Thermal stability and coalescence dynamics of exsolved metal nanoparticles at charged perovskite surfaces

. 2024 Nov 09 ; 15 (1) : 9724. [epub] 20241109

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39521766
Odkazy

PubMed 39521766
PubMed Central PMC11550403
DOI 10.1038/s41467-024-54008-4
PII: 10.1038/s41467-024-54008-4
Knihovny.cz E-zdroje

Exsolution reactions enable the synthesis of oxide-supported metal nanoparticles, which are desirable as catalysts in green energy conversion technologies. It is crucial to precisely tailor the nanoparticle characteristics to optimize the catalysts' functionality, and to maintain the catalytic performance under operation conditions. We use chemical (co)-doping to modify the defect chemistry of exsolution-active perovskite oxides and examine its influence on the mass transfer kinetics of Ni dopants towards the oxide surface and on the subsequent coalescence behavior of the exsolved nanoparticles during a continuous thermal reduction treatment. Nanoparticles that exsolve at the surface of the acceptor-type fast-oxygen-ion-conductor SrTi0.95Ni0.05O3-δ (STNi) show a high surface mobility leading to a very low thermal stability compared to nanoparticles that exsolve at the surface of donor-type SrTi0.9Nb0.05Ni0.05O3-δ (STNNi). Our analysis indicates that the low thermal stability of exsolved nanoparticles at the acceptor-doped perovskite surface is linked to a high oxygen vacancy concentration at the nanoparticle-oxide interface. For catalysts that require fast oxygen exchange kinetics, exsolution synthesis routes in dry hydrogen conditions may hence lead to accelerated degradation, while humid reaction conditions may mitigate this failure mechanism.

Zobrazit více v PubMed

Lee, H. et al.

Bell, A. T. The impact of nanoscience on heterogeneous catalysis. PubMed DOI

Arico, A. S., Bruce, P., Scrosati, B., Tarascon, J. M. & Van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. PubMed DOI

Hansen, T. W., Delariva, A. T., Challa, S. R. & Datye, A. K. Sintering of catalytic nanoparticles: particle migration or Ostwald ripening? PubMed DOI

Campbell, C. T. The energetics of supported metal nanoparticles: relationships to sintering rates and catalytic activity. PubMed DOI

Bartholomew, C. H. Sintering and redispersion of supported metals: perspectives from the literature of the past decade.

Mao, Z., Lustemberg, P. G., Rumptz, J. R., Ganduglia-Pirovano, M. V. & Campbell, C. T. Ni nanoparticles on CeO DOI

Campbell, C. T., Parker, S. C. & Starr, D. E. The effect of size-dependent nanoparticle energetics on catalyst sintering. PubMed DOI

Kyriakou, V. et al. Plasma driven exsolution for nanoscale functionalization of perovskite oxides. PubMed DOI

Shin, E. et al. Ultrafast ambient-air exsolution on metal oxide via momentary photothermal effect. PubMed DOI

Weber, M. L. et al. Exsolution of embedded nanoparticles in defect engineered perovskite layers. PubMed DOI

Gao, Y. et al. Energetics of nanoparticle exsolution from perovskite oxides. PubMed DOI

Neagu, D., Tsekouras, G., Miller, D. N., Ménard, H. & Irvine, J. T. S. In situ growth of nanoparticles through control of non-stoichiometry. PubMed DOI

Weber, M. L. et al. Space charge governs the kinetics of metal exsolution. PubMed DOI PMC

Wang, J. et al. Fast Surface oxygen release kinetics accelerate nanoparticle exsolution in perovskite oxides. PubMed DOI

Han, H. et al. Anti-phase boundary accelerated exsolution of nanoparticles in non-stoichiometric perovskite thin films. PubMed DOI PMC

Zamudio-García, J. et al. Hierarchical exsolution in vertically aligned heterostructures. PubMed PMC

Singh, S. et al. Role of 2D and 3D defects on the reduction of LaNiO PubMed DOI PMC

