Thermal stability and coalescence dynamics of exsolved metal nanoparticles at charged perovskite surfaces
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
39521766
PubMed Central
PMC11550403
DOI
10.1038/s41467-024-54008-4
PII: 10.1038/s41467-024-54008-4
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Exsolution reactions enable the synthesis of oxide-supported metal nanoparticles, which are desirable as catalysts in green energy conversion technologies. It is crucial to precisely tailor the nanoparticle characteristics to optimize the catalysts' functionality, and to maintain the catalytic performance under operation conditions. We use chemical (co)-doping to modify the defect chemistry of exsolution-active perovskite oxides and examine its influence on the mass transfer kinetics of Ni dopants towards the oxide surface and on the subsequent coalescence behavior of the exsolved nanoparticles during a continuous thermal reduction treatment. Nanoparticles that exsolve at the surface of the acceptor-type fast-oxygen-ion-conductor SrTi0.95Ni0.05O3-δ (STNi) show a high surface mobility leading to a very low thermal stability compared to nanoparticles that exsolve at the surface of donor-type SrTi0.9Nb0.05Ni0.05O3-δ (STNNi). Our analysis indicates that the low thermal stability of exsolved nanoparticles at the acceptor-doped perovskite surface is linked to a high oxygen vacancy concentration at the nanoparticle-oxide interface. For catalysts that require fast oxygen exchange kinetics, exsolution synthesis routes in dry hydrogen conditions may hence lead to accelerated degradation, while humid reaction conditions may mitigate this failure mechanism.
Advanced Light Source Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
Central Facility for Electron Microscopy RWTH Aachen University 52064 Aachen Germany
Department of Engineering and Applied Sciences University of Bergamo 24044 Dalmine Italy
Department of Materials Imperial College London London SW7 2AZ United Kingdom
Department of Physics and Astronomy University of California Davis California CA 95616 USA
Dyson School of Design Engineering Imperial College London London SW7 2DB United Kingdom
Institute for Electronic Materials RWTH Aachen University 52074 Aachen Germany
Institute of Mineral Engineering RWTH Aachen University 52062 Aachen Germany
Instituto de Ciencia de Materiales de Madrid 28049 Madrid Spain
Juelich Aachen Research Alliance 52425 Juelich Germany
New Technologies Research Centre University of West Bohemia 301 00 Pilsen Czech Republic
Zobrazit více v PubMed
Lee, H. et al. IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Core Writing Team, Lee, H. & Romero, J.) (IPCC, 2023).
Bell, A. T. The impact of nanoscience on heterogeneous catalysis. Science299, 1688–1691 (2003). PubMed
Arico, A. S., Bruce, P., Scrosati, B., Tarascon, J. M. & Van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater.4, 366–377 (2005). PubMed
Hansen, T. W., Delariva, A. T., Challa, S. R. & Datye, A. K. Sintering of catalytic nanoparticles: particle migration or Ostwald ripening? Acc. Chem. Res.46, 1720–1730 (2013). PubMed
Campbell, C. T. The energetics of supported metal nanoparticles: relationships to sintering rates and catalytic activity. Acc. Chem. Res.46, 1712–1719 (2013). PubMed
Bartholomew, C. H. Sintering and redispersion of supported metals: perspectives from the literature of the past decade. Cheminform29, 585–592 (2010).
Mao, Z., Lustemberg, P. G., Rumptz, J. R., Ganduglia-Pirovano, M. V. & Campbell, C. T. Ni nanoparticles on CeO2 (111): energetics, electron transfer, and structure by Ni adsorption calorimetry, spectroscopies, and density functional theory. ACS Catal.10, 5101–5114 (2020).
