Towards operando computational modeling in heterogeneous catalysis

. 2018 Nov 12 ; 47 (22) : 8307-8348.

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid30204184

An increased synergy between experimental and theoretical investigations in heterogeneous catalysis has become apparent during the last decade. Experimental work has extended from ultra-high vacuum and low temperature towards operando conditions. These developments have motivated the computational community to move from standard descriptive computational models, based on inspection of the potential energy surface at 0 K and low reactant concentrations (0 K/UHV model), to more realistic conditions. The transition from 0 K/UHV to operando models has been backed by significant developments in computer hardware and software over the past few decades. New methodological developments, designed to overcome part of the gap between 0 K/UHV and operando conditions, include (i) global optimization techniques, (ii) ab initio constrained thermodynamics, (iii) biased molecular dynamics, (iv) microkinetic models of reaction networks and (v) machine learning approaches. The importance of the transition is highlighted by discussing how the molecular level picture of catalytic sites and the associated reaction mechanisms changes when the chemical environment, pressure and temperature effects are correctly accounted for in molecular simulations. It is the purpose of this review to discuss each method on an equal footing, and to draw connections between methods, particularly where they may be applied in combination.

Zobrazit více v PubMed

Topsoe H. J. Catal. 2003;216:155–164.

Banares M. A. Catal. Today. 2005;100:71–77.

Chakrabarti A., Ford M. E., Gregory D., Hu R. R., Keturakis C. J., Lwin S., Tang Y. D., Yang Z., Zhu M. H., Banares M. A., Wachs I. E. Catal. Today. 2017;283:27–53.

Jones C. W., Tao F., Garland M. V. ACS Catal. 2012;2:2444–2445.

Weckhuysen B. M. Natl. Sci. Rev. 2015;2:147–149.

Kalz K. F., Kraehnert R., Dvoyashkin M., Dittmeyer R., Gläser R., Krewer U., Reuter K., Grunwaldt J.-D. ChemCatChem. 2017;9:17–29. PubMed PMC

Reuter K., Plaisance C. P., Oberhofer H., Andersen M. J. Chem. Phys. 2017;146:040901. PubMed

van Spronsen M. A., Frenken J. W. M., Groot I. M. N. Chem. Soc. Rev. 2017;46:4347–4374. PubMed

Schlegel H. B. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2011;1:790–809.

Jin R., Zeng C., Zhou M., Chen Y. Chem. Rev. 2016;116:10346–10413. PubMed

Jørgensen M. S., Larsen U. F., Jacobsen K. W., Hammer B. J. Phys. Chem. A. 2018;122:1504–1509. PubMed

Heiles S., Johnston R. L. Int. J. Quantum Chem. 2013;113:2091–2109.

Wales D. J., Energy Landscapes: Applications to Clusters, Biomolecules and Glasses, Cambridge University Press, Cambridge, UK, 2003.

Wales D. J. J. Phys. Chem. A. 1997;101:5111–5116.

Goedecker S. J. Chem. Phys. 2004;120:9911–9917. PubMed

Bao K., Goedecker S., Koga K., Lançon F., Neelov A. Phys. Rev. B: Condens. Matter Mater. Phys. 2009;79:041405R.

Eivari H. A., Ghasemi S. A., Tahmasbi H., Rostami S., Faraji S., Rasoulkhani R., Goedecker S., Amsler M. Chem. Mater. 2017;29:8594–8603.

Gauthier J. A., Dickens C. F., Chen L. D., Doyle A. D., Nørskov J. K. J. Phys. Chem. C. 2017;121:11455–11463.

Sicher M., Mohr S., Goedecker S. J. Chem. Phys. 2011;134:044106. PubMed

Schaefer B., Mohr S., Amsler M., Goedecker S. J. Chem. Phys. 2014;140:214102. PubMed

Rossi G., Ferrando R. Chem. Phys. Lett. 2006;423:17–22.

Barcaro G., Fortunelli A., Rossi G., Nita F., Ferrando R. J. Phys. Chem. B. 2006;110:23197–23203. PubMed

Johnston R. L. Dalton Trans. 2003:4193–4207.

Ge Y., Head J. D. J. Phys. Chem. B. 2004;108:6025–6034.

Gell L., Kulesza A., Petersen J., Röhr M. I. S., Mitrić R., Bonačić-Koutecký V. J. Phys. Chem. C. 2013;117:14824–14831.

Vilhelmsen L. B., Hammer B. J. Chem. Phys. 2014;141:044711. PubMed

Jørgensen M. S., Groves M. N., Hammer B. J. Chem. Theory Comput. 2017;13:1486–1493. PubMed

Ferrando R., Fortunelli A., Johnston R. L. Phys. Chem. Chem. Phys. 2008;10:640–649. PubMed

Kim H. G., Choi S. K., Lee H. M. J. Chem. Phys. 2008;128:144702. PubMed

Zabodsky H., Peleg S., Avnir D. J. Am. Chem. Soc. 1993;115:8278–8289.

Oakley M. T., Johnston R. L., Wales D. J. Phys. Chem. Chem. Phys. 2013;15:3965–3976. PubMed

Schönborn S. E., Goedecker S., Roy S., Oganov A. R. J. Chem. Phys. 2009;130:144108. PubMed

Kang Z., Tsang C. H. A., Wong N. B., Zhang Z., Lee S. T. J. Am. Chem. Soc. 2007;129:12090–12091. PubMed

Gonzalez C., Schlegel H. B. J. Chem. Phys. 1989;90:2154–2161.

Sheppard D., Terrell R., Henkelman G. J. Chem. Phys. 2008;128:134106. PubMed

Weinan E., Ren W., Vanden-Eijnden E. Phys. Rev. B: Condens. Matter Mater. Phys. 2002;66:052301.

Maragliano L., Fischer A., Vanden-Eijnden E., Ciccotti G. J. Chem. Phys. 2006;125:024106. PubMed

Branduardi D., Gervasio F. L., Parrinello M. J. Chem. Phys. 2007;126:054103. PubMed

Trygubenko S. A., Wales D. J. J. Chem. Phys. 2004;120:2082–2094. PubMed

Seymour I. D., Chakraborty S., Middlemiss D. S., Wales D. J., Grey C. P. Chem. Mater. 2015;27:5550–5561.

Chuang F. C., Ciobanu C. V., Shenoy V. B., Wang C. Z., Ho K. M. Surf. Sci. 2004;573:L375–L381.

Zhang X. J., Shang C., Liu Z. P. J. Chem. Phys. 2017;147:152706. PubMed

Massen C., Mortimer-Jones T. V., Johnston R. L. J. Chem. Soc., Dalton Trans. 2002:4375. doi: 10.1039/b207847c. DOI

Rapallo A., Rossi G., Ferrando R., Fortunelli A., Curley B. C., Lloyd L. D., Tarbuck G. M., Johnston R. L. J. Chem. Phys. 2005;122:194308. PubMed

Dieterich J. M., Hartke B. J. Comput. Chem. 2011;32:1377–1385. PubMed

Rossi G., Ferrando R., Rapallo A., Fortunelli A., Curley B. C., Lloyd L. D., Johnston R. L. J. Chem. Phys. 2005;122:194309. PubMed

Bochicchio D., Ferrando R. Nano Lett. 2010;10:4211–4216. PubMed

Ferrando R., Fortunelli A., Rossi G. Phys. Rev. B: Condens. Matter Mater. Phys. 2005;72:085449.

