Thermal stability and coalescence dynamics of exsolved metal nanoparticles at charged perovskite surfaces
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
39521766
PubMed Central
PMC11550403
DOI
10.1038/s41467-024-54008-4
PII: 10.1038/s41467-024-54008-4
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Exsolution reactions enable the synthesis of oxide-supported metal nanoparticles, which are desirable as catalysts in green energy conversion technologies. It is crucial to precisely tailor the nanoparticle characteristics to optimize the catalysts' functionality, and to maintain the catalytic performance under operation conditions. We use chemical (co)-doping to modify the defect chemistry of exsolution-active perovskite oxides and examine its influence on the mass transfer kinetics of Ni dopants towards the oxide surface and on the subsequent coalescence behavior of the exsolved nanoparticles during a continuous thermal reduction treatment. Nanoparticles that exsolve at the surface of the acceptor-type fast-oxygen-ion-conductor SrTi0.95Ni0.05O3-δ (STNi) show a high surface mobility leading to a very low thermal stability compared to nanoparticles that exsolve at the surface of donor-type SrTi0.9Nb0.05Ni0.05O3-δ (STNNi). Our analysis indicates that the low thermal stability of exsolved nanoparticles at the acceptor-doped perovskite surface is linked to a high oxygen vacancy concentration at the nanoparticle-oxide interface. For catalysts that require fast oxygen exchange kinetics, exsolution synthesis routes in dry hydrogen conditions may hence lead to accelerated degradation, while humid reaction conditions may mitigate this failure mechanism.
Advanced Light Source Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
Central Facility for Electron Microscopy RWTH Aachen University 52064 Aachen Germany
Department of Engineering and Applied Sciences University of Bergamo 24044 Dalmine Italy
Department of Materials Imperial College London London SW7 2AZ United Kingdom
Department of Physics and Astronomy University of California Davis California CA 95616 USA
Dyson School of Design Engineering Imperial College London London SW7 2DB United Kingdom
Institute for Electronic Materials RWTH Aachen University 52074 Aachen Germany
Institute of Mineral Engineering RWTH Aachen University 52062 Aachen Germany
Instituto de Ciencia de Materiales de Madrid 28049 Madrid Spain
Juelich Aachen Research Alliance 52425 Juelich Germany
New Technologies Research Centre University of West Bohemia 301 00 Pilsen Czech Republic
Zobrazit více v PubMed
Lee, H. et al.
Bell, A. T. The impact of nanoscience on heterogeneous catalysis. PubMed DOI
Arico, A. S., Bruce, P., Scrosati, B., Tarascon, J. M. & Van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. PubMed DOI
Hansen, T. W., Delariva, A. T., Challa, S. R. & Datye, A. K. Sintering of catalytic nanoparticles: particle migration or Ostwald ripening? PubMed DOI
Campbell, C. T. The energetics of supported metal nanoparticles: relationships to sintering rates and catalytic activity. PubMed DOI
Bartholomew, C. H. Sintering and redispersion of supported metals: perspectives from the literature of the past decade.