Campbell, C. T., Parker, S. C. & Starr, D. E. The effect of size-dependent nanoparticle energetics on catalyst sintering. Science298, 811–814 (2002). PubMed
Kyriakou, V. et al. Plasma driven exsolution for nanoscale functionalization of perovskite oxides. Small Methods5, e2100868 (2021). PubMed
Shin, E. et al. Ultrafast ambient-air exsolution on metal oxide via momentary photothermal effect. ACS Nano16, 18133–18142 (2022). PubMed
Weber, M. L. et al. Exsolution of embedded nanoparticles in defect engineered perovskite layers. ACS Nano15, 4546–4560 (2021). PubMed
Gao, Y. et al. Energetics of nanoparticle exsolution from perovskite oxides. J. Phys. Chem. Lett.9, 3772–3778 (2018). PubMed
Neagu, D., Tsekouras, G., Miller, D. N., Ménard, H. & Irvine, J. T. S. In situ growth of nanoparticles through control of non-stoichiometry. Nat. Chem.5, 916–923 (2013). PubMed
Weber, M. L. et al. Space charge governs the kinetics of metal exsolution. Nat. Mater.23, 406–413 (2024). PubMed PMC
Wang, J. et al. Fast Surface oxygen release kinetics accelerate nanoparticle exsolution in perovskite oxides. J. Am. Chem. Soc.145, 1714–1727 (2023). PubMed
Han, H. et al. Anti-phase boundary accelerated exsolution of nanoparticles in non-stoichiometric perovskite thin films. Nat. Commun.13, 6682 (2022). PubMed PMC
Zamudio-García, J. et al. Hierarchical exsolution in vertically aligned heterostructures. Nat. Commun.15, 8961 (2024). PubMed PMC
Singh, S. et al. Role of 2D and 3D defects on the reduction of LaNiO3 nanoparticles for catalysis. Sci. Rep.7, 10080 (2017). PubMed PMC
Wang, J. et al. Tuning point defects by elastic strain modulates nanoparticle exsolution on perovskite oxides. Chem. Mater.33, 5021–5034 (2021).
Gunkel, F. et al. Space charges and defect concentration profiles at complex oxide interfaces. Phys. Rev. B93, 245431 (2016).
Lewin, M. et al. Nanospectroscopy of infrared phonon resonance enables local quantification of electronic properties in doped SrTiO3 ceramics. Adv. Funct. Mater.28, 1802834 (2018).
Meyer, R., Zurhelle, A. F., De Souza, R. A., Waser, R. & Gunkel, F. Dynamics of the metal-insulator transition of donor-doped SrTiO3. Phys. Rev. B94, 115408 (2016).
Moos, R. & Hardtl, K. H. Defect chemistry of donor-doped and undoped strontium titanate ceramics between 1000° and 1400 °C. J. Am. Ceram. Soc.80, 2549–2562 (1997).
De Souza, R. A., Metlenko, V., Park, D. & Weirich, T. E. Behavior of oxygen vacancies in single-crystal SrTiO3: equilibrium distribution and diffusion kinetics. Phys. Rev. B Condens. Matter Mater. Phys.85, 174109 (2012).
Weber, M. L. et al. Enhanced metal exsolution at the non-polar (001) surfaces of multi-faceted epitaxial thin films. J. Phys. Energy5, 14002 (2023).
Jennings, D., Ricote, S., Santiso, J., Caicedo, J. & Reimanis, I. Effects of exsolution on the stability and morphology of Ni nanoparticles on BZY thin films. Acta Mater.228, 117752 (2022).
Kim, K. J. et al. Facet-dependent in situ growth of nanoparticles in epitaxial thin films: the role of interfacial energy. J. Am. Chem. Soc.141, 7509–7517 (2019). PubMed
Neagu, D. et al. Nano-socketed nickel particles with enhanced coking resistance grown in situ by redox exsolution. Nat. Commun.6, 8120 (2015). PubMed PMC
Sun, H. Y. et al. Chemically specific termination control of oxide interfaces via layer-by-layer mean inner potential engineering. Nat. Commun.9, 2965 (2018). PubMed PMC
Baeumer, C. et al. Surface termination conversion during SrTiO3 thin film growth revealed by x-ray photoelectron spectroscopy. Sci. Rep.5, 11829 (2015). PubMed PMC
Santaya, M. et al. Exsolution versus particle segregation on (Ni,Co)-doped and undoped SrTi0.3Fe0.7O3-δ perovskites: differences and influence of the reduction path on the final system nanostructure. Int. J. Hydrog. Energy48, 38842–38853 (2023).
