Towards operando computational modeling in heterogeneous catalysis
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, přehledy
PubMed
30204184
PubMed Central
PMC6240816
DOI
10.1039/c8cs00398j
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
An increased synergy between experimental and theoretical investigations in heterogeneous catalysis has become apparent during the last decade. Experimental work has extended from ultra-high vacuum and low temperature towards operando conditions. These developments have motivated the computational community to move from standard descriptive computational models, based on inspection of the potential energy surface at 0 K and low reactant concentrations (0 K/UHV model), to more realistic conditions. The transition from 0 K/UHV to operando models has been backed by significant developments in computer hardware and software over the past few decades. New methodological developments, designed to overcome part of the gap between 0 K/UHV and operando conditions, include (i) global optimization techniques, (ii) ab initio constrained thermodynamics, (iii) biased molecular dynamics, (iv) microkinetic models of reaction networks and (v) machine learning approaches. The importance of the transition is highlighted by discussing how the molecular level picture of catalytic sites and the associated reaction mechanisms changes when the chemical environment, pressure and temperature effects are correctly accounted for in molecular simulations. It is the purpose of this review to discuss each method on an equal footing, and to draw connections between methods, particularly where they may be applied in combination.
Zobrazit více v PubMed
Topsoe H. J. Catal. 2003;216:155–164.
Banares M. A. Catal. Today. 2005;100:71–77.
Chakrabarti A., Ford M. E., Gregory D., Hu R. R., Keturakis C. J., Lwin S., Tang Y. D., Yang Z., Zhu M. H., Banares M. A., Wachs I. E. Catal. Today. 2017;283:27–53.
Jones C. W., Tao F., Garland M. V. ACS Catal. 2012;2:2444–2445.
Weckhuysen B. M. Natl. Sci. Rev. 2015;2:147–149.
Kalz K. F., Kraehnert R., Dvoyashkin M., Dittmeyer R., Gläser R., Krewer U., Reuter K., Grunwaldt J.-D. ChemCatChem. 2017;9:17–29. PubMed PMC
Reuter K., Plaisance C. P., Oberhofer H., Andersen M. J. Chem. Phys. 2017;146:040901. PubMed
van Spronsen M. A., Frenken J. W. M., Groot I. M. N. Chem. Soc. Rev. 2017;46:4347–4374. PubMed
Schlegel H. B. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2011;1:790–809.
Jin R., Zeng C., Zhou M., Chen Y. Chem. Rev. 2016;116:10346–10413. PubMed
Jørgensen M. S., Larsen U. F., Jacobsen K. W., Hammer B. J. Phys. Chem. A. 2018;122:1504–1509. PubMed
Heiles S., Johnston R. L. Int. J. Quantum Chem. 2013;113:2091–2109.
Wales D. J., Energy Landscapes: Applications to Clusters, Biomolecules and Glasses, Cambridge University Press, Cambridge, UK, 2003.
Wales D. J. J. Phys. Chem. A. 1997;101:5111–5116.
Goedecker S. J. Chem. Phys. 2004;120:9911–9917. PubMed
Bao K., Goedecker S., Koga K., Lançon F., Neelov A. Phys. Rev. B: Condens. Matter Mater. Phys. 2009;79:041405R.
Eivari H. A., Ghasemi S. A., Tahmasbi H., Rostami S., Faraji S., Rasoulkhani R., Goedecker S., Amsler M. Chem. Mater. 2017;29:8594–8603.
Gauthier J. A., Dickens C. F., Chen L. D., Doyle A. D., Nørskov J. K. J. Phys. Chem. C. 2017;121:11455–11463.
Sicher M., Mohr S., Goedecker S. J. Chem. Phys. 2011;134:044106. PubMed
Schaefer B., Mohr S., Amsler M., Goedecker S. J. Chem. Phys. 2014;140:214102. PubMed
Rossi G., Ferrando R. Chem. Phys. Lett. 2006;423:17–22.
Barcaro G., Fortunelli A., Rossi G., Nita F., Ferrando R. J. Phys. Chem. B. 2006;110:23197–23203. PubMed
Johnston R. L. Dalton Trans. 2003:4193–4207.
Ge Y., Head J. D. J. Phys. Chem. B. 2004;108:6025–6034.
Gell L., Kulesza A., Petersen J., Röhr M. I. S., Mitrić R., Bonačić-Koutecký V. J. Phys. Chem. C. 2013;117:14824–14831.
Vilhelmsen L. B., Hammer B. J. Chem. Phys. 2014;141:044711. PubMed
Jørgensen M. S., Groves M. N., Hammer B. J. Chem. Theory Comput. 2017;13:1486–1493. PubMed
Ferrando R., Fortunelli A., Johnston R. L. Phys. Chem. Chem. Phys. 2008;10:640–649. PubMed
Kim H. G., Choi S. K., Lee H. M. J. Chem. Phys. 2008;128:144702. PubMed
Zabodsky H., Peleg S., Avnir D. J. Am. Chem. Soc. 1993;115:8278–8289.
Oakley M. T., Johnston R. L., Wales D. J. Phys. Chem. Chem. Phys. 2013;15:3965–3976. PubMed
Schönborn S. E., Goedecker S., Roy S., Oganov A. R. J. Chem. Phys. 2009;130:144108. PubMed
Kang Z., Tsang C. H. A., Wong N. B., Zhang Z., Lee S. T. J. Am. Chem. Soc. 2007;129:12090–12091. PubMed
Gonzalez C., Schlegel H. B. J. Chem. Phys. 1989;90:2154–2161.
Sheppard D., Terrell R., Henkelman G. J. Chem. Phys. 2008;128:134106. PubMed
Weinan E., Ren W., Vanden-Eijnden E. Phys. Rev. B: Condens. Matter Mater. Phys. 2002;66:052301.
Maragliano L., Fischer A., Vanden-Eijnden E., Ciccotti G. J. Chem. Phys. 2006;125:024106. PubMed
Branduardi D., Gervasio F. L., Parrinello M. J. Chem. Phys. 2007;126:054103. PubMed
Trygubenko S. A., Wales D. J. J. Chem. Phys. 2004;120:2082–2094. PubMed
Seymour I. D., Chakraborty S., Middlemiss D. S., Wales D. J., Grey C. P. Chem. Mater. 2015;27:5550–5561.
Chuang F. C., Ciobanu C. V., Shenoy V. B., Wang C. Z., Ho K. M. Surf. Sci. 2004;573:L375–L381.
Zhang X. J., Shang C., Liu Z. P. J. Chem. Phys. 2017;147:152706. PubMed
Massen C., Mortimer-Jones T. V., Johnston R. L. J. Chem. Soc., Dalton Trans. 2002:4375. doi: 10.1039/b207847c. DOI
Rapallo A., Rossi G., Ferrando R., Fortunelli A., Curley B. C., Lloyd L. D., Tarbuck G. M., Johnston R. L. J. Chem. Phys. 2005;122:194308. PubMed
Dieterich J. M., Hartke B. J. Comput. Chem. 2011;32:1377–1385. PubMed
Rossi G., Ferrando R., Rapallo A., Fortunelli A., Curley B. C., Lloyd L. D., Johnston R. L. J. Chem. Phys. 2005;122:194309. PubMed
Bochicchio D., Ferrando R. Nano Lett. 2010;10:4211–4216. PubMed
Ferrando R., Fortunelli A., Rossi G. Phys. Rev. B: Condens. Matter Mater. Phys. 2005;72:085449.