Mao, Z., Lustemberg, P. G., Rumptz, J. R., Ganduglia-Pirovano, M. V. & Campbell, C. T. Ni nanoparticles on CeO DOI
Campbell, C. T., Parker, S. C. & Starr, D. E. The effect of size-dependent nanoparticle energetics on catalyst sintering. PubMed DOI
Kyriakou, V. et al. Plasma driven exsolution for nanoscale functionalization of perovskite oxides. PubMed DOI
Shin, E. et al. Ultrafast ambient-air exsolution on metal oxide via momentary photothermal effect. PubMed DOI
Weber, M. L. et al. Exsolution of embedded nanoparticles in defect engineered perovskite layers. PubMed DOI
Gao, Y. et al. Energetics of nanoparticle exsolution from perovskite oxides. PubMed DOI
Neagu, D., Tsekouras, G., Miller, D. N., Ménard, H. & Irvine, J. T. S. In situ growth of nanoparticles through control of non-stoichiometry. PubMed DOI
Weber, M. L. et al. Space charge governs the kinetics of metal exsolution. PubMed DOI PMC
Wang, J. et al. Fast Surface oxygen release kinetics accelerate nanoparticle exsolution in perovskite oxides. PubMed DOI
Han, H. et al. Anti-phase boundary accelerated exsolution of nanoparticles in non-stoichiometric perovskite thin films. PubMed DOI PMC
Zamudio-García, J. et al. Hierarchical exsolution in vertically aligned heterostructures. PubMed PMC
Singh, S. et al. Role of 2D and 3D defects on the reduction of LaNiO PubMed DOI PMC
Wang, J. et al. Tuning point defects by elastic strain modulates nanoparticle exsolution on perovskite oxides. DOI
Gunkel, F. et al. Space charges and defect concentration profiles at complex oxide interfaces. DOI
Lewin, M. et al. Nanospectroscopy of infrared phonon resonance enables local quantification of electronic properties in doped SrTiO DOI
Meyer, R., Zurhelle, A. F., De Souza, R. A., Waser, R. & Gunkel, F. Dynamics of the metal-insulator transition of donor-doped SrTiO DOI
Moos, R. & Hardtl, K. H. Defect chemistry of donor-doped and undoped strontium titanate ceramics between 1000° and 1400 °C. DOI
De Souza, R. A., Metlenko, V., Park, D. & Weirich, T. E. Behavior of oxygen vacancies in single-crystal SrTiO DOI
Weber, M. L. et al. Enhanced metal exsolution at the non-polar (001) surfaces of multi-faceted epitaxial thin films. DOI
Jennings, D., Ricote, S., Santiso, J., Caicedo, J. & Reimanis, I. Effects of exsolution on the stability and morphology of Ni nanoparticles on BZY thin films. DOI
Kim, K. J. et al. Facet-dependent in situ growth of nanoparticles in epitaxial thin films: the role of interfacial energy. PubMed DOI
Neagu, D. et al. Nano-socketed nickel particles with enhanced coking resistance grown in situ by redox exsolution. PubMed DOI PMC
Sun, H. Y. et al. Chemically specific termination control of oxide interfaces via layer-by-layer mean inner potential engineering. PubMed DOI PMC
Baeumer, C. et al. Surface termination conversion during SrTiO PubMed DOI PMC
Santaya, M. et al. Exsolution versus particle segregation on (Ni,Co)-doped and undoped SrTi DOI
Fan, W. et al. Anodic shock-triggered exsolution of metal nanoparticles from perovskite oxide. PubMed DOI
Shang, Z., Zhang, J., Ye, L. & Xie, K. Metal nanoparticles at grain boundaries of titanate toward efficient carbon dioxide electrolysis. DOI
Liu, L. & Corma, A. Confining isolated atoms and clusters in crystalline porous materials for catalysis. DOI
Wang, J. et al. Thin porous alumina sheets as supports for stabilizing gold nanoparticles. PubMed DOI
Weber, M. L. et al. Reversibility limitations of metal exsolution reactions in niobium and nickel co-doped strontium titanate. DOI
Kousi, K., Neagu, D., Bekris, L., Papaioannou, E. I. & Metcalfe, I. S. Endogenous nanoparticles strain perovskite host lattice providing oxygen capacity and driving oxygen exchange and CH PubMed DOI
Katz, M. B. et al. Reversible precipitation/dissolution of precious-metal clusters in perovskite-based catalyst materials: bulk versus surface re-dispersion. DOI
Kröger, F. A. & Vink, H. J. Relations between the concentrations of imperfections in crystalline solids. DOI
Waser, R. Bulk conductivity and defect chemistry of acceptor-doped strontium titanate in the quenched state. DOI