Fan, W. et al. Anodic shock-triggered exsolution of metal nanoparticles from perovskite oxide. J. Am. Chem. Soc.144, 7657–7666 (2022). PubMed
Shang, Z., Zhang, J., Ye, L. & Xie, K. Metal nanoparticles at grain boundaries of titanate toward efficient carbon dioxide electrolysis. J. Mater. Chem. A10, 12458–12463 (2022).
Liu, L. & Corma, A. Confining isolated atoms and clusters in crystalline porous materials for catalysis. Nat. Rev. Mater.6, 244–263 (2021).
Wang, J. et al. Thin porous alumina sheets as supports for stabilizing gold nanoparticles. ACS Nano7, 4902–4910 (2013). PubMed
Weber, M. L. et al. Reversibility limitations of metal exsolution reactions in niobium and nickel co-doped strontium titanate. J. Mater. Chem. A11, 17718–17727 (2023).
Kousi, K., Neagu, D., Bekris, L., Papaioannou, E. I. & Metcalfe, I. S. Endogenous nanoparticles strain perovskite host lattice providing oxygen capacity and driving oxygen exchange and CH4 conversion to syngas. Angew. Chem.59, 2510–2519 (2020). PubMed
Katz, M. B. et al. Reversible precipitation/dissolution of precious-metal clusters in perovskite-based catalyst materials: bulk versus surface re-dispersion. J. Catal.293, 145–148 (2012).
Kröger, F. A. & Vink, H. J. Relations between the concentrations of imperfections in crystalline solids. Solid State Phys.3, 307–435 (1956).
Waser, R. Bulk conductivity and defect chemistry of acceptor-doped strontium titanate in the quenched state. J. Am. Ceram. Soc.74, 1934–1940 (1991).
Kilner, J. Fast oxygen transport in acceptor doped oxides. Solid State Ion.129, 13–23 (2000).
De Souza, R. A. & Martin, M. Using 18 O/16 O exchange to probe an equilibrium space-charge layer at the surface of a crystalline oxide: method and application. Phys. Chem. Chem. Phys.10, 2356–2367 (2008). PubMed
De Souza, R. A. Oxygen diffusion in SrTiO3 and related perovskite oxides. Adv. Funct. Mater.25, 6326–6342 (2015).
Metlenko, V. et al. Do dislocations act as atomic autobahns for oxygen in the perovskite oxide SrTiO3? Nanoscale6, 12864–12876 (2014). PubMed
De Souza, R. A. The formation of equilibrium space-charge zones at grain boundaries in the perovskite oxide SrTiO3. Phys. Chem. Chem. Phys.11, 9939–9969 (2009). PubMed
Harris, P. J. F. Growth and structure of supported metal catalyst particles. Int. Mater. Rev.40, 97–115 (1995).
Carrillo, A. J., Navarrete, L., Laqdiem, M., Balaguer, M. & Serra, J. M. Boosting methane partial oxidation on ceria through exsolution of robust Ru nanoparticles. Mater. Adv.2, 2924–2934 (2021).
Zubenko, D., Singh, S. & Rosen, B. A. Exsolution of Re-alloy catalysts with enhanced stability for methane dry reforming. Appl. Catal. B Environ.209, 711–719 (2017).
Hua, B., Li, M., Sun, Y.-F., Li, J.-H. & Luo, J.-L. Enhancing perovskite electrocatalysis of solid oxide cells through controlled exsolution of nanoparticles. ChemSusChem10, 3333–3341 (2017). PubMed
Sun, Y.-F. et al. New opportunity for in situ exsolution of metallic nanoparticles on perovskite parent. Nano Lett.16, 5303–5309 (2016). PubMed
Biesinger, M. C. et al. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci.257, 2717–2730 (2011).
Grosvenor, A. P., Biesinger, M. C., Smart, R. S. & McIntyre, N. S. New interpretations of XPS spectra of nickel metal and oxides. Surf. Sci.600, 1771–1779 (2006).
Wertheim, G. K. & DiCenzo, S. B. Cluster growth and core-electron binding energies in supported metal clusters. Phys. Rev. B37, 844–847 (1988). PubMed
Mason, M. G. Electronic structure of supported small metal clusters. Phys. Rev. B27, 748–762 (1983).
Winterbottom, W. Equilibrium shape of a small particle in contact with a foreign substrate. Acta Metall.15, 303–310 (1967).
