Identifying Ionic and Electronic Charge Transfer at Oxide Heterointerfaces
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
315025796
Deutsche Forschungsgemeinschaft
SFB 917
Deutsche Forschungsgemeinschaft
DE-AC02-05CH11231
U.S. Department of Energy
Office of Science
Basic Energy Sciences
10122
Division of Materials Sciences and Engineering
CERIC-ERIC
PubMed
33263190
PubMed Central
PMC11468147
DOI
10.1002/adma.202004132
Knihovny.cz E-zdroje
- Klíčová slova
- 2D electron-gases, charge-transfer, in situ spectroscopy, mesoscopic transport, oxide heterointerfaces,
- Publikační typ
- časopisecké články MeSH
The ability to tailor oxide heterointerfaces has led to novel properties in low-dimensional oxide systems. A fundamental understanding of these properties is based on the concept of electronic charge transfer. However, the electronic properties of oxide heterointerfaces crucially depend on their ionic constitution and defect structure: ionic charges contribute to charge transfer and screening at oxide interfaces, triggering a thermodynamic balance of ionic and electronic structures. Quantitative understanding of the electronic and ionic roles regarding charge-transfer phenomena poses a central challenge. Here, the electronic and ionic structure is simultaneously investigated at the prototypical charge-transfer heterointerface, LaAlO3 /SrTiO3 . Applying in situ photoemission spectroscopy under oxygen ambient, ionic and electronic charge transfer is deconvoluted in response to the oxygen atmosphere at elevated temperatures. In this way, both the rich and variable chemistry of complex oxides and the associated electronic properties are equally embraced. The interfacial electron gas is depleted through an ionic rearrangement in the strontium cation sublattice when oxygen is applied, resulting in an inverse and reversible balance between cation vacancies and electrons, while the mobility of ionic species is found to be considerably enhanced as compared to the bulk. Triggered by these ionic phenomena, the electronic transport and magnetic signature of the heterointerface are significantly altered.
Chemical Sciences Division Lawrence Berkeley National Lab Berkeley CA 94720 USA
Institute for Electronic Materials RWTH Aachen University 52074 Aachen Germany
Peter Grünberg Institute 6 and JARA FIT Forschungszentrum Jülich GmbH 52425 Jülich Germany
Peter Grünberg Institute 7 Forschungszentrum Jülich GmbH and JARA FIT 52425 Jülich Germany
Zobrazit více v PubMed
Mannhart J., Schlom D. G., Science 2010, 327, 607. PubMed
Hwang H. Y., Iwasa Y., Kawasaki M., Keimer B., Nagaosa N., Tokura Y., Nat. Mater. 2012, 11, 103. PubMed
Smyth D. M., The Defect Chemistry of Metal Oxides, Oxford University Press, Oxford, UK: 2000.
Moos R., Härdtl K. H., J. Am. Ceram. Soc. 1997, 80, 2549.
Meyer R., Zurhelle A. F., De Souza R. A., Waser R., Gunkel F., Phys. Rev. B 2016, 94, 115408.
Merkle R., Maier J., Angew. Chem., Int. Ed. 2008, 47, 3874. PubMed
Waser R., Hagenbeck R., Acta Mater. 2000, 48, 797.
Zubko P., Gariglio S., Gabay M., Ghosez P., Triscone J., Annu. Rev. Condens. Matter Phys. 2011, 2, 141.
Verma A., Raghavan S., Stemmer S., Jena D., Appl. Phys. Lett. 2015, 107, 192908.
Ohtomo A., Hwang H. Y., Appl. Phys. Lett. 2004, 84, 1716.
Gunkel F., Waser R., Ramadan A. H. H., De Souza R. A., Hoffmann‐Eifert S., Dittmann R., Phys. Rev. B 2016, 93, 245431.
Bagdzevicius S., Maas K., Boudard M., Burriel M., J. Electroceram. 2017, 39, 157.
Sanna S., Esposito V., Andreason J. W., Hjelm J., Zhang W., Kasama T., Simonsen S. B., Christensen M., Linderoth S., Pryds N., Nat. Mater. 2015, 14, 500. PubMed
Bibes M., Villegas J. E., Barthelemy A., Adv. Phys. 2011, 60, 5.