Wang, J. et al. Tuning point defects by elastic strain modulates nanoparticle exsolution on perovskite oxides. DOI

Gunkel, F. et al. Space charges and defect concentration profiles at complex oxide interfaces. DOI

Lewin, M. et al. Nanospectroscopy of infrared phonon resonance enables local quantification of electronic properties in doped SrTiO DOI

Meyer, R., Zurhelle, A. F., De Souza, R. A., Waser, R. & Gunkel, F. Dynamics of the metal-insulator transition of donor-doped SrTiO DOI

Moos, R. & Hardtl, K. H. Defect chemistry of donor-doped and undoped strontium titanate ceramics between 1000° and 1400 °C. DOI

De Souza, R. A., Metlenko, V., Park, D. & Weirich, T. E. Behavior of oxygen vacancies in single-crystal SrTiO DOI

Weber, M. L. et al. Enhanced metal exsolution at the non-polar (001) surfaces of multi-faceted epitaxial thin films. DOI

Jennings, D., Ricote, S., Santiso, J., Caicedo, J. & Reimanis, I. Effects of exsolution on the stability and morphology of Ni nanoparticles on BZY thin films. DOI

Kim, K. J. et al. Facet-dependent in situ growth of nanoparticles in epitaxial thin films: the role of interfacial energy. PubMed DOI

Neagu, D. et al. Nano-socketed nickel particles with enhanced coking resistance grown in situ by redox exsolution. PubMed DOI PMC

Sun, H. Y. et al. Chemically specific termination control of oxide interfaces via layer-by-layer mean inner potential engineering. PubMed DOI PMC

Baeumer, C. et al. Surface termination conversion during SrTiO PubMed DOI PMC

Santaya, M. et al. Exsolution versus particle segregation on (Ni,Co)-doped and undoped SrTi DOI

Fan, W. et al. Anodic shock-triggered exsolution of metal nanoparticles from perovskite oxide. PubMed DOI

Shang, Z., Zhang, J., Ye, L. & Xie, K. Metal nanoparticles at grain boundaries of titanate toward efficient carbon dioxide electrolysis. DOI

Liu, L. & Corma, A. Confining isolated atoms and clusters in crystalline porous materials for catalysis. DOI

Wang, J. et al. Thin porous alumina sheets as supports for stabilizing gold nanoparticles. PubMed DOI

Weber, M. L. et al. Reversibility limitations of metal exsolution reactions in niobium and nickel co-doped strontium titanate. DOI

Kousi, K., Neagu, D., Bekris, L., Papaioannou, E. I. & Metcalfe, I. S. Endogenous nanoparticles strain perovskite host lattice providing oxygen capacity and driving oxygen exchange and CH PubMed DOI

Katz, M. B. et al. Reversible precipitation/dissolution of precious-metal clusters in perovskite-based catalyst materials: bulk versus surface re-dispersion. DOI

Kröger, F. A. & Vink, H. J. Relations between the concentrations of imperfections in crystalline solids. DOI

Waser, R. Bulk conductivity and defect chemistry of acceptor-doped strontium titanate in the quenched state. DOI

Kilner, J. Fast oxygen transport in acceptor doped oxides. DOI

De Souza, R. A. & Martin, M. Using 18 O/16 O exchange to probe an equilibrium space-charge layer at the surface of a crystalline oxide: method and application. PubMed DOI

De Souza, R. A. Oxygen diffusion in SrTiO DOI

Metlenko, V. et al. Do dislocations act as atomic autobahns for oxygen in the perovskite oxide SrTiO PubMed DOI

De Souza, R. A. The formation of equilibrium space-charge zones at grain boundaries in the perovskite oxide SrTiO PubMed DOI

Harris, P. J. F. Growth and structure of supported metal catalyst particles. DOI

Carrillo, A. J., Navarrete, L., Laqdiem, M., Balaguer, M. & Serra, J. M. Boosting methane partial oxidation on ceria through exsolution of robust Ru nanoparticles. DOI