Ismail R., Johnston R. L. Phys. Chem. Chem. Phys. 2010;12:8607–8619. PubMed
Baturin V. S., Lepeshkin S. V., Matsko N. L., Oganov A. R., Uspenskii Y. A. EPL. 2014;106:37002.
Pyykko P. Angew. Chem., Int. Ed. 2004;43:4412–4456. PubMed
Aprà E., Ferrando R., Fortunelli A. Phys. Rev. B: Condens. Matter Mater. Phys. 2006;73:205414.
Serapian S. A., Bearpark M. J., Bresme F. Nanoscale. 2013;5:6445–6457. PubMed
Gao Y., Shao N., Bulusu S., Zeng X. C. J. Phys. Chem. C. 2008;112:8234–8238.
Shayeghi A., Heard C. J., Johnston R. L., Schafer R. J. Chem. Phys. 2014;140:054312. PubMed
Fournier R. Can. J. Chem. 2010;88:1071–1078.
Heiles S., Johnston R. L., Schafer R. J. Phys. Chem. A. 2012;116:7756–7764. PubMed
Adams R. D., Blom D. A., Captain B., Raja R., Meurig Thomas J., Trufan E. Langmuir. 2008;24:9223–9226. PubMed
Paz-Borbon L. O., Hellman A., Thomas J. M., Gronbeck H. Phys. Chem. Chem. Phys. 2013;15:9694–9700. PubMed
Bhattacharya S., Levchenko. S. V., Ghiringhelli L. M., Scheffler M. Phys. Rev. Lett. 2013;111:135501. PubMed
Beret E. C., Ghiringhelli L. C., Scheffler M. Faraday Discuss. 2011;152:153–167. PubMed
Dhillon H., Fournier R. Comput. Theor. Chem. 2013;1021:26–34.
Pei Y., Gao Y., Shao N., Zeng X. C. J. Am. Chem. Soc. 2009;131:13619–13621. PubMed
Pei Y., Pal R., Liu C., Gao Y., Zhang Z., Zeng X. C. J. Am. Chem. Soc. 2012;134:3015–3024. PubMed
Liu Y., Tian Z., Cheng L. RSC Adv. 2016;6:4705–4712.
Xiang H., Wei S.-H., Gong X. J. Am. Chem. Soc. 2010;132:7355–7360. PubMed
Bertorelle F., Hamouda R., Rayane D., Broyer M., Antoine R., Dugourd P., Gell L., Kulesza A., Mitrić R., Bonačić-Koutecký V. Nanoscale. 2013;5:5637. PubMed
Bellina B., Antoine R., Broyer M., Gell L., Sanader ž., Mitrić R., Bonačić-Koutecký V., Dugourd P. Dalton Trans. 2013;42:8328. PubMed
Ge Y., Head J. D. J. Phys. Chem. B. 2002;106:6997–7004.
Ge Y., Head J. D. Int. J. Quantum Chem. 2003;95:617–626.
Ge Y., Head J. D. Chem. Phys. Lett. 2004;398:107–112.
Biswas P., Atta-Fynn R., Elliott S. R. Phys. Rev. B. 2016;93:1–14.
Biswas P., Paudel D., Atta-Fynn R., Drabold D. A., Elliott S. R. Phys. Rev. Appl. 2017;7:024013.
Rosi N. L., Mirkin C. A. Chem. Rev. 2005;105:1547–1562. PubMed
Zhu M., Lanni E., Garg N., Bier M. E., Jin R. J. Am. Chem. Soc. 2008;130:1138–1139. PubMed
Negishi Y., Nobusada K., Tsukuda T. J. Am. Chem. Soc. 2005;127:5261–5270. PubMed
Jadzinsky P. D., Calero G., Ackerson C. J., Bushnell D. A., Kornberg R. D. Science. 2007;318:430–433. PubMed
Zhu M., Aikens C. M., Hollander F. J., Schatz G. C. J. Am. Chem. Soc. 2008;130:5883–5885. PubMed
Häkkinen H., Walter M., Grönbeck H. J. Phys. Chem. B. 2006;110:9927–9931. PubMed
Kang Z., Tsang C. H. A., Zhang Z., Zhang M., Wong N. B., Zapien J. A., Shan Y., Lee S. T. J. Am. Chem. Soc. 2007;129:5326–5327. PubMed
Kang Z. H., Liu Y., Lee S. T. Nanoscale. 2011;3:777–791. PubMed
Rupp M. Int. J. Quantum Chem. 2015;115:1003–1004.
Lyakhov A. O., Oganov A. R., Stokes H. T., Zhu Q. Comput. Phys. Commun. 2013;184:1172–1182.
Harris J. Phys. Rev. B: Condens. Matter Mater. Phys. 1985;31:1770–1779. PubMed
Jelfs K. E., Flikkema E., Bromley S. T. Phys. Chem. Chem. Phys. 2013;15:20438–20443. PubMed
Cuko A., Macià A., Calatayud M., Bromley S. T. Comput. Theor. Chem. 2017;1102:38–43.
Abraham N. L., Probert M. I. J. Phys. Rev. B: Condens. Matter Mater. Phys. 2006;73:224104.
Sierka M., Todorova T. K., Sauer J., Kaya S., Stacchiola D., Weissenrieder J., Shaikhutdinov S., Freund H. J. J. Chem. Phys. 2007;126:234710. PubMed
Sierka M. Prog. Surf. Sci. 2010;85:398–434.
Kaya S., Weissenrieder J., Stacchiola D., Todorova T. K., Sierka M., Sauer J., Shaikhutdinov S., Freund H. J. Surf. Sci. 2008;602:3338–3342.
Batzill M., Diebold U. Prog. Surf. Sci. 2005;79:47–154.
Merte L. R., Jorgensen M. S., Pussi K., Gustafson J., Shipilin M., Schaefer A., Zhang C., Rawle J., Nicklin C., Thornton G., Lindsay R., Hammer B., Lundgren E. Phys. Rev. Lett. 2017;119:096102. PubMed
Fujishima A., Zhang X., Tryk D. Surf. Sci. Rep. 2008;63:515–582.
Martinez U., Vilhelmsen L. B., Kristoffersen H. H., Stausholm-Møller J., Hammer B. Phys. Rev. B: Condens. Matter Mater. Phys. 2011;84:205434.
Martinez U., Hansen J. O., Lira E., Kristoffersen H. H., Huo P., Bechstein R., Laegsgaard E., Besenbacher F., Hammer B., Wendt S. Phys. Rev. Lett. 2012;109:155501. PubMed
Bechstein R., Kristoffersen H. H., Vilhelmsen L. B., Rieboldt F., Stausholm-Moller J., Wendt S., Hammer B., Besenbacher F. Phys. Rev. Lett. 2012;108:236103. PubMed
Freeman C. L., Claeyssens F., Allan N. L., Harding J. H. Phys. Rev. Lett. 2006;96:066102. PubMed
Kozlov S. M., Demiroglu I., Neyman K. M., Bromley S. T. Nanoscale. 2015;7:4361–4366. PubMed
Krainara N., Limtrakul J., Illas F., Bromley S. T. Phys. Rev. B: Condens. Matter Mater. Phys. 2011;83:233305.
Krainara N., Limtrakul J., Illas F., Bromley S. T. J. Phys. Chem. C. 2013;117:22908–22914.