Mannhart J., Blank D. H. A., Hwang H. Y., Millis A. J., Triscone J.‐M., MRS Bull. 2008, 33, 1027.
Pentcheva R., Pickett W. E., Phys. Rev. B 2006, 74, 35112.
Pentcheva R., Pickett W. E., Phys. Rev. B 2008, 78, 205106.
Gloter A., Tieri G., Li D., Caputo M., Strocov V., Stéphan O., Triscone J., Gariglio S., APL Mater. 2020, 8, 041103.
Moetakef P., Zhang J. Y., Kozhanov A., Jalan B., Sehadri R., Allen S. J., Stemmer S., Appl. Phys. Lett. 2011, 98, 112110.
Moetakef P., Cain T. A., Ouellette D. G., Zhang J. Y., Klenov D. O., Janotti A., Van de Walle C. G., Rajan S., Allen S. J., Stemmer S., Appl. Phys. Lett. 2011, 99, 232116.
Ohtomo A., Hwang H. Y., Nature 2004, 427, 423. PubMed
Nakagawa N., Hwang H. Y., Muller D. A., Nat. Mater. 2006, 5, 204.
Huijben M., Brinkman A., Koster G., Rijnders G., Hilgenkamp H., Blank D. H. A., Adv. Mater. 2009, 21, 1665.
Chen Y. Z., Trier F., Wijnands T., Green R. J., Gauquelin N., Egoavil R., Christensen D. V., Koster G., Huijben M., Bovet N., Macke S., He F., Sutarto R., Andersen N. H., Sulpizio J. A., Honig M., Prawiroatmodjo G. E. D. K., Jespersen T. S., Linderoth S., Ilani S., Verbeeck J., Van Tendeloo G., Rijnders G., Sawatzky G. A., Pryds N., Nat. Mater. 2015, 14, 801. PubMed
Son J., Moetakef P., Jalan B., Bierwagen O., Wright N. J., Engel‐Herbert R., Stemmer S., Nat. Mater. 2010, 9, 482. PubMed
Gariglio S., Fête A., Triscone J., J. Phys.: Condens. Matter 2015, 27, 283201. PubMed
Reyren N., Thiel S., Caviglia A. D., Kourkoutis L. F., Hammerl G., Richter C., Schneider C. W., Kopp T., Ruetschi A.‐S., Jaccard D., Gabay M., Muller D. A., Triscone J. ‐M., Mannhart J., Science 2007, 317, 1196. PubMed
Brinkman A., Huijben M., Van Zalk M., Huijben J., Zeitler U., Maan J. C., Van der Wiel W. G., Rijnders G., Blank D. H. A., Hilgenkamp H., Nat. Mater. 2007, 6, 493. PubMed
Li L., Richter C., Mannhart J., Ashoori R. C., Nat. Phys. 2011, 7, 762.
Dikin D. A., Mehta M., Bark C. W., Folkman C. M., Eom C. B., Chandrasekhar V., Phys. Rev. Lett. 2011, 107, 056802. PubMed
Breckenfeld E., Bronn N., Karthik J., Damodaran A. R., Lee S., Mason N., Martin L. W., Phys. Rev. Lett. 2013, 110, 196804. PubMed
Gunkel F., Skaja K., Shkabko A., Dittmann R., Hoffmann‐Eifert S., Waser R., Appl. Phys. Lett. 2013, 102, 71601.
Kalabukhov A., Gunnarsson R., Borjesson J., Olsson E., Claeson T., Winkler D., Phys. Rev. B 2007, 75, 121404. PubMed
Xu C., Baeumer C., Heinen R. A., Hoffmann‐Eifert S., Gunkel F., Dittmann R., Sci. Rep. 2016, 6, 22410. PubMed PMC
Basletic M., Maurice J., Carretero C., Herranz G., Copie O., Bibes M., Jacquet E., Bouzehouane K., Fusil S., Barthelemy A., Nat. Mater. 2008, 7, 621. PubMed
Thiel S., Hammerl G., Schmehl A., Schneider C. W., Mannhart J., Science 2006, 313, 1942. PubMed
Hensling F. V. E., Keeble D. J., Zhu J., Brose S., Xu C., Gunkel F., Danylyuk S., Nonnenmann S. S., Egger W., Dittmann R., Sci. Rep. 2018, 8, 8846. PubMed PMC
Gunkel F., Hoffmann‐Eifert S., Dittmann R., Mi S. B., Jia C. L., Meuffels P., Waser R., Appl. Phys. Lett. 2010, 97, 12103.
