachtigall P. Chem. Soc. Rev. 2018;47:8307–8348. PubMed PMC
http://www.iza-structure.org/databases/, 2017.
Berendsen H. J. C., van der Spoel D., van Drunen R. Comput. Phys. Commun. 1995;91:43–56.
Kresse G., Hafner J. Phys. Rev. B: Condens. Matter Mater. Phys. 1993;47:558–561. PubMed
Kresse G., Hafner J. Phys. Rev. B: Condens. Matter Mater. Phys. 1994;49:14251–14269. PubMed
Kresse G., Furthmüller J. Phys. Rev. B: Condens. Matter Mater. Phys. 1996;54:11169–11186. PubMed
Kresse G., Furthmüller J. Comput. Mater. Sci. 1996;6:15–50.
Perdew J. P., Burke K., Ernzerhof M. Phys. Rev. Lett. 1996;77:3865–3868. PubMed
Grimme S., Antony J., Ehrlich S., Krieg H. J. Chem. Phys. 2010;132:154104. PubMed
Grimme S., Ehrlich S., Goerigk L. J. Comput. Chem. 2011;32:1456–1465. PubMed
Gillan M. J., Alfè D., Michaelides A. J. Chem. Phys. 2016;144:130901. PubMed
Borfecchia E., Beato P., Svelle S., Olsbye U., Lamberti C., Bordiga S. Chem. Soc. Rev. 2018;47:8097–8133. PubMed
Pappas D. K., Borfecchia E., Dyballa M., Pankin I. A., Lomachenko K. A., Martini A., Signorile M., Teketel S., Arstad B., Berlier G., Lamberti C., Bordiga S., Olsbye U., Lillerud K. P., Svelle S., Beato P. J. Am. Chem. Soc. 2017;139:14961–14975. PubMed
Groothaert M. H., Smeets P. J., Sels B. F., Jacobs P. A., Schoonheydt R. A. J. Am. Chem. Soc. 2005;127:1394–1395. PubMed
Grajciar L., Areán C. O., Pulido A., Nachtigall P. Phys. Chem. Chem. Phys. 2010;12:1497–1506. PubMed