Ferguson G. A., Mehmood F., Rankin R. B., Greeley J. P., Vajda S., Curtiss L. A. Top. Catal. 2012;55:353–365.
Miyazaki K., Inoue T. Surf. Sci. 2002;501:93–101.
Zhuang J., Kojima T., Zhang W., Liu L., Zhao L., Li Y. Phys. Rev. B: Condens. Matter Mater. Phys. 2002;65:045411.
Eckhoff M., Schebarchov D., Wales D. J. J. Phys. Chem. Lett. 2017;8:5402–5407. PubMed
Ismail R., Ferrando R., Johnston R. L. J. Phys. Chem. C. 2012;117:293–301.
Ferrando R., Rossi G., Levi A. C., Kuntova Z., Nita F., Jelea A., Mottet C., Barcaro G., Fortunelli A., Goniakowski J. J. Chem. Phys. 2009;130:174702. PubMed
Goniakowski J., Jelea A., Mottet C., Barcaro G., Fortunelli A., Kuntova Z., Nita F., Levi A. C., Rossi G., Ferrando R. J. Chem. Phys. 2009;130:174703. PubMed
Kozlov S. M., Aleksandrov H. A., Goniakowski J., Neyman K. M. J. Chem. Phys. 2013;139:084701. PubMed
Yang B., Liu C., Halder A., Tyo E. C., Martinson A. B. F., Seifert S., Zapol P., Curtiss L. A., Vajda S. J. Phys. Chem. C. 2017;121:10406–10412.
Lei Y., Mehmood F., Lee S., Greeley J. P., Lee B., Seifert S., Winans R. E., Elam J. W., Meyer R. J., Redfern P. C., Teschner D., Schlogl R., Pellin M. J., Curtiss L. A., Vajda S. Science. 2010;328:224–228. PubMed
Vajda S., Pellin M. J., Greeley J. P., Marshall C. L., Curtiss L. A., Ballentine G. A., Elam J. W., Catillon-Mucherie S., Redfern P. C., Mehmood F., Zapol P. Nat. Mater. 2009;8:213–216. PubMed
Barcaro G., Fortunelli A. J. Chem. Theory Comput. 2005;1:972–985. PubMed
Davis J. B. A., Horswell S. L., Johnston R. L. J. Phys. Chem. C. 2016;120:3759–3765.
Vilhelmsen L. B., Hammer B. Phys. Rev. Lett. 2012;108:126101. PubMed
Vilhelmsen L. B., Hammer B. J. Chem. Phys. 2013;139:204701. PubMed
Jiang D. E., Overbury S. H., Dai S. J. Phys. Chem. Lett. 2011;2:1211–1215. PubMed
Jia C., Fan W. Phys. Chem. Chem. Phys. 2015;17:30736–30743. PubMed
Cunningham D. A. H., Vogel W., Kageyama H., Tsubota S., Haruta M. J. Catal. 1998;177:1–10.
Barcaro G., Apra E., Fortunelli A. Chemistry. 2007;13:6408–6418. PubMed
Fiala R., Figueroba A., Bruix A., Vaclavu M., Rednyk A., Khalakhan I., Vorokhta M., Lavkova J., Illas F., Potin V., Matolinova I., Neyman K. M., Matolin V. Appl. Catal., B. 2016;197:262–270.
Figueroba A., Kovács G., Bruix A., Neyman K. M. Catal. Sci. Technol. 2016;6:6806–6813.
Paz-Borbòn L. O., Lopez-Martinez A., Garzon I. L., Posada-Amarillas A., Grönbeck H. Phys. Chem. Chem. Phys. 2017;19:17845–17855. PubMed
Lykhach Y., Kozlov S. M., Skala T., Tovt A., Stetsovych V., Tsud N., Dvorak F., Johanek V., Neitzel A., Myslivecek J., Fabris S., Matolin V., Neyman K. M., Libuda J. Nat. Mater. 2016;15:284–288. PubMed
Campbell C. T. Surf. Sci. Rep. 1997;27:1–111.
Xu L., Henkelman G., Campbell C. T., Jonsson H. Phys. Rev. Lett. 2005;95:146103. PubMed
Xu L., Campbell C. T., Jónsson H., Henkelman G. Surf. Sci. 2007;601:3133–3142.
Barcaro G., Fortunelli A. New J. Phys. 2007;9:22.
Ouyang R., Liu J. X., Li W. X. J. Am. Chem. Soc. 2013;135:1760–1771. PubMed
Wang J. G., Hammer B. Phys. Rev. Lett. 2006;97:136107. PubMed
Rieboldt F., Vilhelmsen L. B., Koust S., Lauritsen J. V., Helveg S., Lammich L., Besenbacher F., Hammer B., Wendt S. J. Chem. Phys. 2014;141:214702. PubMed
Fisicaro G., Sicher M., Amsler M., Saha S., Genovese L., Goedecker S. Phys. Rev. Mater. 2017;1:033609.
Negreiros F. R., Apra E., Barcaro G., Sementa L., Vajda S., Fortunelli A. Nanoscale. 2012;4:1208–1219. PubMed
Negreiros F. R., Sementa L., Barcaro G., Vajda S., Aprá E., Fortunelli A. ACS Catal. 2012;2:1860–1864. PubMed
Qin R., Liu P., Fu G., Zheng N. Small Methods. 2018;2:1700286.
Liu L., Díaz U., Arenal R., Agostini G., Concepción P., Corma A. Nat. Mater. 2016;16:132–138. PubMed
Goldbach A. and Saboungi M., in Encyclopedia of Inorganic and Bioinorganic Chemistry, ed. R. A. Scott, John Wiley & Sons, Ltd, Chichester, UK, 2011, 10.1002/9781119951438.eibc0339. DOI
Kuznetsov A. S., Tikhomirov V. K., Shestakov M. V., Moshchalkov V. V. Nanoscale. 2013;5:10065–10075. PubMed
Lu G., Li S., Guo Z., Farha O. K., Hauser B. G., Qi X., Wang Y., Wang X., Han S., Liu X., DuChene J. S., Zhang H., Zhang Q., Chen X., Ma J., Loo S. C. J., Wei W. D., Yang Y., Hupp J. T., Huo F. Nat. Chem. 2012;4:310–316. PubMed
Uzun A., Dixon D. A., Gates B. C. ChemCatChem. 2011;3:95–107.
Markova V. K., Vayssilov G. N., Genest A., Rosch N. Catal. Sci. Technol. 2016;6:1726–1736.
Chiodo S. G., Mineva T. J. Phys. Chem. C. 2016;120:4471–4480.
Di Paola C., Pavan L., D'Agosta R., Baletto F. Nanoscale. 2017;9:15658–15665. PubMed
Antúnez-García J., Galván D. H., Posada-Amarillas A., Petranovskii V. J. Mol. Struct. 2014;1059:232–238.
Vilhelmsen L. B., Walton K. S., Sholl D. S. J. Am. Chem. Soc. 2012;134:12807–12816. PubMed
Vilhelmsen L. B., Sholl D. S. J. Phys. Lett. 2012;3:3702–3706. PubMed
Vilhelmsen L. B., Hammer B. J. Chem. Phys. 2014;141:044711. PubMed
Grajciar L. J. Phys. Chem. C. 2016;120:27050–27065.
