Nanoparticles Supported on Sub-Nanometer Oxide Films: Scaling Model Systems to Bulk Materials

. 2021 Mar 08 ; 60 (11) : 5890-5897. [epub] 20210128

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33289925

Grantová podpora
J4278 Austrian Science Fund
LM2018140 The Ministry of Education, Youth and Sports
SFB 840 Deutsche Forschungsgemeinschaft
20-26767Y Czech Science Foundation
J 4278 Austrian Science Fund FWF - Austria
PhD fellowship Elitenetzwerk Bayern

Ultrathin layers of oxides deposited on atomically flat metal surfaces have been shown to significantly influence the electronic structure of the underlying metal, which in turn alters the catalytic performance. Upscaling of the specifically designed architectures as required for technical utilization of the effect has yet not been achieved. Here, we apply liquid crystalline phases of fluorohectorite nanosheets to fabricate such architectures in bulk. Synthetic sodium fluorohectorite, a layered silicate, when immersed into water spontaneously and repulsively swells to produce nematic suspensions of individual negatively charged nanosheets separated to more than 60 nm, while retaining parallel orientation. Into these galleries oppositely charged palladium nanoparticles were intercalated whereupon the galleries collapse. Individual and separated Pd nanoparticles were thus captured and sandwiched between nanosheets. As suggested by the model systems, the resulting catalyst performed better in the oxidation of carbon monoxide than the same Pd nanoparticles supported on external surfaces of hectorite or on a conventional Al2 O3 support. XPS confirmed a shift of Pd 3d electrons to higher energies upon coverage of Pd nanoparticles with nanosheets to which we attribute the improved catalytic performance. DFT calculations showed increasing positive charge on Pd weakened CO adsorption and this way damped CO poisoning.

Zobrazit více v PubMed

Pacchioni G., Freund H.-J., Chem. Soc. Rev. 2018, 47, 8474–8502. PubMed

van Deelen T. W., Hernández Mejía C., de Jong K. P., Nat. Catal. 2019, 2, 955–970;

Campbell C. T., Nat. Chem. 2012, 4, 597–598. PubMed

Xu M., He S., Chen H., Cui G., Zheng L., Wang B., Wei M., ACS Catal. 2017, 7, 7600–7609;

Wang F., Ueda W., Xu J., Angew. Chem. Int. Ed. 2012, 51, 3883–3887; PubMed

Angew. Chem. 2012, 124, 3949–3953.

Freund H. J., J. Am. Chem. Soc. 2016, 138, 8985–8996. PubMed

Pacchioni G., Freund H., Chem. Rev. 2013, 113, 4035–4072; PubMed

Giordano L., Pacchioni G., Acc. Chem. Res. 2011, 44, 1244–1252. PubMed

Prada S., Martinez U., Pacchioni G., Phys. Rev. B 2008, 78, 235423;

Giordano L., Cinquini F., Pacchioni G., Phys. Rev. B 2006, 73, 045414.

Lykhach Y., Kozlov S. M., Skala T., Tovt A., Stetsovych V., Tsud N., Dvorak F., Johanek V., Neitzel A., Myslivecek J., Fabris S., Matolin V., Neyman K. M., Libuda J., Nat. Mater. 2016, 15, 284–288; PubMed

Vayssilov G. N., Lykhach Y., Migani A., Staudt T., Petrova G. P., Tsud N., Skala T., Bruix A., Illas F., Prince K. C., Matolin V., Neyman K. M., Libuda J., Nat. Mater. 2011, 10, 310–315. PubMed

Lykhach Y., Kubat J., Neitzel A., Tsud N., Vorokhta M., Skala T., Dvorak F., Kosto Y., Prince K. C., Matolin V., Johanek V., Myslivecek J., Libuda J., J. Chem. Phys. 2019, 151, 204703. PubMed

Schneider W. D., Heyde M., Freund H. J., Chem. Eur. J. 2018, 24, 2317–2327; PubMed

Shaikhutdinov S., Freund H. J., J. Phys. Condens. Matter 2015, 27, 443001; PubMed

Freund H. J., Acc. Chem. Res. 2017, 50, 446–449. PubMed

Varadwaj G. B. B., Parida K. M., RSC Adv. 2013, 3, 13583–13593.

