Space charge governs the kinetics of metal exsolution
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38168807
PubMed Central
PMC10917682
DOI
10.1038/s41563-023-01743-6
PII: 10.1038/s41563-023-01743-6
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Nanostructured composite electrode materials play a major role in the fields of catalysis and electrochemistry. The self-assembly of metallic nanoparticles on oxide supports via metal exsolution relies on the transport of reducible dopants towards the perovskite surface to provide accessible catalytic centres at the solid-gas interface. At surfaces and interfaces, however, strong electrostatic gradients and space charges typically control the properties of oxides. Here we reveal that the nature of the surface-dopant interaction is the main determining factor for the exsolution kinetics of nickel in SrTi0.9Nb0.05Ni0.05O3-δ. The electrostatic interaction of dopants with surface space charge regions forming upon thermal oxidation results in strong surface passivation, which manifests in a retarded exsolution response. We furthermore demonstrate the controllability of the exsolution response via engineering of the perovskite surface chemistry. Our findings indicate that tailoring the electrostatic gradients at the perovskite surface is an essential step to improve exsolution-type materials in catalytic converters.
Department of Surface and Plasma Science Charles University Prague Czech Republic
Institute for Electronic Materials RWTH Aachen University Aachen Germany
Institute of Mineral Engineering RWTH Aachen University Aachen Germany
Juelich Aachen Research Alliance Juelich Germany
Peter Gruenberg Institute Electronic Materials Forschungszentrum Juelich GmbH Juelich Germany
Zobrazit více v PubMed
Hauch A, et al. Recent advances in solid oxide cell technology for electrolysis. Science. 2020;370:eaba6118. PubMed
Boldrin P, Brandon NP. Progress and outlook for solid oxide fuel cells for transportation applications. Nat. Catal. 2019;2:571–577.
Davis SJ, et al. Net-zero emissions energy systems. Science. 2018;360:eaas9793. PubMed
Duan C, et al. Highly durable, coking and sulfur tolerant, fuel-flexible protonic ceramic fuel cells. Nature. 2018;557:217–222. PubMed
Neagu D, Tsekouras G, Miller DN, Ménard H, Irvine JTS. In situ growth of nanoparticles through control of non-stoichiometry. Nat. Chem. 2013;5:916–923. PubMed
Neagu D, et al. Nano-socketed nickel particles with enhanced coking resistance grown in situ by redox exsolution. Nat. Commun. 2015;6:8120. PubMed PMC
Kwon O, et al. Exsolution trends and co-segregation aspects of self-grown catalyst nanoparticles in perovskites. Nat. Commun. 2017;8:15967. PubMed PMC
Opitz AK, et al. Understanding electrochemical switchability of perovskite-type exsolution catalysts. Nat. Commun. 2020;11:4801. PubMed PMC
Kim JH, et al. Nanoparticle ex-solution for supported catalysts: materials design, mechanism and future perspectives. ACS Nano. 2021;15:81–110. PubMed
Kwon O, Joo S, Choi S, Sengodan S, Kim G. Review on exsolution and its driving forces in perovskites. J. Phys. Energy. 2020;2:032001.
Nishihata Y, et al. Self-regeneration of a Pd-perovskite catalyst for automotive emissions control. Nature. 2002;418:164–167. PubMed
Kousi K, Tang C, Metcalfe IS, Neagu D. Emergence and future of exsolved materials. Small. 2021;17:e2006479. PubMed
Ellingham HJT. Transactions and communications. J. Chem. Technol. Biotechnol. 1944;63:125–160.
Ikeda JAS, Chiang Y-M. Space charge segregation at grain boundaries in titanium dioxide: I, relationship between lattice defect chemistry and space charge potential. J. Am. Ceram. Soc. 1993;76:2437–2446.
Chiang Y-M, Takagi T. Grain-boundary chemistry of barium titanate and strontium titanate: I, high-temperature equilibrium space charge. J. Am. Ceram. Soc. 1990;73:3278–3285.
Chung S-Y, Choi S-Y, Yoon H-I, Kim H-S, Bae HB. Subsurface space-charge dopant segregation to compensate surface excess charge in a perovskite oxide. Angew. Chem. Int. Ed. 2016;55:9680–9684. PubMed
Yoon H-I, et al. Probing dopant segregation in distinct cation sites at perovskite oxide polycrystal interfaces. Nat. Commun. 2017;8:1417. PubMed PMC
Souza RAde. The formation of equilibrium space-charge zones at grain boundaries in the perovskite oxide SrTiO3. Phys. Chem. Chem. Phys. 2009;11:9939–9969. PubMed
Lee W, Han JW, Chen Y, Cai Z, Yildiz B. Cation size mismatch and charge interactions drive dopant segregation at the surfaces of manganite perovskites. J. Am. Chem. Soc. 2013;135:7909–7925. PubMed
Waser R. Electronic properties of grain boundaries in SrTiO3 and BaTiO3 ceramics. Solid State Ion. 1995;75:89–99.
Gunkel F, et al. Space charges and defect concentration profiles at complex oxide interfaces. Phys. Rev. B. 2016;93:245431.
Tuller H. Ionic conduction in nanocrystalline materials. Solid State Ion. 2000;131:143–157.