Palagin D., Knorpp A. J., Pinar A. B., Ranocchiari M., van Bokhoven J. A. Nanoscale. 2017;9:1144–1153. PubMed
Hjorth Larsen A., Jørgen Mortensen J., Blomqvist J., Castelli I. E., Christensen R., Dułak M., Friis J., Groves M. N., Hammer B., Hargus C., Hermes E. D., Jennings P. C., Bjerre Jensen P., Kermode J., Kitchin J. R., Leonhard Kolsbjerg E., Kubal J., Kaasbjerg K., Lysgaard S., Bergmann Maronsson J., Maxson T., Olsen T., Pastewka L., Peterson A., Rostgaard C., Schiøtz J., Schütt O., Strange M., Thygesen K. S., Vegge T., Vilhelmsen L., Walter M., Zeng Z., Jacobsen K. W. J. Phys.: Condens. Matter. 2017;29:273002. PubMed
Reuter K., Scheffler M. Phys. Rev. B: Condens. Matter Mater. Phys. 2002;65:035406.
Reuter K., Scheffler M. Phys. Rev. Lett. 2003;90:046103. PubMed
Reuter K. Catal. Lett. 2016;146:541–563.
Reuter K., Plaisance C. P., Oberhofer H., Andersen M. J. Chem. Phys. 2017;146:040901. PubMed
Rogal J., Reuter K., Scheffler M. Phys. Rev. Lett. 2007;98:046101. PubMed
Huang X., Bennett J. W., Hang M. N., Laudadio E. D., Hamers R. J., Mason S. E. J. Phys. Chem. C. 2017;121:5069–5080.
Jonayat A. S. M., van Duin A. C. T., Janik M. J. J. Phys. Chem. C. 2017;121:21439–21448.
Saidi W. A., Lee M., Li L., Zhou G., McGaughey A. J. H. Phys. Rev. B: Condens. Matter Mater. Phys. 2012;86:245429.
Zhen Y., Karsten R. ChemCatChem. 2018;10:465–469.
Li G., Pidko E. A., van Santen R. A., Li C., Hensen E. J. M. J. Phys. Chem. C. 2013;117:413–426.
Grundner S., Markovits M. A. C., Li G., Tromp M., Pidko E. A., Hensen E. J. M., Jentys A., Sanchez-Sanchez M., Lercher J. A. Nat. Commun. 2015;6:7546. PubMed PMC
Wang T., Tian X. X., Yang Y., Li Y. W., Wang J. G., Beller M., Jiao H. J. Surf. Sci. 2016;651:195–202.
Liu C., Li G., Hensen E. J. M., Pidko E. A. ACS Catal. 2015;5:7024–7033.
Stuve E. M., Madix R. J., Brundle C. R. Surf. Sci. 1984;146:155–178.
Chen L., Falsig H., Janssens T. V. W., Gronbeck H. J. Catal. 2018;358:179–186.
Paolucci C., Parekh A. A., Khurana I., Di Iorio J. R., Li H., Albarracin Caballero J. D., Shih A. J., Anggara T., Delgass W. N., Miller J. T., Ribeiro F. H., Gounder R., Schneider W. F. J. Am. Chem. Soc. 2016;138:6028–6048. PubMed
Engelhardt J., Lyu P. B., Nachtigall P., Schuth F., Garcia A. M. ChemCatChem. 2017;9:1985–1991.
Posada-Perez S., Vines F., Valero R., Rodriguez J. A., Illas F. Surf. Sci. 2017;656:24–32.
He J., Morales-Garcia A., Bludsky O., Nachtigall P. CrystEngComm. 2016;18:3808–3818.
Kenmoe S., Biedermann P. U. J. Chem. Phys. 2018;148:054701. PubMed
Zhang R. G., Hao X. B., Duan T., Wang B. J. Fuel Process. Technol. 2017;156:253–264.
Lorenzi J. M., Matera S., Reuter K. ACS Catal. 2016;6:5191–5197.
Fergusson G. A., Vorotnikov V., Wunder N., Clark J., Gruchalla K., Bartholomew T., Robichaud D. J., Beckham G. T. J. Phys. Chem. C. 2016;120:26249–26258.
Yao Z., Reuter K. ChemCatChem. 2018;10:465–469.
Vandichel M., Moscu A., Gronbeck H. ACS Catal. 2017;7:7431–7441.
Kim J. S., Kim B. K., Kim Y. C. J. Nanosci. Nanotechnol. 2015;15:8205–8210. PubMed
Farkas A., Fantauzzi D., Mueller J. E., Zhu T. W., Papp C., Steinruck H. P., Jacob T. J. Electron Spectrosc. Relat. Phenom. 2017;221:44–57.
Exner K. S., Over H. Acc. Chem. Res. 2017;50:1240–1247. PubMed
Emmerich K., Koeniger F., Kaden H., Thissen P. J. Colloid Interface Sci. 2015;448:24–31. PubMed
Lee T., Lee Y., Piccinin S., Soon A. J. Phys. Chem. C. 2017;121:2228–2233.
Maestri M. Chem. Commun. 2017;53:10244–10254. PubMed PMC
Kalz K. F., Kraehnert R., Dvoyashkin M., Dittmeyer R., Glaser R., Krewer U., Reuter K., Grunwaldt J. D. ChemCatChem. 2017;9:17–29. PubMed PMC
Sabbe M. K., Reyniers M.-F., Reuter K. Catal. Sci. Technol. 2012;2:2010–2024.
Carter E. A. Science. 2008;321:800–803. PubMed
Norskov J. K., Bligaard T., Rossmeisl J., Christensen C. H. Nat. Chem. 2009;1:37–46. PubMed
De Moor B. A., Ghysels A., Reyniers M.-F., Van Speybroeck V., Waroquier M., Marin G. B. J. Chem. Theory Comput. 2011;7:1090–1101. PubMed
Piccini G., Alessio M., Sauer J. Angew. Chem., Int. Ed. 2016;55:5235–5237. PubMed PMC
Piccini G., Sauer J. J. Chem. Theory Comput. 2013;9:5038–5045. PubMed
Piccini G., Sauer J. J. Chem. Theory Comput. 2014;10:2479–2487. PubMed
De Moor B. A., Reyniers M. F., Marin G. B. Phys. Chem. Chem. Phys. 2009;11:2939–2958. PubMed
Van Speybroeck V., Hemelsoet K., Joos L., Waroquier M., Bell R. G., Catlow C. R. A. Chem. Soc. Rev. 2015;44:7044–7111. PubMed
Frenkel D. and Smit B., Understanding molecular simulation: from algorithms to applications, Academic Press, San Diego, 2nd edn, 2002.
Leiding J., Coe J. D. J. Chem. Phys. 2016;144:174109. PubMed
Van Der Mynsbrugge J., Janda A., Mallikarjun Sharada S., Lin L. C., Van Speybroeck V., Head-Gordon M., Bell A. T. ACS Catal. 2017;7:2685–2697.
Chipot C. and Pohorille A., Free energy calculations: theory and applications in chemistry and biology, Springer, New York, Study edn, 2007.
Christ C. D., Mark A. E., van Gunsteren W. F. J. Comput. Chem. 2009;31:1569–1582. PubMed
Hansen N., Van Gunsteren W. F. J. Chem. Theory Comput. 2014;10:2632–2647. PubMed
Torrie G. M., Valleau J. P. J. Comput. Phys. 1977;23:187–199.
