Counting electrons on supported nanoparticles
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26657332
DOI
10.1038/nmat4500
PII: nmat4500
Knihovny.cz E-zdroje
- MeSH
- cer chemie MeSH
- elektrony * MeSH
- katalýza MeSH
- molekulární struktura MeSH
- nanočástice chemie MeSH
- povrchové vlastnosti MeSH
- sloučeniny platiny chemie MeSH
- velikost částic MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cer MeSH
- ceric oxide MeSH Prohlížeč
- sloučeniny platiny MeSH
Electronic interactions between metal nanoparticles and oxide supports control the functionality of nanomaterials, for example, the stability, the activity and the selectivity of catalysts. Such interactions involve electron transfer across the metal/support interface. In this work we quantify this charge transfer on a well-defined platinum/ceria catalyst at particle sizes relevant for heterogeneous catalysis. Combining synchrotron-radiation photoelectron spectroscopy, scanning tunnelling microscopy and density functional calculations we show that the charge transfer per Pt atom is largest for Pt particles of around 50 atoms. Here, approximately one electron is transferred per ten Pt atoms from the nanoparticle to the support. For larger particles, the charge transfer reaches its intrinsic limit set by the support. For smaller particles, charge transfer is partially suppressed by nucleation at defects. These mechanistic and quantitative insights into charge transfer will help to make better use of particle size effects and electronic metal-support interactions in metal/oxide nanomaterials.
Zobrazit více v PubMed
Science. 2002 Mar 15;295(5562):2053-5 PubMed
Nat Chem. 2012 Jul 24;4(8):597-8 PubMed
Phys Rev B Condens Matter. 1994 Oct 15;50(16):11340-11346 PubMed
Angew Chem Int Ed Engl. 2014 Sep 22;53(39):10525-30 PubMed
Phys Chem Chem Phys. 2015 Feb 21;17(7):5124-32 PubMed
Phys Rev B Condens Matter. 1993 Jan 1;47(1):558-561 PubMed
Nat Mater. 2011 Apr;10(4):310-5 PubMed
Phys Chem Chem Phys. 2014 May 14;16(18):8148-67 PubMed
Science. 2003 Mar 14;299(5613):1688-91 PubMed
Phys Rev B Condens Matter. 1992 Jun 15;45(23):13244-13249 PubMed
Faraday Discuss. 2013;162:9-30 PubMed
J Am Chem Soc. 2012 May 30;134(21):8968-74 PubMed
Science. 2014 Aug 1;345(6196):546-50 PubMed
Phys Rev B Condens Matter. 1993 Aug 15;48(7):4978 PubMed
Science. 2003 Aug 15;301(5635):935-8 PubMed
Phys Rev Lett. 2000 Apr 17;84(16):3646-9 PubMed
Phys Chem Chem Phys. 2013 Feb 14;15(6):1737-57 PubMed
Science. 2004 Oct 8;306(5694):252-5 PubMed
Science. 2002 Oct 25;298(5594):811-4 PubMed
Phys Rev Lett. 2013 Nov 15;111(20):206101 PubMed
Phys Rev B Condens Matter. 1996 Oct 15;54(16):11169-11186 PubMed
Science. 1981 Mar 13;211(4487):1121-5 PubMed
Electronic and Structural Properties of Thin Iron Oxide Films on CeO2
Metal-Support Interaction and Charge Distribution in Ceria-Supported Au Particles Exposed to CO
Nanopartikel auf subnanometer dünnen oxidischen Filmen: Skalierung von Modellsystemen
Nanoparticles Supported on Sub-Nanometer Oxide Films: Scaling Model Systems to Bulk Materials
Towards operando computational modeling in heterogeneous catalysis