Ismail R., Johnston R. L. Phys. Chem. Chem. Phys. 2010;12:8607–8619. PubMed

Baturin V. S., Lepeshkin S. V., Matsko N. L., Oganov A. R., Uspenskii Y. A. EPL. 2014;106:37002.

Pyykko P. Angew. Chem., Int. Ed. 2004;43:4412–4456. PubMed

Aprà E., Ferrando R., Fortunelli A. Phys. Rev. B: Condens. Matter Mater. Phys. 2006;73:205414.

Serapian S. A., Bearpark M. J., Bresme F. Nanoscale. 2013;5:6445–6457. PubMed

Gao Y., Shao N., Bulusu S., Zeng X. C. J. Phys. Chem. C. 2008;112:8234–8238.

Shayeghi A., Heard C. J., Johnston R. L., Schafer R. J. Chem. Phys. 2014;140:054312. PubMed

Fournier R. Can. J. Chem. 2010;88:1071–1078.

Heiles S., Johnston R. L., Schafer R. J. Phys. Chem. A. 2012;116:7756–7764. PubMed

Adams R. D., Blom D. A., Captain B., Raja R., Meurig Thomas J., Trufan E. Langmuir. 2008;24:9223–9226. PubMed

Paz-Borbon L. O., Hellman A., Thomas J. M., Gronbeck H. Phys. Chem. Chem. Phys. 2013;15:9694–9700. PubMed

Bhattacharya S., Levchenko. S. V., Ghiringhelli L. M., Scheffler M. Phys. Rev. Lett. 2013;111:135501. PubMed

Beret E. C., Ghiringhelli L. C., Scheffler M. Faraday Discuss. 2011;152:153–167. PubMed

Dhillon H., Fournier R. Comput. Theor. Chem. 2013;1021:26–34.

Pei Y., Gao Y., Shao N., Zeng X. C. J. Am. Chem. Soc. 2009;131:13619–13621. PubMed

Pei Y., Pal R., Liu C., Gao Y., Zhang Z., Zeng X. C. J. Am. Chem. Soc. 2012;134:3015–3024. PubMed

Liu Y., Tian Z., Cheng L. RSC Adv. 2016;6:4705–4712.

Xiang H., Wei S.-H., Gong X. J. Am. Chem. Soc. 2010;132:7355–7360. PubMed

Bertorelle F., Hamouda R., Rayane D., Broyer M., Antoine R., Dugourd P., Gell L., Kulesza A., Mitrić R., Bonačić-Koutecký V. Nanoscale. 2013;5:5637. PubMed

Bellina B., Antoine R., Broyer M., Gell L., Sanader ž., Mitrić R., Bonačić-Koutecký V., Dugourd P. Dalton Trans. 2013;42:8328. PubMed

Ge Y., Head J. D. J. Phys. Chem. B. 2002;106:6997–7004.

Ge Y., Head J. D. Int. J. Quantum Chem. 2003;95:617–626.

Ge Y., Head J. D. Chem. Phys. Lett. 2004;398:107–112.

Biswas P., Atta-Fynn R., Elliott S. R. Phys. Rev. B. 2016;93:1–14.

Biswas P., Paudel D., Atta-Fynn R., Drabold D. A., Elliott S. R. Phys. Rev. Appl. 2017;7:024013.

Rosi N. L., Mirkin C. A. Chem. Rev. 2005;105:1547–1562. PubMed

Zhu M., Lanni E., Garg N., Bier M. E., Jin R. J. Am. Chem. Soc. 2008;130:1138–1139. PubMed

Negishi Y., Nobusada K., Tsukuda T. J. Am. Chem. Soc. 2005;127:5261–5270. PubMed

Jadzinsky P. D., Calero G., Ackerson C. J., Bushnell D. A., Kornberg R. D. Science. 2007;318:430–433. PubMed

Zhu M., Aikens C. M., Hollander F. J., Schatz G. C. J. Am. Chem. Soc. 2008;130:5883–5885. PubMed

Häkkinen H., Walter M., Grönbeck H. J. Phys. Chem. B. 2006;110:9927–9931. PubMed

Kang Z., Tsang C. H. A., Zhang Z., Zhang M., Wong N. B., Zapien J. A., Shan Y., Lee S. T. J. Am. Chem. Soc. 2007;129:5326–5327. PubMed

Kang Z. H., Liu Y., Lee S. T. Nanoscale. 2011;3:777–791. PubMed

Rupp M. Int. J. Quantum Chem. 2015;115:1003–1004.

Lyakhov A. O., Oganov A. R., Stokes H. T., Zhu Q. Comput. Phys. Commun. 2013;184:1172–1182.

Harris J. Phys. Rev. B: Condens. Matter Mater. Phys. 1985;31:1770–1779. PubMed

Jelfs K. E., Flikkema E., Bromley S. T. Phys. Chem. Chem. Phys. 2013;15:20438–20443. PubMed

Cuko A., Macià A., Calatayud M., Bromley S. T. Comput. Theor. Chem. 2017;1102:38–43.

Abraham N. L., Probert M. I. J. Phys. Rev. B: Condens. Matter Mater. Phys. 2006;73:224104.

Sierka M., Todorova T. K., Sauer J., Kaya S., Stacchiola D., Weissenrieder J., Shaikhutdinov S., Freund H. J. J. Chem. Phys. 2007;126:234710. PubMed

Sierka M. Prog. Surf. Sci. 2010;85:398–434.

Kaya S., Weissenrieder J., Stacchiola D., Todorova T. K., Sierka M., Sauer J., Shaikhutdinov S., Freund H. J. Surf. Sci. 2008;602:3338–3342.

Batzill M., Diebold U. Prog. Surf. Sci. 2005;79:47–154.

Merte L. R., Jorgensen M. S., Pussi K., Gustafson J., Shipilin M., Schaefer A., Zhang C., Rawle J., Nicklin C., Thornton G., Lindsay R., Hammer B., Lundgren E. Phys. Rev. Lett. 2017;119:096102. PubMed

Fujishima A., Zhang X., Tryk D. Surf. Sci. Rep. 2008;63:515–582.

Martinez U., Vilhelmsen L. B., Kristoffersen H. H., Stausholm-Møller J., Hammer B. Phys. Rev. B: Condens. Matter Mater. Phys. 2011;84:205434.

Martinez U., Hansen J. O., Lira E., Kristoffersen H. H., Huo P., Bechstein R., Laegsgaard E., Besenbacher F., Hammer B., Wendt S. Phys. Rev. Lett. 2012;109:155501. PubMed

Bechstein R., Kristoffersen H. H., Vilhelmsen L. B., Rieboldt F., Stausholm-Moller J., Wendt S., Hammer B., Besenbacher F. Phys. Rev. Lett. 2012;108:236103. PubMed

Freeman C. L., Claeyssens F., Allan N. L., Harding J. H. Phys. Rev. Lett. 2006;96:066102. PubMed

Kozlov S. M., Demiroglu I., Neyman K. M., Bromley S. T. Nanoscale. 2015;7:4361–4366. PubMed

Krainara N., Limtrakul J., Illas F., Bromley S. T. Phys. Rev. B: Condens. Matter Mater. Phys. 2011;83:233305.

Krainara N., Limtrakul J., Illas F., Bromley S. T. J. Phys. Chem. C. 2013;117:22908–22914.