Scheuermann G. M., Thomann R., Mülhaupt R., Catal. Lett. 2009, 132, 355–362;

Miyagawa M., Shibusawa A., Maeda K., Tashiro A., Sugai T., Tanaka H., RSC Adv. 2017, 7, 41896–41902;

Upadhyay P., Srivastava V., RSC Adv. 2015, 5, 740–745.

Dékány I., Turi L., Király Z., Appl. Clay Sci. 1999, 15, 221–239.

Papp S., Szücs A., Dékány I., Appl. Clay Sci. 2001, 19, 155–172;

Király Z., Dekany I., Mastalir A., Bartok M., J. Catal. 1996, 161, 401–408.

Lerf A., Dalton Trans. 2014, 43, 10276–10291. PubMed

Michot L. J., Bihannic I., Maddi S., Funari S. S., Baravian C., Levitz P., Davidson P., Proc. Natl. Acad. Sci. USA 2006, 103, 16101–16104; PubMed PMC

Wang L., Sasaki T., Chem. Rev. 2014, 114, 9455–9486; PubMed

Gabriel J. P., Camerel F., Lemaire B. J., Desvaux H., Davidson P., Batail P., Nature 2001, 413, 504–508; PubMed

Liu Y., Xu Z., Gao W., Cheng Z., Gao C., Adv. Mater. 2017, 29, 1606794; PubMed

Davidson P., Penisson C., Constantin D., Gabriel J. P., Proc. Natl. Acad. Sci. USA 2018, 115, 6662–6667. PubMed PMC

Daab M., Eichstaedt N. J., Habel C., Rosenfeldt S., Kalo H., Schiessling H., Forster S., Breu J., Langmuir 2018, 34, 8215–8222; PubMed

Daab M., Eichstaedt N. J., Edenharter A., Rosenfeldt S., Breu J., RSC Adv. 2018, 8, 28797–28803. PubMed PMC

Stöter M., Kunz D. A., Schmidt M., Hirsemann D., Kalo H., Putz B., Senker J., Breu J., Langmuir 2013, 29, 1280–1285. PubMed

Rosenfeldt S., Stöter M., Schlenk M., Martin T., Albuquerque R. Q., Förster S., Breu J., Langmuir 2016, 32, 10582–10588. PubMed

Sano K., Kim Y. S., Ishida Y., Ebina Y., Sasaki T., Hikima T., Aida T., Nat. Commun. 2016, 7, 12559. PubMed PMC

Ament K., Wagner D. R., Meij F. E., Wagner F. E., Breu J., Z. Anorg. Allg. Chem. 2020, 646, 1110–1115.

Coronado E., Ribera A., García-Martínez J., Linares N., Liz-Marzán L. M., J. Mater. Chem. 2008, 18, 5682.

Freund H. J., Meijer G., Scheffler M., Schlögl R., Wolf M., Angew. Chem. Int. Ed. 2011, 50, 10064–10094; PubMed

Angew. Chem. 2011, 123, 10242–10275.

Zhou Y., Wang Z., Liu C., Catal. Sci. Technol. 2015, 5, 69–81;

Liu X., Wang R., Song L., He H., Zhang G., Zi X., Qiu W., Catal. Commun. 2014, 46, 213–218;

Peterson E. J., DeLaRiva A. T., Lin S., Johnson R. S., Guo H., Miller J. T., Hun Kwak J., Peden C. H., Kiefer B., Allard L. F., Ribeiro F. H., Datye A. K., Nat. Commun. 2014, 5, 4885. PubMed

Wang R., He H., Liu L.-C., Dai H.-X., Zhao Z., Catal. Sci. Technol. 2012, 2, 575–580;

Park J.-N., Forman A. J., Tang W., Cheng J., Hu Y.-S., Lin H., McFarland E. W., Small 2008, 4, 1694–1697; PubMed

Xu J., White T., Li P., He C., Yu J., Yuan W., Han Y.-F., J. Am. Chem. Soc. 2010, 132, 10398–10406. PubMed