Hagemann H.‐J., Ihrig H., Phys. Rev. B 1979, 20, 3871.
Hagenbeck R., Simulation der elektrischen Korngrenzeneigenschaften akzeptordotierter SrTiO3‐Keramiken, RWTH Publications, Aachen, Germany: 1999.
Tanaka T., Matsunaga K., Ikuhara Y., Yamamoto T., Phys. Rev. B 2003, 68, 205213.
Waser R., J. Am. Ceram. Soc. 1991, 74, 1934.
Riva M., Franceschi G., Lu Q., Schmid M., Yildiz B., Diebold U., Phys. Rev. Mater. 2019, 3, 43802.
Andrä M., Dvorák F., Vorokhta M., Nemšák S., Matolín V., Schneider C. M., Dittmann R., Gunkel F., Mueller D. N., Waser R., APL Mater. 2017, 5, 56106.
Andrae M., Bluhm H., Schneider C. M., Dittmann R., Waser R., Mueller D. N., Gunkel F., Phys. Rev. Mater. 2019, 3, 44604/1.
Caviglia A. D., Gariglio S., Cancellieri C., Sacepe B., Fete A., Reyren N., Gabay M., Morpurgo A. F., Triscone J.‐M., Phys. Rev. Lett. 2010, 105, 236802. PubMed
Ben Shalom M., Ron A., Palevski A., Dagan Y., Phys. Rev. Lett. 2010, 105, 206401. PubMed
Gunkel F., Wicklein S., Brinks P., Hoffmann‐Eifert S., Huijben M., Rijnders G., Waser R., Dittmann R., Nanoscale 2015, 7, 1013. PubMed
Joshua A., Pecke S., Ruhman J., Altman E., Ilani S., Nat. Commun. 2012, 3, 1129. PubMed
Gunkel F., Bell C., Inoue H., Kim B., Swartz A. G., Merz T. A., Hikita Y., Harashima S., Sato H. K., Minohara M., Hoffmann‐Eifert S., Dittmann R., Hwang H. Y., Phys. Rev. X 2016, 6, 031035.
Stornaiuolo D., Cantoni C., De Luca G. M., Di Capua R., Di Gennaro E., Ghiringhelli G., Jouault B., Marre D., Massarotti D., Granozio F. M., Pallecchi I., Piamonteze C., Rusponi S., Tafuri F., Salluzzo M., Nat. Mater. 2016, 15, 278. PubMed
Doennig D., Pentcheva R., Sci. Rep. 2015, 5, 7909. PubMed PMC
Jiang W., Zhou X. Z., Williams G., Phys. Rev. B 2010, 82, 144424.
Zhang S. X., Yu W., Ogale S. B., Shinde S. R., Kundaliya D. C., Tse W., Young S. Y., Higgins J. S., Salamanca‐Riba L. G., Herrera M., Fu L. F., Browning N. D., Greene R. L., Venkatesan T., Phys. Rev. B 2007, 76, 085323.
Mathieu R., Asamitsu A., Yamada H., Takahashi K. S., Kawasaki M., Fang Z., Nagaosa N., Tokura Y., Phys. Rev. Lett. 2004, 93, 016602.
Christensen D. V., Frenkel Y., Schuetz P., Trier F., Wissberg S., Claessen R., Kalisky B., Smith A., Chen Y., Pryds N., Phys. Rev. Appl. 2018, 9, 054004.
Sarantopoulos A., Ferreiro‐Vila E., Pardo V., Magen C., Aguirre M. H., Rivadulla F., Phys. Rev. Lett. 2015, 115, 166801. PubMed
Copie O., Garcia V., Boedefeld C., Carretero C., Bibes M., Herranz G., Jacquet E., Maurice J., Vinter B., Fusil S., Bouzehouane K., Jaffres H., Barthelemy A., Phys. Rev. Lett. 2009, 102, 216804. PubMed
Pan J. M., Maschhoff B. L., Diebold U., Madey T. E., J. Vac. Sci. Technol. A 1992, 10, 2470.