Kilner, J. Fast oxygen transport in acceptor doped oxides. DOI
De Souza, R. A. & Martin, M. Using 18 O/16 O exchange to probe an equilibrium space-charge layer at the surface of a crystalline oxide: method and application. PubMed DOI
De Souza, R. A. Oxygen diffusion in SrTiO DOI
Metlenko, V. et al. Do dislocations act as atomic autobahns for oxygen in the perovskite oxide SrTiO PubMed DOI
De Souza, R. A. The formation of equilibrium space-charge zones at grain boundaries in the perovskite oxide SrTiO PubMed DOI
Harris, P. J. F. Growth and structure of supported metal catalyst particles. DOI
Carrillo, A. J., Navarrete, L., Laqdiem, M., Balaguer, M. & Serra, J. M. Boosting methane partial oxidation on ceria through exsolution of robust Ru nanoparticles. DOI
Zubenko, D., Singh, S. & Rosen, B. A. Exsolution of Re-alloy catalysts with enhanced stability for methane dry reforming. DOI
Hua, B., Li, M., Sun, Y.-F., Li, J.-H. & Luo, J.-L. Enhancing perovskite electrocatalysis of solid oxide cells through controlled exsolution of nanoparticles. PubMed DOI
Sun, Y.-F. et al. New opportunity for in situ exsolution of metallic nanoparticles on perovskite parent. PubMed DOI
Biesinger, M. C. et al. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. DOI
Grosvenor, A. P., Biesinger, M. C., Smart, R. S. & McIntyre, N. S. New interpretations of XPS spectra of nickel metal and oxides. DOI
Wertheim, G. K. & DiCenzo, S. B. Cluster growth and core-electron binding energies in supported metal clusters. PubMed DOI
Mason, M. G. Electronic structure of supported small metal clusters. DOI
Winterbottom, W. Equilibrium shape of a small particle in contact with a foreign substrate. DOI
Henry, C. R. Morphology of supported nanoparticles. DOI
Calì, E. et al. Real-time insight into the multistage mechanism of nanoparticle exsolution from a perovskite host surface. PubMed DOI PMC
Ohly, C., Hoffmann-Eifert, S., Guo, X., Schubert, J. & Waser, R. Electrical conductivity of epitaxial SrTiO DOI
Calì, E. et al. Exsolution of catalytically active iridium nanoparticles from strontium titanate. PubMed DOI
Katz, M. B. et al. Self-regeneration of Pd-LaFeO PubMed DOI
van Deelen, T. W., Hernández Mejía, C. & Jong, K. Pde Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity. DOI
Jak, M. et al. The influence of substrate defects on the growth rate of palladium nanoparticles on a TiO DOI
Lai, X. & Goodman, D. Structure–reactivity correlations for oxide-supported metal catalysts: new perspectives from STM. DOI
Lykhach, Y. et al. Counting electrons on supported nanoparticles. PubMed DOI
Campbell, C. T. & Sellers, J. R. V. Anchored metal nanoparticles: effects of support and size on their energy, sintering resistance and reactivity. PubMed DOI
James, T. E., Hemmingson, S. L., Ito, T. & Campbell, C. T. Energetics of Cu adsorption and adhesion onto reduced CeO DOI
Hemmingson, S. L., James, T. E., Feeley, G. M., Tilson, A. M. & Campbell, C. T. Adsorption and adhesion of Au on reduced CeO DOI
Strayer, M. E. et al. Charge transfer stabilization of late transition metal oxide nanoparticles on a layered niobate support. PubMed DOI PMC
Surman, P. L. The oxidation of iron at controlled oxygen partial pressures - I. hydrogen/water vapour. DOI
Kler, J. & De Souza, R. A. Hydration entropy and enthalpy of a perovskite oxide from oxygen tracer diffusion experiments. PubMed DOI
Norby, T., Wideroe, M., Glockner, R. & Larring, Y. Hydrogen in oxides. PubMed DOI
Kovács, A., Schierholz, R. & Tillmann, K. FEI Titan G2 80-200 CREWLEY. DOI
Luysberg, M., Heggen, M. & Tillmann, K. FEI Tecnai G2 F20. DOI
Kruth, M., Meertens, D. & Tillmann, K. FEI Helios NanoLab 460F1 FIB-SEM. DOI
De la Peña, F. et al. hyperspy/hyperspy: release v1.7.2.
De Souza, R. A., Zehnpfenning, J., Martin, M. & Maier, J. Determining oxygen isotope profiles in oxides with time-of-flight SIMS. DOI
Tanuma, S., Powell, C. J. & Penn, D. R. Calculations of electron inelastic mean free paths. V. Data for 14 organic compounds over the 50-2000 eV range. DOI