Weber ML, et al. Exsolution of embedded nanoparticles in defect engineered perovskite layers. ACS Nano. 2021;15:4546–4560. PubMed
Kersell H, et al. Evolution of surface and sub-surface morphology and chemical state of exsolved Ni nanoparticles. Faraday Discuss. 2022;236:141–156. PubMed
Wang J, et al. Exsolution-driven surface transformation in the host oxide. Nano Lett. 2022;22:5401–5408. PubMed
Kousi K, Neagu D, Bekris L, Papaioannou EI, Metcalfe IS. Endogenous nanoparticles strain perovskite host lattice providing oxygen capacity and driving oxygen exchange and CH4 conversion to syngas. Angew. Chem. Int. Ed. 2020;59:2510–2519. PubMed
Wang J, et al. Exsolution synthesis of nanocomposite perovskites with tunable electrical and magnetic properties. Adv. Funct. Mater. 2022;32:2108005.
Ohtomo A, Hwang HY. Surface depletion in doped SrTiO3 thin films. Appl. Phys. Lett. 2004;84:1716–1718.
Tanaka H, et al. Nondestructive estimation of depletion layer profile in Nb-doped SrTiO3/(La,Ba)MnO3 heterojunction diode structure by hard X-ray photoemission spectroscopy. Appl. Phys. Lett. 2011;98:133505.
Andrä M, et al. Chemical control of the electrical surface properties in donor-doped transition metal oxides. Phys. Rev. Mater. 2019;3:044604.
Andrä M, et al. Oxygen partial pressure dependence of surface space charge formation in donor-doped SrTiO3. APL Mater. 2017;5:056106.
Andrä M, et al. Effect of cationic interface defects on band alignment and contact resistance in metal/oxide heterojunctions. Adv. Electron. Mater. 2020;6:1900808.
Chambers SA, et al. Instability, intermixing and electronic structure at the epitaxial LaAlO3/SrTiO3(001) heterojunction. Surf. Sci. Rep. 2010;65:317–352.
Sushko PV, Chambers SA. Extracting band edge profiles at semiconductor heterostructures from hard-X-ray core-level photoelectron spectra. Sci. Rep. 2020;10:13028. PubMed PMC
Lewin M, et al. Nanospectroscopy of infrared phonon resonance enables local quantification of electronic properties in doped SrTiO3 ceramics. Adv. Funct. Mater. 2018;28:1802834.
Meyer R, Zurhelle AF, Souza RA, de Waser R, Gunkel F. Dynamics of the metal-insulator transition of donor-doped SrTiO3. Phys. Rev. B. 2016;94:115408.
Rose M-A, et al. Identifying ionic and electronic charge transfer at oxide heterointerfaces. Adv. Mater. 2020;33:e2004132. PubMed PMC
Gunkel, F. et al. Influence of charge compensation mechanisms on the sheet electron density at conducting LaAlO3/SrTiO3-interfaces. Appl. Phys. Lett.100, 052103 (2012).
Moos R, Hardtl KH. Defect chemistry of donor-doped and undoped strontium titanate ceramics between 1000° and 1400 °C. J. Am. Ceram. Soc. 1997;80:2549–2562.
Zurhelle AF, Christensen DV, Menzel S, Gunkel F. Dynamics of the spatial separation of electrons and mobile oxygen vacancies in oxide heterostructures. Phys. Rev. Mater. 2020;4:104604.
Waser R, Baiatu T, Hardtl K-H. DC electrical degradation of perovskite-type titanates: II, single crystals. J. Am. Ceram. Soc. 1990;73:1654–1662.
Muenstermann R, et al. Correlation between growth kinetics and nanoscale resistive switching properties of SrTiO3 thin films. J. Appl. Phys. 2010;108:124504.
Kozuka Y, Hikita Y, Bell C, Hwang HY. Dramatic mobility enhancements in doped SrTiO3 thin films by defect management. Appl. Phys. Lett. 2010;97:12107.
Parras JP, et al. The grain‐boundary resistance of CeO2 ceramics: a combined microscopy‐spectroscopy‐simulation study of a dilute solution. J. Am. Ceram. Soc. 2020;103:1755–1764.
Gao Y, et al. Energetics of nanoparticle exsolution from perovskite oxides. J. Phys. Chem. Lett. 2018;9:3772–3778. PubMed
Wang J, et al. Fast surface oxygen release kinetics accelerate nanoparticle exsolution in perovskite oxides. J. Am. Chem. Soc. 2023;145:1714–1727. PubMed
Kim KJ, et al. Facet-dependent in situ growth of nanoparticles in epitaxial thin films: the role of interfacial energy. J. Am. Chem. Soc. 2019;141:7509–7517. PubMed
Qi H, et al. Reversible in-situ exsolution of Fe catalyst in La0.5Sr1.5Fe1.5Mo0.5O6-δ anode for SOFCs. ECS Trans. 2019;91:1701–1710.
Sokolović, I. et al. Quest for a pristine unreconstructed SrTiO3(001) surface: an atomically resolved study via noncontact atomic force microscopy. Phys. Rev. B103, L241406 (2021).
Zagonel LF, et al. Orientation-dependent work function of in situ annealed strontium titanate. J. Phys. Condens. Matter. 2009;21:314013. PubMed