Laio A., Parrinello M. Proc. Natl. Acad. Sci. U. S. A. 2002;99:12562. PubMed PMC
Kirkwood J. G. J. Chem. Phys. 1935;3:300–313.
Rodríguez-Fortea A., Iannuzzi M., Parrinello M. J. Phys. Chem. B. 2005;110:3477–3484. PubMed
Kostov M. K., Santiso E. E., George A. M., Gubbins K. E., Nardelli M. B. Phys. Rev. Lett. 2005;95:1–4. PubMed
Rodríguez-Fortea A., Iannuzzi M., Parrinello M. J. Phys. Chem. C. 2007;111:2251–2258. PubMed
Rodríguez-Fortea A., Iannuzzi M. J. Phys. Chem. C. 2008;112:19642–19648.
Molina-Montes E., Donadio D., Hernández-Laguna A., Sainz-Díaz C. I., Parrinello M. J. Phys. Chem. B. 2008;112:7051–7060. PubMed
Ceriotti M., Bernasconi M. Phys. Rev. B: Condens. Matter Mater. Phys. 2007;76:245309.
Kiss J., Frenzel J., Nair N. N., Meyer B., Marx D. J. Chem. Phys. 2011;134:0–14. PubMed
Schreiner E., Nair N. N., Wittekindt C., Marx D. J. Am. Chem. Soc. 2011;133:8216–8226. PubMed
Koizumi K., Boero M., Shigeta Y., Oshiyama A. Phys. Rev. B: Condens. Matter Mater. Phys. 2012;85:1–4.
Kuo I. F. W., Grant C. D., Gee R. H., Chinn S. C., Love A. H. J. Phys. Chem. C. 2012;116:9631–9635.
Santarossa G., Hahn K., Baiker A. Langmuir. 2013;29:5487–5499. PubMed
Frenzel J., Kiss J., Nair N. N., Meyer B., Marx D. Phys. Status Solidi B. 2013;250:1174–1190.
Koizumi K., Boero M., Shigeta Y., Oshiyama A. J. Phys. Chem. Lett. 2013;4:1592–1596. PubMed
Ghosh T. K., Nair N. N. ChemCatChem. 2013;5:1811–1821.
Moors S. L. C., De Wispelaere K., Van Der Mynsbrugge J., Waroquier M., Van Speybroeck V. ACS Catal. 2013;3:2556–2567. PubMed PMC
Laino T., Curioni A. New J. Phys. 2013;15:095009.
Van Der Mynsbrugge J., Moors S. L. C., De Wispelaere K., Van Speybroeck V. ChemCatChem. 2014;6:1906–1918.
Koizumi K., Nobusada K., Boero M. J. Phys. Chem. C. 2015;119:15421–15427.
Mushrif S. H., Varghese J. J., Krishnamurthy C. B. Phys. Chem. Chem. Phys. 2015;17:4961–4969. PubMed
Ghuman K. K., Yadav S., Singh C. V. J. Phys. Chem. C. 2015;119:6518–6529.
Ghosh T. K., Nair N. N. Surf. Sci. 2015;632:20–27.
Negreiros F. R., Camellone M. F., Fabris S. J. Phys. Chem. C. 2015;119:21567–21573.
Martínez-Suárez L., Siemer N., Frenzel J., Marx D. ACS Catal. 2015;5:4201–4218.
Dewispelaere K., Ensing B., Ghysels A., Meijer E. J., Vanspeybroeck V. Chem. – Eur. J. 2015;21:9385–9396. PubMed
Haigis V., Coudert F. X., Vuilleumier R., Boutin A., Fuchs A. H. J. Phys. Chem. Lett. 2015;6:4365–4370. PubMed
Koizumi K., Nobusada K., Boero M. Chem. – Eur. J. 2016;22:5181–5188. PubMed
Munoz-Santiburcio D., Hernandez-Laguna A., Sainz-Díaz C. I. J. Phys. Chem. C. 2016;120:28186–28192.
De Wispelaere K., Bailleul S., Van Speybroeck V. Catal. Sci. Technol. 2016;6:2686–2705.
De Wispelaere K., Wondergem C. S., Ensing B., Hemelsoet K., Meijer E. J., Weckhuysen B. M., Van Speybroeck V., Ruiz-Martínez J. ACS Catal. 2016;6:1991–2002.
Hajek J., Van Der Mynsbrugge J., De Wispelaere K., Cnudde P., Vanduyfhuys L., Waroquier M., Van Speybroeck V. J. Catal. 2016;340:227–235. PubMed PMC
Cnudde P., De Wispelaere K., Van der Mynsbrugge J., Waroquier M., Van Speybroeck V. J. Catal. 2017;345:53–69. PubMed PMC
Ghoussoub M., Yadav S., Ghuman K. K., Ozin G. A., Singh C. V. ACS Catal. 2016;6:7109–7117.
Valsson O., Tiwary P., Parrinello M. Annu. Rev. Phys. Chem. 2016;67:159–184. PubMed
Barducci A., Bussi G., Parrinello M. Phys. Rev. Lett. 2008;100:020603. PubMed
Raiteri P., Laio A., Gervasio F. L., Micheletti C., Parrinello M. J. Phys. Chem. B. 2006;110:3533–3539. PubMed
Bal K. M., Neyts E. C. J. Chem. Theory Comput. 2015;11:4545–4554. PubMed
Bal K. M., Huygh S., Bogaerts A., Neyts E. C. Plasma Sources Sci. Technol. 2018;27:024001.
Tribello G. A., Bonomi M., Branduardi D., Camilloni C., Bussi G. Comput. Phys. Commun. 2014;185:604–613.
Gao Y. Q. J. Chem. Phys. 2008;128:64105. PubMed
Leung K., Nielsen I., Criscenti L. J. Am. Chem. Soc. 2009;131:18358–18365. PubMed
Sánchez V. M., Cojulun J. A., Scherlis D. A. J. Phys. Chem. C. 2010;114:11522–11526.
Schnur S., Groß A. Catal. Today. 2011;165:129–137.
Liu X., Salahub D. R. J. Am. Chem. Soc. 2015;137:4249–4259. PubMed
Chen Z. N., Shen L., Yang M., Fu G., Hu H. J. Phys. Chem. C. 2015;119:26422–26428.
Sun G., Jiang H. J. Chem. Phys. 2015;143:234706. PubMed
Kumar S., Rosenberg J. M., Bouzida D., Swendsen R. H., Kollman P. A. J. Comput. Chem. 1992;13:1011–1021.
Rosta E., Hummer G. J. Chem. Theory Comput. 2015;11:276–285. PubMed
Gao Y. Q., Yang L. J. Chem. Phys. 2006;125:114103. PubMed
Sugita Y., Okamoto Y. Chem. Phys. Lett. 1999;314:141–151.
Bussi G., Gervasio F. L., Laio A., Parrinello M. J. Am. Chem. Soc. 2006;128:13435–13441. PubMed
Boero M., Parrinello M., Terakura K. J. Am. Chem. Soc. 1998;120:2746–2752.
Bučko T., Benco L., Hafner J., Ángyán J. G. J. Catal. 2007;250:171–183.
Bučko T., Benco L., Dubay O., Dellago C., Hafner J. J. Chem. Phys. 2009;131:214508. PubMed
Bučko T., Hafner J. J. Phys.: Condens. Matter. 2010;22:384201. PubMed
Zipoli F., Car R., Cohen M. H., Selloni A. J. Am. Chem. Soc. 2010;132:8593–8601. PubMed
Bučko T., Benco L., Hafner J., Ángyán J. G. J. Catal. 2011;279:220–228.