Ferguson G. A., Mehmood F., Rankin R. B., Greeley J. P., Vajda S., Curtiss L. A. Top. Catal. 2012;55:353–365.

Miyazaki K., Inoue T. Surf. Sci. 2002;501:93–101.

Zhuang J., Kojima T., Zhang W., Liu L., Zhao L., Li Y. Phys. Rev. B: Condens. Matter Mater. Phys. 2002;65:045411.

Eckhoff M., Schebarchov D., Wales D. J. J. Phys. Chem. Lett. 2017;8:5402–5407. PubMed

Ismail R., Ferrando R., Johnston R. L. J. Phys. Chem. C. 2012;117:293–301.

Ferrando R., Rossi G., Levi A. C., Kuntova Z., Nita F., Jelea A., Mottet C., Barcaro G., Fortunelli A., Goniakowski J. J. Chem. Phys. 2009;130:174702. PubMed

Goniakowski J., Jelea A., Mottet C., Barcaro G., Fortunelli A., Kuntova Z., Nita F., Levi A. C., Rossi G., Ferrando R. J. Chem. Phys. 2009;130:174703. PubMed

Kozlov S. M., Aleksandrov H. A., Goniakowski J., Neyman K. M. J. Chem. Phys. 2013;139:084701. PubMed

Yang B., Liu C., Halder A., Tyo E. C., Martinson A. B. F., Seifert S., Zapol P., Curtiss L. A., Vajda S. J. Phys. Chem. C. 2017;121:10406–10412.

Lei Y., Mehmood F., Lee S., Greeley J. P., Lee B., Seifert S., Winans R. E., Elam J. W., Meyer R. J., Redfern P. C., Teschner D., Schlogl R., Pellin M. J., Curtiss L. A., Vajda S. Science. 2010;328:224–228. PubMed

Vajda S., Pellin M. J., Greeley J. P., Marshall C. L., Curtiss L. A., Ballentine G. A., Elam J. W., Catillon-Mucherie S., Redfern P. C., Mehmood F., Zapol P. Nat. Mater. 2009;8:213–216. PubMed

Barcaro G., Fortunelli A. J. Chem. Theory Comput. 2005;1:972–985. PubMed

Davis J. B. A., Horswell S. L., Johnston R. L. J. Phys. Chem. C. 2016;120:3759–3765.

Vilhelmsen L. B., Hammer B. Phys. Rev. Lett. 2012;108:126101. PubMed

Vilhelmsen L. B., Hammer B. J. Chem. Phys. 2013;139:204701. PubMed

Jiang D. E., Overbury S. H., Dai S. J. Phys. Chem. Lett. 2011;2:1211–1215. PubMed

Jia C., Fan W. Phys. Chem. Chem. Phys. 2015;17:30736–30743. PubMed

Cunningham D. A. H., Vogel W., Kageyama H., Tsubota S., Haruta M. J. Catal. 1998;177:1–10.

Barcaro G., Apra E., Fortunelli A. Chemistry. 2007;13:6408–6418. PubMed

Fiala R., Figueroba A., Bruix A., Vaclavu M., Rednyk A., Khalakhan I., Vorokhta M., Lavkova J., Illas F., Potin V., Matolinova I., Neyman K. M., Matolin V. Appl. Catal., B. 2016;197:262–270.

Figueroba A., Kovács G., Bruix A., Neyman K. M. Catal. Sci. Technol. 2016;6:6806–6813.

Paz-Borbòn L. O., Lopez-Martinez A., Garzon I. L., Posada-Amarillas A., Grönbeck H. Phys. Chem. Chem. Phys. 2017;19:17845–17855. PubMed

Lykhach Y., Kozlov S. M., Skala T., Tovt A., Stetsovych V., Tsud N., Dvorak F., Johanek V., Neitzel A., Myslivecek J., Fabris S., Matolin V., Neyman K. M., Libuda J. Nat. Mater. 2016;15:284–288. PubMed

Campbell C. T. Surf. Sci. Rep. 1997;27:1–111.

Xu L., Henkelman G., Campbell C. T., Jonsson H. Phys. Rev. Lett. 2005;95:146103. PubMed

Xu L., Campbell C. T., Jónsson H., Henkelman G. Surf. Sci. 2007;601:3133–3142.

Barcaro G., Fortunelli A. New J. Phys. 2007;9:22.

Ouyang R., Liu J. X., Li W. X. J. Am. Chem. Soc. 2013;135:1760–1771. PubMed

Wang J. G., Hammer B. Phys. Rev. Lett. 2006;97:136107. PubMed

Rieboldt F., Vilhelmsen L. B., Koust S., Lauritsen J. V., Helveg S., Lammich L., Besenbacher F., Hammer B., Wendt S. J. Chem. Phys. 2014;141:214702. PubMed

Fisicaro G., Sicher M., Amsler M., Saha S., Genovese L., Goedecker S. Phys. Rev. Mater. 2017;1:033609.

Negreiros F. R., Apra E., Barcaro G., Sementa L., Vajda S., Fortunelli A. Nanoscale. 2012;4:1208–1219. PubMed

Negreiros F. R., Sementa L., Barcaro G., Vajda S., Aprá E., Fortunelli A. ACS Catal. 2012;2:1860–1864. PubMed

Qin R., Liu P., Fu G., Zheng N. Small Methods. 2018;2:1700286.

Liu L., Díaz U., Arenal R., Agostini G., Concepción P., Corma A. Nat. Mater. 2016;16:132–138. PubMed

Goldbach A. and Saboungi M., in Encyclopedia of Inorganic and Bioinorganic Chemistry, ed. R. A. Scott, John Wiley & Sons, Ltd, Chichester, UK, 2011, 10.1002/9781119951438.eibc0339. DOI

Kuznetsov A. S., Tikhomirov V. K., Shestakov M. V., Moshchalkov V. V. Nanoscale. 2013;5:10065–10075. PubMed

Lu G., Li S., Guo Z., Farha O. K., Hauser B. G., Qi X., Wang Y., Wang X., Han S., Liu X., DuChene J. S., Zhang H., Zhang Q., Chen X., Ma J., Loo S. C. J., Wei W. D., Yang Y., Hupp J. T., Huo F. Nat. Chem. 2012;4:310–316. PubMed

Uzun A., Dixon D. A., Gates B. C. ChemCatChem. 2011;3:95–107.

Markova V. K., Vayssilov G. N., Genest A., Rosch N. Catal. Sci. Technol. 2016;6:1726–1736.

Chiodo S. G., Mineva T. J. Phys. Chem. C. 2016;120:4471–4480.

Di Paola C., Pavan L., D'Agosta R., Baletto F. Nanoscale. 2017;9:15658–15665. PubMed

Antúnez-García J., Galván D. H., Posada-Amarillas A., Petranovskii V. J. Mol. Struct. 2014;1059:232–238.

Vilhelmsen L. B., Walton K. S., Sholl D. S. J. Am. Chem. Soc. 2012;134:12807–12816. PubMed

Vilhelmsen L. B., Sholl D. S. J. Phys. Lett. 2012;3:3702–3706. PubMed

Vilhelmsen L. B., Hammer B. J. Chem. Phys. 2014;141:044711. PubMed

Grajciar L. J. Phys. Chem. C. 2016;120:27050–27065.