Henry, C. R. Morphology of supported nanoparticles. Prog. Surf. Sci.80, 92–116 (2005).
Calì, E. et al. Real-time insight into the multistage mechanism of nanoparticle exsolution from a perovskite host surface. Nat. Commun.14, 1754 (2023). PubMed PMC
Ohly, C., Hoffmann-Eifert, S., Guo, X., Schubert, J. & Waser, R. Electrical conductivity of epitaxial SrTiO3 thin films as a function of oxygen partial pressure and temperature. J. Am. Ceram. Soc.89, 2845–2852 (2006).
Calì, E. et al. Exsolution of catalytically active iridium nanoparticles from strontium titanate. ACS Appl. Mater. interfaces12, 37444–37453 (2020). PubMed
Katz, M. B. et al. Self-regeneration of Pd-LaFeO3 catalysts: new insight from atomic-resolution electron microscopy. J. Am. Chem. Soc.133, 18090–18093 (2011). PubMed
van Deelen, T. W., Hernández Mejía, C. & Jong, K. Pde Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat. Catal.2, 955–970 (2019).
Jak, M. et al. The influence of substrate defects on the growth rate of palladium nanoparticles on a TiO2 (110) surface. Surf. Sci.474, 28–36 (2001).
Lai, X. & Goodman, D. Structure–reactivity correlations for oxide-supported metal catalysts: new perspectives from STM. J. Mol. Catal. A Chem.162, 33–50 (2000).
Lykhach, Y. et al. Counting electrons on supported nanoparticles. Nat. Mater.15, 284–288 (2016). PubMed
Campbell, C. T. & Sellers, J. R. V. Anchored metal nanoparticles: effects of support and size on their energy, sintering resistance and reactivity. Faraday Discuss.162, 9–30 (2013). PubMed
James, T. E., Hemmingson, S. L., Ito, T. & Campbell, C. T. Energetics of Cu adsorption and adhesion onto reduced CeO2 (111) surfaces by calorimetry. J. Phys. Chem. C.119, 17209–17217 (2015).
Hemmingson, S. L., James, T. E., Feeley, G. M., Tilson, A. M. & Campbell, C. T. Adsorption and adhesion of Au on reduced CeO2 (111) surfaces at 300 and 100 K. J. Phys. Chem. C.120, 12113–12124 (2016).
Strayer, M. E. et al. Charge transfer stabilization of late transition metal oxide nanoparticles on a layered niobate support. J. Am. Chem. Soc.137, 16216–16224 (2015). PubMed PMC
Surman, P. L. The oxidation of iron at controlled oxygen partial pressures - I. hydrogen/water vapour. Corros. Sci.13, 113–124 (1973).
Kler, J. & De Souza, R. A. Hydration entropy and enthalpy of a perovskite oxide from oxygen tracer diffusion experiments. J. Phys. Chem. Lett.13, 4133–4138 (2022). PubMed
Norby, T., Wideroe, M., Glockner, R. & Larring, Y. Hydrogen in oxides. Dalton Trans.19, 3012–3018 (2004). PubMed
Kovács, A., Schierholz, R. & Tillmann, K. FEI Titan G2 80-200 CREWLEY. J. Large Scale Res. Facilities2, A43–A43 (2016).
Luysberg, M., Heggen, M. & Tillmann, K. FEI Tecnai G2 F20. J. Large Scale Res. Facilities2, A77–A77 (2016).
Kruth, M., Meertens, D. & Tillmann, K. FEI Helios NanoLab 460F1 FIB-SEM. J. Large Scale Res. Facilities2, A59–A59 (2016).
De la Peña, F. et al. hyperspy/hyperspy: release v1.7.2. Zenodo (2022).
De Souza, R. A., Zehnpfenning, J., Martin, M. & Maier, J. Determining oxygen isotope profiles in oxides with time-of-flight SIMS. Solid State Ion.176, 1465–1471 (2005).
Tanuma, S., Powell, C. J. & Penn, D. R. Calculations of electron inelastic mean free paths. V. Data for 14 organic compounds over the 50-2000 eV range. Surf. Interface Anal.21, 165–176 (1994).