Benco L. J. Catal. 2013;298:122–129.
Bučko T., Hafner J. J. Catal. 2015;329:32–48.
Cheng T., Xiao H., Goddard W. A. J. Phys. Chem. Lett. 2015;6:4767–4773. PubMed
Cheng T., Xiao H., Goddard W. A. J. Am. Chem. Soc. 2016;138:13802–13805. PubMed
Sheng T., Wang D., Lin W. F., Hu P., Sun S. G. Electrochim. Acta. 2016;190:446–454.
Sheng T., Ye J.-Y., Lin W.-F., Sun S.-G. Phys. Chem. Chem. Phys. 2017;19:7476–7480. PubMed
Ming Y., Kumar N., Siegel D. J. ACS Omega. 2017;2:4921–4928. PubMed PMC
Li H., Paolucci C., Schneider W. F. J. Chem. Theory Comput. 2018;14:929–932. PubMed
Bučko T., Chibani S., Paul J.-F., Cantrel L., Badawi M. Phys. Chem. Chem. Phys. 2017;19:27530–27543. PubMed
Sheng T., Sun S. G. Appl. Surf. Sci. 2018;428:514–519.
Carter E. A., Ciccotti G., Hynes J. T., Kapral R. Chem. Phys. Lett. 1989;156:472–477.
Zheng S., Pfaendtner J. Mol. Simul. 2015;41:55–72.
Stewart J. J. P., Davis L. P., Burggraf L. W. J. Comput. Chem. 1987;8:1117–1123.
Dellago C., Bolhuis P. G., Geissler P. L. Adv. Chem. Phys. 2002;123:1–78.
Zimmerman P. M., Tranca D. C., Gomes J., Lambrecht D. S., Head-Gordon M., Bell A. T. J. Am. Chem. Soc. 2012;134:19468–19476. PubMed
Tranca D. C., Hansen N., Swisher J. A., Smit B., Keil F. J. J. Phys. Chem. C. 2012;116:23408–23417.
Lo C. S., Radhakrishnan R., Trout B. L. Catal. Today. 2005;105:93–105.
Gomes J., Head-Gordon M., Bell A. T. J. Phys. Chem. C. 2014;118:21409–21419.
Göltl F., Grüneis A., Bučko T., Hafner J. J. Chem. Phys. 2012;137:114111. PubMed
Fu X., Yang L., Gao Y. Q. J. Chem. Phys. 2007;127:154106. PubMed
Martínez-Suárez L., Frenzel J., Marx D., Meyer B. Phys. Rev. Lett. 2013;110:086108. PubMed
Reyniers M.-F., Marin G. B. Annu. Rev. Chem. Biomol. Eng. 2014;5:563–594. PubMed
Salciccioli M., Stamatakis M., Caratzoulas S., Vlachos D. G. Chem. Eng. Sci. 2011;66:4319–4355.
Keil F. J., in Multiscale Molecular Methods in Applied Chemistry, ed. B. Kirchner and J. Vrabec, Springer Berlin Heidelberg, Berlin, Heidelberg, 2012, pp. 69–107, 10.1007/128_2011_128. DOI
Michail S. J. Phys.: Condens. Matter. 2015;27:013001. PubMed
Marshall A. T. Curr. Opin. Electrochem. 2018;7:75–80.
Reuter K., in Operando Research in Heterogeneous Catalysis, ed. J. Frenken and I. Groot, Springer International Publishing, Cham, 2017, pp. 151–188, 10.1007/978-3-319-44439-0_7. DOI
Kulkarni A., Siahrostami S., Patel A., Nørskov J. K. Chem. Rev. 2018;118:2302–2312. PubMed
Mao Y., Wang H. F., Hu P. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2017;7:e1321.
Motagamwala A. H., Ball M. R., Dumesic J. A. Annu. Rev. Chem. Biomol. Eng. 2018;9:413–450. PubMed
Prats H., Illas F., Sayós R. Int. J. Quantum Chem. 2018;118:e25518.
Dumesic J. A., Rudd D. F., Aparicio L. M., Rekoske J. E. and Trevino A. A., The Microkinetics of Heterogeneous Catalysis, American Chemical Society, 1992.
Pineda M., Stamatakis M. J. Chem. Phys. 2017;147:024105. PubMed
Chen Z., Wang H., Su N. Q., Duan S., Shen T., Xu X. ACS Catal. 2018;8:859–868.
Liu D.-J., Zahariev F., Gordon M. S., Evans J. W. J. Phys. Chem. C. 2016;120:28639–28653.
Jørgensen M., Grönbeck H. J. Phys. Chem. C. 2017;121:7199–7207.
Nikbin N., Caratzoulas S., Vlachos D. G. ChemCatChem. 2012;4:504–511.
Van Speybroeck V., De Wispelaere K., Van der Mynsbrugge J., Vandichel M., Hemelsoet K., Waroquier M. Chem. Soc. Rev. 2014;43:7326–7357. PubMed
Zhang X., Liu J.-X., Zijlstra B., Filot I. A. W., Zhou Z., Sun S., Hensen E. J. M. Nano Energy. 2018;43:200–209.
Filot I. A. W., Santen R. A. v., Hensen E. J. M. Angew. Chem., Int. Ed. 2014;53:12746–12750. PubMed
Rohling R. Y., Uslamin E., Zijlstra B., Tranca I. C., Filot I. A. W., Hensen E. J. M., Pidko E. A. ACS Catal. 2018;8:760–769. PubMed PMC
Li G., Pidko E. A., Filot I. A. W., van Santen R. A., Li C., Hensen E. J. M. J. Catal. 2013;308:386–397.
Brogaard R. Y., Wang C.-M., Studt F. ACS Catal. 2014;4:4504–4509.
Wolcott C. A., Medford A. J., Studt F., Campbell C. T. J. Catal. 2015;330:197–207.
Stegelmann C., Andreasen A., Campbell C. T. J. Am. Chem. Soc. 2009;131:8077–8082. PubMed
Mehta P., Barboun P., Herrera F. A., Kim J., Rumbach P., Go D. B., Hicks J. C., Schneider W. F. Nat. Catal. 2018;1:269–275.
Campbell C. T. ACS Catal. 2017;7:2770–2779.
Vojvodic A., Nørskov J. K. Natl. Sci. Rev. 2015;2:140–143.
Cheng J., Hu P., Ellis P., French S., Kelly G., Lok C. M. J. Phys. Chem. C. 2008;112:1308–1311.
Ulissi Z. W., Medford A. J., Bligaard T., Nørskov J. K. Nat. Commun. 2017;8:14621. PubMed PMC
Liu J.-X., Su Y., Filot I. A. W., Hensen E. J. M. J. Am. Chem. Soc. 2018;140:4580–4587. PubMed PMC
Liu C., Tranca I., van Santen R. A., Hensen E. J. M., Pidko E. A. J. Phys. Chem. C. 2017;121:23520–23530. PubMed PMC
Abild-Pedersen F., Greeley J., Studt F., Rossmeisl J., Munter T. R., Moses P. G., Skúlason E., Bligaard T., Nørskov J. K. Phys. Rev. Lett. 2007;99:016105. PubMed
Calle-Vallejo F., Loffreda D., Koper M. T. M., Sautet P. Nat. Chem. 2015;7:403. PubMed
Yu L., Vilella L., Abild-Pedersen F. Commun. Chem. 2018;1:2.