Palagin D., Knorpp A. J., Pinar A. B., Ranocchiari M., van Bokhoven J. A. Nanoscale. 2017;9:1144–1153. PubMed

Hjorth Larsen A., Jørgen Mortensen J., Blomqvist J., Castelli I. E., Christensen R., Dułak M., Friis J., Groves M. N., Hammer B., Hargus C., Hermes E. D., Jennings P. C., Bjerre Jensen P., Kermode J., Kitchin J. R., Leonhard Kolsbjerg E., Kubal J., Kaasbjerg K., Lysgaard S., Bergmann Maronsson J., Maxson T., Olsen T., Pastewka L., Peterson A., Rostgaard C., Schiøtz J., Schütt O., Strange M., Thygesen K. S., Vegge T., Vilhelmsen L., Walter M., Zeng Z., Jacobsen K. W. J. Phys.: Condens. Matter. 2017;29:273002. PubMed

Reuter K., Scheffler M. Phys. Rev. B: Condens. Matter Mater. Phys. 2002;65:035406.

Reuter K., Scheffler M. Phys. Rev. Lett. 2003;90:046103. PubMed

Reuter K. Catal. Lett. 2016;146:541–563.

Reuter K., Plaisance C. P., Oberhofer H., Andersen M. J. Chem. Phys. 2017;146:040901. PubMed

Rogal J., Reuter K., Scheffler M. Phys. Rev. Lett. 2007;98:046101. PubMed

Huang X., Bennett J. W., Hang M. N., Laudadio E. D., Hamers R. J., Mason S. E. J. Phys. Chem. C. 2017;121:5069–5080.

Jonayat A. S. M., van Duin A. C. T., Janik M. J. J. Phys. Chem. C. 2017;121:21439–21448.

Saidi W. A., Lee M., Li L., Zhou G., McGaughey A. J. H. Phys. Rev. B: Condens. Matter Mater. Phys. 2012;86:245429.

Zhen Y., Karsten R. ChemCatChem. 2018;10:465–469.

Li G., Pidko E. A., van Santen R. A., Li C., Hensen E. J. M. J. Phys. Chem. C. 2013;117:413–426.

Grundner S., Markovits M. A. C., Li G., Tromp M., Pidko E. A., Hensen E. J. M., Jentys A., Sanchez-Sanchez M., Lercher J. A. Nat. Commun. 2015;6:7546. PubMed PMC

Wang T., Tian X. X., Yang Y., Li Y. W., Wang J. G., Beller M., Jiao H. J. Surf. Sci. 2016;651:195–202.

Liu C., Li G., Hensen E. J. M., Pidko E. A. ACS Catal. 2015;5:7024–7033.

Stuve E. M., Madix R. J., Brundle C. R. Surf. Sci. 1984;146:155–178.

Chen L., Falsig H., Janssens T. V. W., Gronbeck H. J. Catal. 2018;358:179–186.

Paolucci C., Parekh A. A., Khurana I., Di Iorio J. R., Li H., Albarracin Caballero J. D., Shih A. J., Anggara T., Delgass W. N., Miller J. T., Ribeiro F. H., Gounder R., Schneider W. F. J. Am. Chem. Soc. 2016;138:6028–6048. PubMed

Engelhardt J., Lyu P. B., Nachtigall P., Schuth F., Garcia A. M. ChemCatChem. 2017;9:1985–1991.

Posada-Perez S., Vines F., Valero R., Rodriguez J. A., Illas F. Surf. Sci. 2017;656:24–32.

He J., Morales-Garcia A., Bludsky O., Nachtigall P. CrystEngComm. 2016;18:3808–3818.

Kenmoe S., Biedermann P. U. J. Chem. Phys. 2018;148:054701. PubMed

Zhang R. G., Hao X. B., Duan T., Wang B. J. Fuel Process. Technol. 2017;156:253–264.

Lorenzi J. M., Matera S., Reuter K. ACS Catal. 2016;6:5191–5197.

Fergusson G. A., Vorotnikov V., Wunder N., Clark J., Gruchalla K., Bartholomew T., Robichaud D. J., Beckham G. T. J. Phys. Chem. C. 2016;120:26249–26258.

Yao Z., Reuter K. ChemCatChem. 2018;10:465–469.

Vandichel M., Moscu A., Gronbeck H. ACS Catal. 2017;7:7431–7441.

Kim J. S., Kim B. K., Kim Y. C. J. Nanosci. Nanotechnol. 2015;15:8205–8210. PubMed

Farkas A., Fantauzzi D., Mueller J. E., Zhu T. W., Papp C., Steinruck H. P., Jacob T. J. Electron Spectrosc. Relat. Phenom. 2017;221:44–57.

Exner K. S., Over H. Acc. Chem. Res. 2017;50:1240–1247. PubMed

Emmerich K., Koeniger F., Kaden H., Thissen P. J. Colloid Interface Sci. 2015;448:24–31. PubMed

Lee T., Lee Y., Piccinin S., Soon A. J. Phys. Chem. C. 2017;121:2228–2233.

Maestri M. Chem. Commun. 2017;53:10244–10254. PubMed PMC

Kalz K. F., Kraehnert R., Dvoyashkin M., Dittmeyer R., Glaser R., Krewer U., Reuter K., Grunwaldt J. D. ChemCatChem. 2017;9:17–29. PubMed PMC

Sabbe M. K., Reyniers M.-F., Reuter K. Catal. Sci. Technol. 2012;2:2010–2024.

Carter E. A. Science. 2008;321:800–803. PubMed

Norskov J. K., Bligaard T., Rossmeisl J., Christensen C. H. Nat. Chem. 2009;1:37–46. PubMed

De Moor B. A., Ghysels A., Reyniers M.-F., Van Speybroeck V., Waroquier M., Marin G. B. J. Chem. Theory Comput. 2011;7:1090–1101. PubMed

Piccini G., Alessio M., Sauer J. Angew. Chem., Int. Ed. 2016;55:5235–5237. PubMed PMC

Piccini G., Sauer J. J. Chem. Theory Comput. 2013;9:5038–5045. PubMed

Piccini G., Sauer J. J. Chem. Theory Comput. 2014;10:2479–2487. PubMed

De Moor B. A., Reyniers M. F., Marin G. B. Phys. Chem. Chem. Phys. 2009;11:2939–2958. PubMed

Van Speybroeck V., Hemelsoet K., Joos L., Waroquier M., Bell R. G., Catlow C. R. A. Chem. Soc. Rev. 2015;44:7044–7111. PubMed

Frenkel D. and Smit B., Understanding molecular simulation: from algorithms to applications, Academic Press, San Diego, 2nd edn, 2002.

Leiding J., Coe J. D. J. Chem. Phys. 2016;144:174109. PubMed

Van Der Mynsbrugge J., Janda A., Mallikarjun Sharada S., Lin L. C., Van Speybroeck V., Head-Gordon M., Bell A. T. ACS Catal. 2017;7:2685–2697.

Chipot C. and Pohorille A., Free energy calculations: theory and applications in chemistry and biology, Springer, New York, Study edn, 2007.

Christ C. D., Mark A. E., van Gunsteren W. F. J. Comput. Chem. 2009;31:1569–1582. PubMed

Hansen N., Van Gunsteren W. F. J. Chem. Theory Comput. 2014;10:2632–2647. PubMed

Torrie G. M., Valleau J. P. J. Comput. Phys. 1977;23:187–199.

Laio A., Parrinello M. Proc. Natl. Acad. Sci. U. S. A. 2002;99:12562. PubMed PMC

Kirkwood J. G. J. Chem. Phys. 1935;3:300–313.