Arrigo R., Schuster M. E., Abate S., Wrabetz S., Amakawa K., Teschner D., Freni M., Centi G., Perathoner S., Havecker M., Schlögl R., ChemSusChem 2014, 7, 179–194. PubMed

Babu N. S., Lingaiah N. L., Gopinath R., Reddy P. S. S., Prasad P. S. S., J. Phys. Chem. C 2007, 111, 6447–6453;

Stasinska B., Machocki A., Antoniak K., Rotko M., Figueiredo J. L., Gonçalves F., Catal. Today 2008, 137, 329–334.

Wang H., Liu C.-j., Appl. Catal. B 2011, 106, 672–680;

Cheng T., Chen J., Cai A., Wang J., Liu H., Hu Y., Bao X., Yuan P., ACS Omega 2018, 3, 6651–6659; PubMed PMC

Beketov G., Heinrichs B., Pirard J. P., Chenakin S., Kruse N., Appl. Surf. Sci. 2013, 287, 293–298;

Fleisch T. H., Hicks R. F., Bell A. T., J. Catal. 1984, 87, 398–413;

Xu Y., Ma J., Xu Y., Xu L., Xu L., Li H., Li H., RSC Adv. 2013, 3, 851–858.

Wang X., Chen B., Chen G., Sun X., RSC Adv. 2016, 6, 87978–87987.

Begum P., Deka R. C., ChemistrySelect 2017, 2, 8847–8855.

Zhu B., Jang B. W. L., J. Mol. Catal. A 2014, 395, 137–144.

Bertarione S., Scarano D., Zecchina A., Johánek V., Hoffmann J., Schauermann S., Frank M. M., Libuda J., Rupprechter G., Freund H.-J., J. Phys. Chem. B 2004, 108, 3603–3613;

Murata K., Eleeda E., Ohyama J., Yamamoto Y., Arai S., Satsuma A., Phys. Chem. Chem. Phys. 2019, 21, 18128–18137. PubMed

Chen Y., Sakata O., Nanba Y., Kumara L. S. R., Yang A., Song C., Koyama M., Li G., Kobayashi H., Kitagawa H., Commun. Chem. 2018, 1, 61;

Nilsson A., Pettersson L., Norskov J., Chemical Bonding at Surfaces and Interfaces, Elsevier, Amsterdam, 2008.

Otten M. T., Miner B., Rask J. H., Buseck P. R., Ultramicroscopy 1985, 18, 285–289;

Tan H., Verbeeck J., Abakumov A., Van Tendeloo G., Ultramicroscopy 2012, 116, 24–33.

Li G., Kobayashi H., Taylor J. M., Ikeda R., Kubota Y., Kato K., Takata M., Yamamoto T., Toh S., Matsumura S., Kitagawa H., Nat. Mater. 2014, 13, 802–806. PubMed

Hühn J., Carrillo-Carrion C., Soliman M. G., Pfeiffer C., Valdeperez D., Masood A., Chakraborty I., Zhu L., Gallego M., Yue Z., Carril M., Feliu N., Escudero A., Alkilany A. M., Pelaz B., del Pino P., Parak W. J., Chem. Mater. 2017, 29, 399–461.

Ahmad Y. H., Mohamed A. T., Mahmoud K. A., Aljaber A. S., Al-Qaradawi S. Y., RSC Adv. 2019, 9, 32928–32935; PubMed PMC

Goodman E. D., Dai S., Yang A.-C., Wrasman C. J., Gallo A., Bare S. R., Hoffman A. S., Jaramillo T. F., Graham G. W., Pan X., Cargnello M., ACS Catal. 2017, 7, 4372–4380;

Huang B., Kobayashi H., Yamamoto T., Matsumura S., Nishida Y., Sato K., Nagaoka K., Kawaguchi S., Kubota Y., Kitagawa H., J. Am. Chem. Soc. 2017, 139, 4643–4646; PubMed

Armbrüster M., Sci. Technol. Adv. Mater. 2020, 21, 303–322. PubMed PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...