Latimer A. A., Kulkarni A. R., Aljama H., Montoya J. H., Yoo J. S., Tsai C., Abild-Pedersen F., Studt F., Nørskov J. K. Nat. Mater. 2016;16:225. PubMed
Pegis M. L., Wise C. F., Koronkiewicz B., Mayer J. M. J. Am. Chem. Soc. 2017;139:11000–11003. PubMed
Gani T. Z. H., Kulik H. J. ACS Catal. 2018;8:975–986.
Logadottir A., Rod T. H., Nørskov J. K., Hammer B., Dahl S., Jacobsen C. J. H. J. Catal. 2001;197:229–231.
Vojvodic A., Medford A. J., Studt F., Abild-Pedersen F., Khan T. S., Bligaard T., Nørskov J. K. Chem. Phys. Lett. 2014;598:108–112.
Liu C., van Santen R. A., Poursaeidesfahani A., Vlugt T. J. H., Pidko E. A., Hensen E. J. M. ACS Catal. 2017;7:8613–8627. PubMed PMC
Pidko E. A. ACS Catal. 2017;7:4230–4234. PubMed PMC
Chiang L., Lu B., Castillo I. Annu. Rev. Chem. Biomol. Eng. 2017;8:63–85. PubMed
Goh G. B., Hodas N. O., Vishnu A. J. Comput. Chem. 2017;38:1291–1307. PubMed
Fooshee D., Mood A., Gutman E., Tavakoli M., Urban G., Liu F., Huynh N., Van Vranken D., Baldi P. Mol. Syst. Des. Eng. 2018;3:442–452.
Evans J. D., Coudert F.-X. Chem. Mater. 2017;29:7833–7839.
Coley C. W., Barzilay R., Jaakkola T. S., Green W. H., Jensen K. F. ACS Cent. Sci. 2017;3:434–443. PubMed PMC
Faber F. A., Hutchison L., Huang B., Gilmer J., Schoenholz S. S., Dahl G. E., Vinyals O., Kearnes S., Riley P. F., von Lilienfeld O. A. J. Chem. Theory Comput. 2017;13:5255–5264. PubMed
Hautier G., Fischer C. C., Jain A., Mueller T., Ceder G. Chem. Mater. 2010;22:3762–3767.
Raccuglia P., Elbert K. C., Adler P. D. F., Falk C., Wenny M. B., Mollo A., Zeller M., Friedler S. A., Schrier J., Norquist A. J. Nature. 2016;533:73–76. PubMed
Schwaller P., Gaudin T., Lanyi D., Bekas C. and Laino T., 2017, arXiv:1711.04810.
Hansen K., Montavon G., Biegler F., Fazli S., Rupp M., Scheffler M., von Lilienfeld O. A., Tkatchenko A., Müller K.-R. J. Chem. Theory Comput. 2013;9:3404–3419. PubMed
Meredig B., Agrawal A., Kirklin S., Saal J. E., Doak J. W., Thompson A., Zhang K., Choudhary A., Wolverton C. Phys. Rev. B: Condens. Matter Mater. Phys. 2014;89:1–7.
Jinnouchi R., Asahi R. J. Phys. Chem. Lett. 2017;8:4279–4283. PubMed
Montavon G., Rupp M., Gobre V., Vazquez-Mayagoitia A., Hansen K., Tkatchenko A., Müller K.-R., Anatole von Lilienfeld O. New J. Phys. 2013;15:095003.
Ward L., Agrawal A., Choudhary A., Wolverton C. npj Comput. Mater. 2016;2:16028.
Gómez-Bombarelli R., Wei J. N., Duvenaud D., Hernández-Lobato J. M., Sánchez-Lengeling B., Sheberla D., Aguilera-Iparraguirre J., Hirzel T. D., Adams R. P., Aspuru-Guzik A. ACS Cent. Sci. 2018;4:268–276. PubMed PMC
Houben C., Lapkin A. A. Curr. Opin. Chem. Eng. 2015;9:1–7.
Zhou Z., Li X., Zare R. N. ACS Cent. Sci. 2017;3:1337–1344. PubMed PMC
Ulissi Z. W., Tang M. T., Xiao J., Liu X., Torelli D. A., Karamad M., Cummins K., Hahn C., Lewis N. S., Jaramillo T. F., Chan K., Nørskov J. K. ACS Catal. 2017;7:6600–6608.
Pilania G., Wang C., Jiang X., Rajasekaran S., Ramprasad R. Sci. Rep. 2013;3:1–6. PubMed PMC
Li H., Zhang Z., Liu Z. Catalysts. 2017;7:306.
Kitchin J. R. Nat. Catal. 2018;1:230–232.
Burello E., Farrusseng D., Rothenberg G. Adv. Synth. Catal. 2004;346:1844–1853.
Nørskov J. K., Bligaard T. Angew. Chem., Int. Ed. 2013;52:776–777. PubMed
Samuel A. L. IBM J. Res. Dev. 1959;3:210–229.
McCulloch W. S., Pitts W. Bull. Math. Biophys. 1943;5:115–133.
Gartner's 2016 Hype Cycle for Emerging Technologies Identifies Three Key Trends That Organizations Must Track to Gain Competitive Advantage, https://www.gartner.com/newsroom/id/3412017, (accessed 14 August 2018).
Kotsiantis S. B., ed. I. Maglogiannis, K. Karpouzis, M. Wallace and J. Soldatos, IOS Press, 2007, pp. 3–24.
Baumes L. A., Serra J. M., Serna P., Corma A. J. Comb. Chem. 2006;8:583–596. PubMed
Fernandez M., Barnard A. S. ACS Comb. Sci. 2016;18:243–252. PubMed
Fernandez M., Boyd P. G., Daff T. D., Aghaji M. Z., Woo T. K. J. Phys. Lett. 2014;5:3056–3060. PubMed
Fey N., Orpen A. G., Harvey J. N. Coord. Chem. Rev. 2009;253:704–722.
Jover J., Fey N. Dalton Trans. 2013;42:172–181. PubMed
Ghiringhelli L. M., Vybiral J., Levchenko S. V., Draxl C., Scheffler M. Phys. Rev. Lett. 2015;114:1–5. PubMed
Hand D. ACM SIGKDD Explor. Newsl. 1999;1:16–19.
Herr J. E., Yao K., McIntyre R., Toth D., Parkhill J. J. Chem. Phys. 2018;148:241710. PubMed
Spialter L. J. Chem. Doc. 1964;4:261–269.
Weininger D. J. Chem. Inf. Comput. Sci. 1988;28:31–36. PubMed
Heller S., McNaught A., Stein S., Tchekhovskoi D., Pletnev I. J. Cheminf. 2014;6:P4. PubMed
Morgan H. L. J. Chem. Doc. 1965;5:107–113.
Mbue S. P., Cho K.-H. Bull. Korean Chem. Soc. 2015;36:1569–1574.
Clark A. M. J. Chem. Inf. Model. 2011;51:3149–3157. PubMed
Vinoth P., Sankar P. J. Mol. Graphics Modell. 2017;76:242–259. PubMed
Bone R. G. A., Firth M. A., Sykes R. A. J. Chem. Inf. Comput. Sci. 1999;39:846–860.