Rodríguez-Fortea A., Iannuzzi M., Parrinello M. J. Phys. Chem. B. 2005;110:3477–3484. PubMed

Kostov M. K., Santiso E. E., George A. M., Gubbins K. E., Nardelli M. B. Phys. Rev. Lett. 2005;95:1–4. PubMed

Rodríguez-Fortea A., Iannuzzi M., Parrinello M. J. Phys. Chem. C. 2007;111:2251–2258. PubMed

Rodríguez-Fortea A., Iannuzzi M. J. Phys. Chem. C. 2008;112:19642–19648.

Molina-Montes E., Donadio D., Hernández-Laguna A., Sainz-Díaz C. I., Parrinello M. J. Phys. Chem. B. 2008;112:7051–7060. PubMed

Ceriotti M., Bernasconi M. Phys. Rev. B: Condens. Matter Mater. Phys. 2007;76:245309.

Kiss J., Frenzel J., Nair N. N., Meyer B., Marx D. J. Chem. Phys. 2011;134:0–14. PubMed

Schreiner E., Nair N. N., Wittekindt C., Marx D. J. Am. Chem. Soc. 2011;133:8216–8226. PubMed

Koizumi K., Boero M., Shigeta Y., Oshiyama A. Phys. Rev. B: Condens. Matter Mater. Phys. 2012;85:1–4.

Kuo I. F. W., Grant C. D., Gee R. H., Chinn S. C., Love A. H. J. Phys. Chem. C. 2012;116:9631–9635.

Santarossa G., Hahn K., Baiker A. Langmuir. 2013;29:5487–5499. PubMed

Frenzel J., Kiss J., Nair N. N., Meyer B., Marx D. Phys. Status Solidi B. 2013;250:1174–1190.

Koizumi K., Boero M., Shigeta Y., Oshiyama A. J. Phys. Chem. Lett. 2013;4:1592–1596. PubMed

Ghosh T. K., Nair N. N. ChemCatChem. 2013;5:1811–1821.

Moors S. L. C., De Wispelaere K., Van Der Mynsbrugge J., Waroquier M., Van Speybroeck V. ACS Catal. 2013;3:2556–2567. PubMed PMC

Laino T., Curioni A. New J. Phys. 2013;15:095009.

Van Der Mynsbrugge J., Moors S. L. C., De Wispelaere K., Van Speybroeck V. ChemCatChem. 2014;6:1906–1918.

Koizumi K., Nobusada K., Boero M. J. Phys. Chem. C. 2015;119:15421–15427.

Mushrif S. H., Varghese J. J., Krishnamurthy C. B. Phys. Chem. Chem. Phys. 2015;17:4961–4969. PubMed

Ghuman K. K., Yadav S., Singh C. V. J. Phys. Chem. C. 2015;119:6518–6529.

Ghosh T. K., Nair N. N. Surf. Sci. 2015;632:20–27.

Negreiros F. R., Camellone M. F., Fabris S. J. Phys. Chem. C. 2015;119:21567–21573.

Martínez-Suárez L., Siemer N., Frenzel J., Marx D. ACS Catal. 2015;5:4201–4218.

Dewispelaere K., Ensing B., Ghysels A., Meijer E. J., Vanspeybroeck V. Chem. – Eur. J. 2015;21:9385–9396. PubMed

Haigis V., Coudert F. X., Vuilleumier R., Boutin A., Fuchs A. H. J. Phys. Chem. Lett. 2015;6:4365–4370. PubMed

Koizumi K., Nobusada K., Boero M. Chem. – Eur. J. 2016;22:5181–5188. PubMed

Munoz-Santiburcio D., Hernandez-Laguna A., Sainz-Díaz C. I. J. Phys. Chem. C. 2016;120:28186–28192.

De Wispelaere K., Bailleul S., Van Speybroeck V. Catal. Sci. Technol. 2016;6:2686–2705.

De Wispelaere K., Wondergem C. S., Ensing B., Hemelsoet K., Meijer E. J., Weckhuysen B. M., Van Speybroeck V., Ruiz-Martínez J. ACS Catal. 2016;6:1991–2002.

Hajek J., Van Der Mynsbrugge J., De Wispelaere K., Cnudde P., Vanduyfhuys L., Waroquier M., Van Speybroeck V. J. Catal. 2016;340:227–235. PubMed PMC

Cnudde P., De Wispelaere K., Van der Mynsbrugge J., Waroquier M., Van Speybroeck V. J. Catal. 2017;345:53–69. PubMed PMC

Ghoussoub M., Yadav S., Ghuman K. K., Ozin G. A., Singh C. V. ACS Catal. 2016;6:7109–7117.

Valsson O., Tiwary P., Parrinello M. Annu. Rev. Phys. Chem. 2016;67:159–184. PubMed

Barducci A., Bussi G., Parrinello M. Phys. Rev. Lett. 2008;100:020603. PubMed

Raiteri P., Laio A., Gervasio F. L., Micheletti C., Parrinello M. J. Phys. Chem. B. 2006;110:3533–3539. PubMed

Bal K. M., Neyts E. C. J. Chem. Theory Comput. 2015;11:4545–4554. PubMed

Bal K. M., Huygh S., Bogaerts A., Neyts E. C. Plasma Sources Sci. Technol. 2018;27:024001.

Tribello G. A., Bonomi M., Branduardi D., Camilloni C., Bussi G. Comput. Phys. Commun. 2014;185:604–613.

Gao Y. Q. J. Chem. Phys. 2008;128:64105. PubMed

Leung K., Nielsen I., Criscenti L. J. Am. Chem. Soc. 2009;131:18358–18365. PubMed

Sánchez V. M., Cojulun J. A., Scherlis D. A. J. Phys. Chem. C. 2010;114:11522–11526.

Schnur S., Groß A. Catal. Today. 2011;165:129–137.

Liu X., Salahub D. R. J. Am. Chem. Soc. 2015;137:4249–4259. PubMed

Chen Z. N., Shen L., Yang M., Fu G., Hu H. J. Phys. Chem. C. 2015;119:26422–26428.

Sun G., Jiang H. J. Chem. Phys. 2015;143:234706. PubMed

Kumar S., Rosenberg J. M., Bouzida D., Swendsen R. H., Kollman P. A. J. Comput. Chem. 1992;13:1011–1021.

Rosta E., Hummer G. J. Chem. Theory Comput. 2015;11:276–285. PubMed

Gao Y. Q., Yang L. J. Chem. Phys. 2006;125:114103. PubMed

Sugita Y., Okamoto Y. Chem. Phys. Lett. 1999;314:141–151.

Bussi G., Gervasio F. L., Laio A., Parrinello M. J. Am. Chem. Soc. 2006;128:13435–13441. PubMed

Boero M., Parrinello M., Terakura K. J. Am. Chem. Soc. 1998;120:2746–2752.

Bučko T., Benco L., Hafner J., Ángyán J. G. J. Catal. 2007;250:171–183.

Bučko T., Benco L., Dubay O., Dellago C., Hafner J. J. Chem. Phys. 2009;131:214508. PubMed

Bučko T., Hafner J. J. Phys.: Condens. Matter. 2010;22:384201. PubMed

Zipoli F., Car R., Cohen M. H., Selloni A. J. Am. Chem. Soc. 2010;132:8593–8601. PubMed

Bučko T., Benco L., Hafner J., Ángyán J. G. J. Catal. 2011;279:220–228.