Zubenko, D., Singh, S. & Rosen, B. A. Exsolution of Re-alloy catalysts with enhanced stability for methane dry reforming. DOI

Hua, B., Li, M., Sun, Y.-F., Li, J.-H. & Luo, J.-L. Enhancing perovskite electrocatalysis of solid oxide cells through controlled exsolution of nanoparticles. PubMed DOI

Sun, Y.-F. et al. New opportunity for in situ exsolution of metallic nanoparticles on perovskite parent. PubMed DOI

Biesinger, M. C. et al. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. DOI

Grosvenor, A. P., Biesinger, M. C., Smart, R. S. & McIntyre, N. S. New interpretations of XPS spectra of nickel metal and oxides. DOI

Wertheim, G. K. & DiCenzo, S. B. Cluster growth and core-electron binding energies in supported metal clusters. PubMed DOI

Mason, M. G. Electronic structure of supported small metal clusters. DOI

Winterbottom, W. Equilibrium shape of a small particle in contact with a foreign substrate. DOI

Henry, C. R. Morphology of supported nanoparticles. DOI

Calì, E. et al. Real-time insight into the multistage mechanism of nanoparticle exsolution from a perovskite host surface. PubMed DOI PMC

Ohly, C., Hoffmann-Eifert, S., Guo, X., Schubert, J. & Waser, R. Electrical conductivity of epitaxial SrTiO DOI

Calì, E. et al. Exsolution of catalytically active iridium nanoparticles from strontium titanate. PubMed DOI

Katz, M. B. et al. Self-regeneration of Pd-LaFeO PubMed DOI

van Deelen, T. W., Hernández Mejía, C. & Jong, K. Pde Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity. DOI

Jak, M. et al. The influence of substrate defects on the growth rate of palladium nanoparticles on a TiO DOI

Lai, X. & Goodman, D. Structure–reactivity correlations for oxide-supported metal catalysts: new perspectives from STM. DOI

Lykhach, Y. et al. Counting electrons on supported nanoparticles. PubMed DOI

Campbell, C. T. & Sellers, J. R. V. Anchored metal nanoparticles: effects of support and size on their energy, sintering resistance and reactivity. PubMed DOI

James, T. E., Hemmingson, S. L., Ito, T. & Campbell, C. T. Energetics of Cu adsorption and adhesion onto reduced CeO DOI

Hemmingson, S. L., James, T. E., Feeley, G. M., Tilson, A. M. & Campbell, C. T. Adsorption and adhesion of Au on reduced CeO DOI

Strayer, M. E. et al. Charge transfer stabilization of late transition metal oxide nanoparticles on a layered niobate support. PubMed DOI PMC

Surman, P. L. The oxidation of iron at controlled oxygen partial pressures - I. hydrogen/water vapour. DOI

Kler, J. & De Souza, R. A. Hydration entropy and enthalpy of a perovskite oxide from oxygen tracer diffusion experiments. PubMed DOI

Norby, T., Wideroe, M., Glockner, R. & Larring, Y. Hydrogen in oxides. PubMed DOI

Kovács, A., Schierholz, R. & Tillmann, K. FEI Titan G2 80-200 CREWLEY. DOI

Luysberg, M., Heggen, M. & Tillmann, K. FEI Tecnai G2 F20. DOI

Kruth, M., Meertens, D. & Tillmann, K. FEI Helios NanoLab 460F1 FIB-SEM. DOI

De la Peña, F. et al. hyperspy/hyperspy: release v1.7.2.

De Souza, R. A., Zehnpfenning, J., Martin, M. & Maier, J. Determining oxygen isotope profiles in oxides with time-of-flight SIMS. DOI

Tanuma, S., Powell, C. J. & Penn, D. R. Calculations of electron inelastic mean free paths. V. Data for 14 organic compounds over the 50-2000 eV range. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...