O’Boyle N. M. J. Cheminf. 2012;4:22. PubMed
Janet J. P., Chan L., Kulik H. J. J. Phys. Chem. Lett. 2018;9:1064–1071. PubMed
Toropov A. A., Toropova A. P., Benfenati E. Chem. Phys. Lett. 2008;461:343–347.
Toropov A. A., Toropova A. P., Benfenati E. Mol. Diversity. 2010;14:183–192. PubMed
Tetko I. V., Varbanov H. P., Galanski M., Talmaciu M., Platts J. A., Ravera M., Gabano E. J. Inorg. Biochem. 2016;156:1–13. PubMed
Von Lilienfeld O. A., Ramakrishnan R., Rupp M., Knoll A. Int. J.Int. J. Quantum Chem.Quantum Chem. 2015;115:1084–1093.
Karelson M., Lobanov V. S., Katritzky A. R. Chem. Rev. 1996;96:1027–1044. PubMed
Dioury F., Duprat A., Dreyfus G., Ferroud C., Cossy J. J. Chem. Inf. Model. 2014;54:2718–2731. PubMed
Guo J. Y., Minko Y., Santiago C. B., Sigman M. S. ACS Catal. 2017;7:4144–4151.
Niemeyer Z. L., Milo A., Hickey D. P., Sigman M. S. Nat. Chem. 2016;8:610–617. PubMed
Tang S., Liu Z., Zhan X., Cheng R., He X., Liu B. J. Mol. Model. 2014;20:2129. PubMed
Ioannidis E. I., Gani T. Z. H., Kulik H. J. J. Comput. Chem. 2016;37:2106–2117. PubMed
Janet J. P., Gani T. Z. H., Steeves A. H., Ioannidis E. I., Kulik H. J. Ind. Eng. Chem. Res. 2017;56:4898–4910.
Sasaki M., Hamada H., Kintaichi Y., Ito T. Appl. Catal., A. 1995;132:261–270.
Mohammed M. L., Patel D., Mbeleck R., Niyogi D., Sherrington D. C., Saha B. Appl. Catal., A. 2013;466:142–152.
Baysal M., Günay M. E., Yıldırım R. Int. J. Hydrogen Energy. 2017;42:243–254.
Avşar E. Int. J. Hydrogen Energy. 2017;42:23326–23333.
Odabaşi Ç., Günay M. E., Yildirim R. Int. J. Hydrogen Energy. 2014;39:5733–5746.
Kite S., Hattori T., Murakami Y. Appl. Catal., A. 1994;114:L173–L178.
Agrafiotis D. K., Bandyopadhyay D., Wegner J. K., Van Vlijmen H. J. Chem. Inf. Model. 2007;47:1279–1293. PubMed
Hawkins P. C. D. J. Chem. Inf. Model. 2017;57:1747–1756. PubMed
Engel T. J. Chem. Inf. Model. 2006;46:2267–2277. PubMed
Warr W. A. Mol. Inf. 2014;33:469–476. PubMed
Dietz A. J. Chem. Inf. Comput. Sci. 1995;35:787–802.
Kayala M. A., Azencott C.-A., Chen J. H., Baldi P. J. Chem. Inf. Model. 2011;51:2209–2222. PubMed PMC
Tadashi H., Hideyuki N., Atsushi S., Shigeharu K., Yuichi M. Appl. Catal. 1989;50:L11–L15.
Frontistis Z., Daskalaki V. M., Hapeshi E., Drosou C., Fatta-Kassinos D., Xekoukoulotakis N. P., Mantzavinos D. J. Photochem. Photobiol., A. 2012;240:33–41.
Corma A., Serra J. M., Argente E., Botti V., Valero S. ChemPhysChem. 2002;3:939–945. PubMed
Nandi S., Badhe Y., Lonari J., Sridevi U., Rao B. S., Tambe S. S., Kulkarni B. D. Chem. Eng. J. 2004;97:115–129.
Akcayol M. A., Cinar C. Appl. Therm. Eng. 2005;25:2341–2350.
Li Z., Kermode J. R., De Vita A. Phys. Rev. Lett. 2015;114:1–5. PubMed
Hu L. H., Wang X. J., Wong L. H., Chen G. H. J. Chem. Phys. 2003;119:11501–11507.
Cramer C. J., Truhlar D. G. Phys. Chem. Chem. Phys. 2009;11:10757. PubMed
Wellendorff J., Silbaugh T. L., Garcia-Pintos D., Nørskov J. K., Bligaard T., Studt F., Campbell C. T. Surf. Sci. 2015;640:36–44.
Jinnouchi R., Hirata H., Asahi R. J. Phys. Chem. C. 2017;121:26397–26405.
Ma X., Li Z., Achenie L. E. K., Xin H. J. Phys. Chem. Lett. 2015;6:3528–3533. PubMed
Lowndes J. S. S., Best B. D., Scarborough C., Afflerbach J. C., Frazier M. R., O’Hara C. C., Jiang N., Halpern B. S. Nat. Ecol. Evol. 2017;1:0160. PubMed
Lawson A. J., Swienty-Busch J., Géoui T., Evans D. ACS Symp. Ser. 2014;1164:127–148.
Baker M., Penny D. Nature. 2016;533:452–454. PubMed
Björnmalm M., Caruso F. Angew. Chem., Int. Ed. 2018;57:1122–1123. PubMed
Williams A., Tkachenko V. J. Comput.-Aided Mol. Des. 2014;28:1023–1030. PubMed
Nakata M., Shimazaki T. J. Chem. Inf. Model. 2017;57:1300–1308. PubMed
Chalk S. J. J. Cheminf. 2016;8:1–24.
Rmarkdown in a scientific workflow, http://predictiveecology.org/2016/10/21/Rmarkdownscience-workflow.html, (accessed 14 August 2018).
Ram K. Source Code Biol. Med. 2013;8:1–8. PubMed PMC
Lerner B. S. and Boose E. R., RDataTracker: Collecting Provenance in an Interactive Scripting Environment, USENIX Association, Cologne, 2014.
Baumer B., Cetinkaya-Rundel M., Bray A., Loi L. and Horton N. J., 2014, arXiv:1402.1894.
Molloy J. C. PLoS Biol. 2011;9:1–4. PubMed PMC
Uhlir P. F., Schröder P. Data Sci. J. 2007;6:OD36–OD53.
Doerr A. Nat. Methods. 2010;7:10–11. PubMed
Positively Negative: A New PLOS ONE Collection focusing on Negative, Null and Inconclusive Results, http://blogs.plos.org/everyone/2015/02/25/positively-negative-new-plosone-collection-focusing-negative-null-inconclusive-results/, (accessed 14 August 2018).
Ananikov V. P., Beletskaya I. P. Organometallics. 2012;31:1595–1604.
Skoraczyñski G., Dittwald P., Miasojedow B., Szymkuc S., Gajewska E. P., Grzybowski B. A., Gambin A. Sci. Rep. 2017;7:1–9. PubMed PMC
Kayala M. A. and Baldi P. F., A Machine Learning Approach to Predict Chemical Reactions, Curran Associates, Inc., Granada, 2011.
Behler J. Angew. Chem., Int. Ed. 2017;56:12828–12840. PubMed
Chmiela S., Tkatchenko A., Sauceda H. E., Poltavsky I. Sci. Adv. 2017;3:e1603015. PubMed PMC