Benco L. J. Catal. 2013;298:122–129.

Bučko T., Hafner J. J. Catal. 2015;329:32–48.

Cheng T., Xiao H., Goddard W. A. J. Phys. Chem. Lett. 2015;6:4767–4773. PubMed

Cheng T., Xiao H., Goddard W. A. J. Am. Chem. Soc. 2016;138:13802–13805. PubMed

Sheng T., Wang D., Lin W. F., Hu P., Sun S. G. Electrochim. Acta. 2016;190:446–454.

Sheng T., Ye J.-Y., Lin W.-F., Sun S.-G. Phys. Chem. Chem. Phys. 2017;19:7476–7480. PubMed

Ming Y., Kumar N., Siegel D. J. ACS Omega. 2017;2:4921–4928. PubMed PMC

Li H., Paolucci C., Schneider W. F. J. Chem. Theory Comput. 2018;14:929–932. PubMed

Bučko T., Chibani S., Paul J.-F., Cantrel L., Badawi M. Phys. Chem. Chem. Phys. 2017;19:27530–27543. PubMed

Sheng T., Sun S. G. Appl. Surf. Sci. 2018;428:514–519.

Carter E. A., Ciccotti G., Hynes J. T., Kapral R. Chem. Phys. Lett. 1989;156:472–477.

Zheng S., Pfaendtner J. Mol. Simul. 2015;41:55–72.

Stewart J. J. P., Davis L. P., Burggraf L. W. J. Comput. Chem. 1987;8:1117–1123.

Dellago C., Bolhuis P. G., Geissler P. L. Adv. Chem. Phys. 2002;123:1–78.

Zimmerman P. M., Tranca D. C., Gomes J., Lambrecht D. S., Head-Gordon M., Bell A. T. J. Am. Chem. Soc. 2012;134:19468–19476. PubMed

Tranca D. C., Hansen N., Swisher J. A., Smit B., Keil F. J. J. Phys. Chem. C. 2012;116:23408–23417.

Lo C. S., Radhakrishnan R., Trout B. L. Catal. Today. 2005;105:93–105.

Gomes J., Head-Gordon M., Bell A. T. J. Phys. Chem. C. 2014;118:21409–21419.

Göltl F., Grüneis A., Bučko T., Hafner J. J. Chem. Phys. 2012;137:114111. PubMed

Fu X., Yang L., Gao Y. Q. J. Chem. Phys. 2007;127:154106. PubMed

Martínez-Suárez L., Frenzel J., Marx D., Meyer B. Phys. Rev. Lett. 2013;110:086108. PubMed

Reyniers M.-F., Marin G. B. Annu. Rev. Chem. Biomol. Eng. 2014;5:563–594. PubMed

Salciccioli M., Stamatakis M., Caratzoulas S., Vlachos D. G. Chem. Eng. Sci. 2011;66:4319–4355.

Keil F. J., in Multiscale Molecular Methods in Applied Chemistry, ed. B. Kirchner and J. Vrabec, Springer Berlin Heidelberg, Berlin, Heidelberg, 2012, pp. 69–107, 10.1007/128_2011_128. DOI

Michail S. J. Phys.: Condens. Matter. 2015;27:013001. PubMed

Marshall A. T. Curr. Opin. Electrochem. 2018;7:75–80.

Reuter K., in Operando Research in Heterogeneous Catalysis, ed. J. Frenken and I. Groot, Springer International Publishing, Cham, 2017, pp. 151–188, 10.1007/978-3-319-44439-0_7. DOI

Kulkarni A., Siahrostami S., Patel A., Nørskov J. K. Chem. Rev. 2018;118:2302–2312. PubMed

Mao Y., Wang H. F., Hu P. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2017;7:e1321.

Motagamwala A. H., Ball M. R., Dumesic J. A. Annu. Rev. Chem. Biomol. Eng. 2018;9:413–450. PubMed

Prats H., Illas F., Sayós R. Int. J. Quantum Chem. 2018;118:e25518.

Dumesic J. A., Rudd D. F., Aparicio L. M., Rekoske J. E. and Trevino A. A., The Microkinetics of Heterogeneous Catalysis, American Chemical Society, 1992.

Pineda M., Stamatakis M. J. Chem. Phys. 2017;147:024105. PubMed

Chen Z., Wang H., Su N. Q., Duan S., Shen T., Xu X. ACS Catal. 2018;8:859–868.

Liu D.-J., Zahariev F., Gordon M. S., Evans J. W. J. Phys. Chem. C. 2016;120:28639–28653.

Jørgensen M., Grönbeck H. J. Phys. Chem. C. 2017;121:7199–7207.

Nikbin N., Caratzoulas S., Vlachos D. G. ChemCatChem. 2012;4:504–511.

Van Speybroeck V., De Wispelaere K., Van der Mynsbrugge J., Vandichel M., Hemelsoet K., Waroquier M. Chem. Soc. Rev. 2014;43:7326–7357. PubMed

Zhang X., Liu J.-X., Zijlstra B., Filot I. A. W., Zhou Z., Sun S., Hensen E. J. M. Nano Energy. 2018;43:200–209.

Filot I. A. W., Santen R. A. v., Hensen E. J. M. Angew. Chem., Int. Ed. 2014;53:12746–12750. PubMed

Rohling R. Y., Uslamin E., Zijlstra B., Tranca I. C., Filot I. A. W., Hensen E. J. M., Pidko E. A. ACS Catal. 2018;8:760–769. PubMed PMC

Li G., Pidko E. A., Filot I. A. W., van Santen R. A., Li C., Hensen E. J. M. J. Catal. 2013;308:386–397.

Brogaard R. Y., Wang C.-M., Studt F. ACS Catal. 2014;4:4504–4509.

Wolcott C. A., Medford A. J., Studt F., Campbell C. T. J. Catal. 2015;330:197–207.

Stegelmann C., Andreasen A., Campbell C. T. J. Am. Chem. Soc. 2009;131:8077–8082. PubMed

Mehta P., Barboun P., Herrera F. A., Kim J., Rumbach P., Go D. B., Hicks J. C., Schneider W. F. Nat. Catal. 2018;1:269–275.

Campbell C. T. ACS Catal. 2017;7:2770–2779.

Vojvodic A., Nørskov J. K. Natl. Sci. Rev. 2015;2:140–143.

Cheng J., Hu P., Ellis P., French S., Kelly G., Lok C. M. J. Phys. Chem. C. 2008;112:1308–1311.

Ulissi Z. W., Medford A. J., Bligaard T., Nørskov J. K. Nat. Commun. 2017;8:14621. PubMed PMC

Liu J.-X., Su Y., Filot I. A. W., Hensen E. J. M. J. Am. Chem. Soc. 2018;140:4580–4587. PubMed PMC

Liu C., Tranca I., van Santen R. A., Hensen E. J. M., Pidko E. A. J. Phys. Chem. C. 2017;121:23520–23530. PubMed PMC

Abild-Pedersen F., Greeley J., Studt F., Rossmeisl J., Munter T. R., Moses P. G., Skúlason E., Bligaard T., Nørskov J. K. Phys. Rev. Lett. 2007;99:016105. PubMed

Calle-Vallejo F., Loffreda D., Koper M. T. M., Sautet P. Nat. Chem. 2015;7:403. PubMed

Yu L., Vilella L., Abild-Pedersen F. Commun. Chem. 2018;1:2.

Latimer A. A., Kulkarni A. R., Aljama H., Montoya J. H., Yoo J. S., Tsai C., Abild-Pedersen F., Studt F., Nørskov J. K. Nat. Mater. 2016;16:225. PubMed

Pegis M. L., Wise C. F., Koronkiewicz B., Mayer J. M. J. Am. Chem. Soc. 2017;139:11000–11003. PubMed

Gani T. Z. H., Kulik H. J. ACS Catal. 2018;8:975–986.

Logadottir A., Rod T. H., Nørskov J. K., Hammer B., Dahl S., Jacobsen C. J. H. J. Catal. 2001;197:229–231.

Vojvodic A., Medford A. J., Studt F., Abild-Pedersen F., Khan T. S., Bligaard T., Nørskov J. K. Chem. Phys. Lett. 2014;598:108–112.

Liu C., van Santen R. A., Poursaeidesfahani A., Vlugt T. J. H., Pidko E. A., Hensen E. J. M. ACS Catal. 2017;7:8613–8627. PubMed PMC

Pidko E. A. ACS Catal. 2017;7:4230–4234. PubMed PMC

Chiang L., Lu B., Castillo I. Annu. Rev. Chem. Biomol. Eng. 2017;8:63–85. PubMed

Goh G. B., Hodas N. O., Vishnu A. J. Comput. Chem. 2017;38:1291–1307. PubMed

Fooshee D., Mood A., Gutman E., Tavakoli M., Urban G., Liu F., Huynh N., Van Vranken D., Baldi P. Mol. Syst. Des. Eng. 2018;3:442–452.

Evans J. D., Coudert F.-X. Chem. Mater. 2017;29:7833–7839.

Coley C. W., Barzilay R., Jaakkola T. S., Green W. H., Jensen K. F. ACS Cent. Sci. 2017;3:434–443. PubMed PMC

Faber F. A., Hutchison L., Huang B., Gilmer J., Schoenholz S. S., Dahl G. E., Vinyals O., Kearnes S., Riley P. F., von Lilienfeld O. A. J. Chem. Theory Comput. 2017;13:5255–5264. PubMed

Hautier G., Fischer C. C., Jain A., Mueller T., Ceder G. Chem. Mater. 2010;22:3762–3767.

Raccuglia P., Elbert K. C., Adler P. D. F., Falk C., Wenny M. B., Mollo A., Zeller M., Friedler S. A., Schrier J., Norquist A. J. Nature. 2016;533:73–76. PubMed

Schwaller P., Gaudin T., Lanyi D., Bekas C. and Laino T., 2017, arXiv:1711.04810.

Hansen K., Montavon G., Biegler F., Fazli S., Rupp M., Scheffler M., von Lilienfeld O. A., Tkatchenko A., Müller K.-R. J. Chem. Theory Comput. 2013;9:3404–3419. PubMed

Meredig B., Agrawal A., Kirklin S., Saal J. E., Doak J. W., Thompson A., Zhang K., Choudhary A., Wolverton C. Phys. Rev. B: Condens. Matter Mater. Phys. 2014;89:1–7.

Jinnouchi R., Asahi R. J. Phys. Chem. Lett. 2017;8:4279–4283. PubMed

Montavon G., Rupp M., Gobre V., Vazquez-Mayagoitia A., Hansen K., Tkatchenko A., Müller K.-R., Anatole von Lilienfeld O. New J. Phys. 2013;15:095003.

Ward L., Agrawal A., Choudhary A., Wolverton C. npj Comput. Mater. 2016;2:16028.

Gómez-Bombarelli R., Wei J. N., Duvenaud D., Hernández-Lobato J. M., Sánchez-Lengeling B., Sheberla D., Aguilera-Iparraguirre J., Hirzel T. D., Adams R. P., Aspuru-Guzik A. ACS Cent. Sci. 2018;4:268–276. PubMed PMC

Houben C., Lapkin A. A. Curr. Opin. Chem. Eng. 2015;9:1–7.

Zhou Z., Li X., Zare R. N. ACS Cent. Sci. 2017;3:1337–1344. PubMed PMC

Ulissi Z. W., Tang M. T., Xiao J., Liu X., Torelli D. A., Karamad M., Cummins K., Hahn C., Lewis N. S., Jaramillo T. F., Chan K., Nørskov J. K. ACS Catal. 2017;7:6600–6608.

Pilania G., Wang C., Jiang X., Rajasekaran S., Ramprasad R. Sci. Rep. 2013;3:1–6. PubMed PMC

Li H., Zhang Z., Liu Z. Catalysts. 2017;7:306.

Kitchin J. R. Nat. Catal. 2018;1:230–232.

Burello E., Farrusseng D., Rothenberg G. Adv. Synth. Catal. 2004;346:1844–1853.

Nørskov J. K., Bligaard T. Angew. Chem., Int. Ed. 2013;52:776–777. PubMed

Samuel A. L. IBM J. Res. Dev. 1959;3:210–229.

McCulloch W. S., Pitts W. Bull. Math. Biophys. 1943;5:115–133.

Gartner's 2016 Hype Cycle for Emerging Technologies Identifies Three Key Trends That Organizations Must Track to Gain Competitive Advantage, https://www.gartner.com/newsroom/id/3412017, (accessed 14 August 2018).

Kotsiantis S. B., ed. I. Maglogiannis, K. Karpouzis, M. Wallace and J. Soldatos, IOS Press, 2007, pp. 3–24.

Baumes L. A., Serra J. M., Serna P., Corma A. J. Comb. Chem. 2006;8:583–596. PubMed

Fernandez M., Barnard A. S. ACS Comb. Sci. 2016;18:243–252. PubMed

Fernandez M., Boyd P. G., Daff T. D., Aghaji M. Z., Woo T. K. J. Phys. Lett. 2014;5:3056–3060. PubMed

Fey N., Orpen A. G., Harvey J. N. Coord. Chem. Rev. 2009;253:704–722.

Jover J., Fey N. Dalton Trans. 2013;42:172–181. PubMed

Ghiringhelli L. M., Vybiral J., Levchenko S. V., Draxl C., Scheffler M. Phys. Rev. Lett. 2015;114:1–5. PubMed

Hand D. ACM SIGKDD Explor. Newsl. 1999;1:16–19.

Herr J. E., Yao K., McIntyre R., Toth D., Parkhill J. J. Chem. Phys. 2018;148:241710. PubMed

Spialter L. J. Chem. Doc. 1964;4:261–269.

Weininger D. J. Chem. Inf. Comput. Sci. 1988;28:31–36. PubMed

Heller S., McNaught A., Stein S., Tchekhovskoi D., Pletnev I. J. Cheminf. 2014;6:P4. PubMed

Morgan H. L. J. Chem. Doc. 1965;5:107–113.

Mbue S. P., Cho K.-H. Bull. Korean Chem. Soc. 2015;36:1569–1574.

Clark A. M. J. Chem. Inf. Model. 2011;51:3149–3157. PubMed

Vinoth P., Sankar P. J. Mol. Graphics Modell. 2017;76:242–259. PubMed

Bone R. G. A., Firth M. A., Sykes R. A. J. Chem. Inf. Comput. Sci. 1999;39:846–860.

O’Boyle N. M. J. Cheminf. 2012;4:22. PubMed

Janet J. P., Chan L., Kulik H. J. J. Phys. Chem. Lett. 2018;9:1064–1071. PubMed

Toropov A. A., Toropova A. P., Benfenati E. Chem. Phys. Lett. 2008;461:343–347.

Toropov A. A., Toropova A. P., Benfenati E. Mol. Diversity. 2010;14:183–192. PubMed

Tetko I. V., Varbanov H. P., Galanski M., Talmaciu M., Platts J. A., Ravera M., Gabano E. J. Inorg. Biochem. 2016;156:1–13. PubMed

Von Lilienfeld O. A., Ramakrishnan R., Rupp M., Knoll A. Int. J.Int. J. Quantum Chem.Quantum Chem. 2015;115:1084–1093.

Karelson M., Lobanov V. S., Katritzky A. R. Chem. Rev. 1996;96:1027–1044. PubMed

Dioury F., Duprat A., Dreyfus G., Ferroud C., Cossy J. J. Chem. Inf. Model. 2014;54:2718–2731. PubMed

Guo J. Y., Minko Y., Santiago C. B., Sigman M. S. ACS Catal. 2017;7:4144–4151.

Niemeyer Z. L., Milo A., Hickey D. P., Sigman M. S. Nat. Chem. 2016;8:610–617. PubMed

Tang S., Liu Z., Zhan X., Cheng R., He X., Liu B. J. Mol. Model. 2014;20:2129. PubMed

Ioannidis E. I., Gani T. Z. H., Kulik H. J. J. Comput. Chem. 2016;37:2106–2117. PubMed

Janet J. P., Gani T. Z. H., Steeves A. H., Ioannidis E. I., Kulik H. J. Ind. Eng. Chem. Res. 2017;56:4898–4910.

Sasaki M., Hamada H., Kintaichi Y., Ito T. Appl. Catal., A. 1995;132:261–270.

Mohammed M. L., Patel D., Mbeleck R., Niyogi D., Sherrington D. C., Saha B. Appl. Catal., A. 2013;466:142–152.

Baysal M., Günay M. E., Yıldırım R. Int. J. Hydrogen Energy. 2017;42:243–254.

Avşar E. Int. J. Hydrogen Energy. 2017;42:23326–23333.

Odabaşi Ç., Günay M. E., Yildirim R. Int. J. Hydrogen Energy. 2014;39:5733–5746.

Kite S., Hattori T., Murakami Y. Appl. Catal., A. 1994;114:L173–L178.

Agrafiotis D. K., Bandyopadhyay D., Wegner J. K., Van Vlijmen H. J. Chem. Inf. Model. 2007;47:1279–1293. PubMed

Hawkins P. C. D. J. Chem. Inf. Model. 2017;57:1747–1756. PubMed

Engel T. J. Chem. Inf. Model. 2006;46:2267–2277. PubMed

Warr W. A. Mol. Inf. 2014;33:469–476. PubMed

Dietz A. J. Chem. Inf. Comput. Sci. 1995;35:787–802.

Kayala M. A., Azencott C.-A., Chen J. H., Baldi P. J. Chem. Inf. Model. 2011;51:2209–2222. PubMed PMC

Tadashi H., Hideyuki N., Atsushi S., Shigeharu K., Yuichi M. Appl. Catal. 1989;50:L11–L15.

Frontistis Z., Daskalaki V. M., Hapeshi E., Drosou C., Fatta-Kassinos D., Xekoukoulotakis N. P., Mantzavinos D. J. Photochem. Photobiol., A. 2012;240:33–41.

Corma A., Serra J. M., Argente E., Botti V., Valero S. ChemPhysChem. 2002;3:939–945. PubMed

Nandi S., Badhe Y., Lonari J., Sridevi U., Rao B. S., Tambe S. S., Kulkarni B. D. Chem. Eng. J. 2004;97:115–129.

Akcayol M. A., Cinar C. Appl. Therm. Eng. 2005;25:2341–2350.

Li Z., Kermode J. R., De Vita A. Phys. Rev. Lett. 2015;114:1–5. PubMed

Hu L. H., Wang X. J., Wong L. H., Chen G. H. J. Chem. Phys. 2003;119:11501–11507.

Cramer C. J., Truhlar D. G. Phys. Chem. Chem. Phys. 2009;11:10757. PubMed

Wellendorff J., Silbaugh T. L., Garcia-Pintos D., Nørskov J. K., Bligaard T., Studt F., Campbell C. T. Surf. Sci. 2015;640:36–44.

Jinnouchi R., Hirata H., Asahi R. J. Phys. Chem. C. 2017;121:26397–26405.

Ma X., Li Z., Achenie L. E. K., Xin H. J. Phys. Chem. Lett. 2015;6:3528–3533. PubMed

Lowndes J. S. S., Best B. D., Scarborough C., Afflerbach J. C., Frazier M. R., O’Hara C. C., Jiang N., Halpern B. S. Nat. Ecol. Evol. 2017;1:0160. PubMed

Lawson A. J., Swienty-Busch J., Géoui T., Evans D. ACS Symp. Ser. 2014;1164:127–148.

Baker M., Penny D. Nature. 2016;533:452–454. PubMed

Björnmalm M., Caruso F. Angew. Chem., Int. Ed. 2018;57:1122–1123. PubMed

Williams A., Tkachenko V. J. Comput.-Aided Mol. Des. 2014;28:1023–1030. PubMed

Nakata M., Shimazaki T. J. Chem. Inf. Model. 2017;57:1300–1308. PubMed

Chalk S. J. J. Cheminf. 2016;8:1–24.

Rmarkdown in a scientific workflow, http://predictiveecology.org/2016/10/21/Rmarkdownscience-workflow.html, (accessed 14 August 2018).

Ram K. Source Code Biol. Med. 2013;8:1–8. PubMed PMC

Lerner B. S. and Boose E. R., RDataTracker: Collecting Provenance in an Interactive Scripting Environment, USENIX Association, Cologne, 2014.

Baumer B., Cetinkaya-Rundel M., Bray A., Loi L. and Horton N. J., 2014, arXiv:1402.1894.

Molloy J. C. PLoS Biol. 2011;9:1–4. PubMed PMC

Uhlir P. F., Schröder P. Data Sci. J. 2007;6:OD36–OD53.

Doerr A. Nat. Methods. 2010;7:10–11. PubMed

Positively Negative: A New PLOS ONE Collection focusing on Negative, Null and Inconclusive Results, http://blogs.plos.org/everyone/2015/02/25/positively-negative-new-plosone-collection-focusing-negative-null-inconclusive-results/, (accessed 14 August 2018).

Ananikov V. P., Beletskaya I. P. Organometallics. 2012;31:1595–1604.

Skoraczyñski G., Dittwald P., Miasojedow B., Szymkuc S., Gajewska E. P., Grzybowski B. A., Gambin A. Sci. Rep. 2017;7:1–9. PubMed PMC

Kayala M. A. and Baldi P. F., A Machine Learning Approach to Predict Chemical Reactions, Curran Associates, Inc., Granada, 2011.

Behler J. Angew. Chem., Int. Ed. 2017;56:12828–12840. PubMed

Chmiela S., Tkatchenko A., Sauceda H. E., Poltavsky I. Sci. Adv. 2017;3:e1603015. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The need for operando modelling of 27Al NMR in zeolites: the effect of temperature, topology and water

. 2023 Aug 30 ; 14 (34) : 9101-9113. [epub] 20230803

The effect of water on the validity of Löwenstein's rule

. 2019 Jun 14 ; 10 (22) : 5705-5711. [epub] 20190506

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...