Szot K., Speier W., Breuer U., Meyer R., Szade J., Waser R., Surf. Sci. 2000, 460, 112.
van der Heide P. A. W., Jiang Q. D., Kim Y. S., Rabalais J. W., Surf. Sci. 2001, 473, 59.
Treske U., Heming N., Knupfer M., Buechner B., Koitzsch A., Di Gennaro E., di Uccio U. S., Miletto Granozio F., Krause S., APL Mater. 2014, 2, 12108. PubMed PMC
Chambers S. A., Du Y., Zhu Z., Wang J., Wahila M. J., Piper L. F. J., Prakash A., Yue J., Jalan B., Spurgeon S. R., Kepaptsoglou D. M., Ramasse Q. M., Sushko P. V., Phys. Rev. B 2018, 97, 245204.
Wang L., Du Y., Chang L., Soerzinger K. A., Bowden M. E., Wang J., Chambers S. A., Appl. Phys. Lett. 2018, 112, 261601.
Slooten E., Ph.D. Thesis, University of Amsterdam, Amsterdam, The Netherlands 2013.
Treske U., Heming N., Knupfer M., Büchner B., Di Gennaro E., Khare A., Di Uccio U. S., Granozio F. M., Krause S., Koitzsch A., Sci. Rep. 2015, 5, 14506. PubMed PMC
Segal Y., Ngai J. H., Reiner J. W., Walker F. J., Ahn C. H., Phys. Rev. B 2009, 80, 241107.
Chambers S. A., Engelhard M. H., Shutthanandan V., Zhu Z., Droubay T. C., Qiao L., Sushko P. V., Feng T., Lee H. D., Gustafsson T., Garfunkel E., Shah A. B., Zuo J.‐M., Ramasse Q. M., Surf. Sci. 2010, 65, 317.
Slooten E., Zhong Z., Molegraaf H. J. A., Eerkes P. D., de Jong S., Massee F., van Heumen E., Kruize M. K., Wenderich S., Kleibeuker J. E., Gorgoi M., Hilgenkamp H., Brinkman A., Huijben M., Rijnders G., Blank D. H. A., Koster G., Kelly P. J., Golden M. S., Phys. Rev. B 2013, 87, 85128.
Drera G., Salvinelli G., Brinkman A., Huijben M., Koster G., Hilgenkamp H., Rijnders G., Visentin D., Sangaletti L., Phys. Rev. B 2013, 87, 75435.
Yu L., Zunger A., Nat. Commun. 2014, 5, 5118. PubMed
Lenser C., Koehl A., Slipukhina I., Du H., Patt M., Feyer V., Schneider C. M., Lezaic M., Waser R., Dittmann R., Adv. Funct. Mater. 2015, 25, 6360.
Gunkel F., Brinks P., Hoffmann‐Eifert S., Dittmann R., Huijben M., Kleibeuker J. E., Koster G., Rijnders G., Waser R., Appl. Phys. Lett. 2012, 100, 52103.
Strocov V. N., Chikina A., Caputo M., Husanu M.‐A., Bisti F., Bracher D., Schmitt T., Miletto Granozio F., Vaz C. A. F., Lechermann F., Phys. Rev. Mater. 2019, 3, 106001.
Mohanta N., Taraphder A., J. Phys.: Condens. Matter 2014, 26, 025705. PubMed
Keeble D. J., Wicklein S., Jin L., Jia C. L., Egger W., Dittmann R., Phys. Rev. B 2013, 87, 11.
Warusawithana M. P., Richter C., Mundy J. A., Roy P., Ludwig J., Paetel S., Heeg T., Pawlicki A. A., Kourkoutis L. F., Zheng M., Lee M., Mulcahy B., Zander W., Zhu Y., Schubert J., Eckstein J. N., Muller D. A., Hellberg C. S., Mannhart J., Schlom D. G., Nat. Commun. 2013, 4, 2351. PubMed
Gunkel F., Hoffmann‐Eifert S., Heinen R. A., Christensen D. V., Chen Y. Z., Pryds N., Waser R., Dittmann R., ACS Appl. Mater. Interfaces 2017, 9, 1086. PubMed
Sato H. K., Bell C., Hikita Y., Hwang H. Y., Appl. Phys. Lett. 2013, 102, 251602.
Meyer T. L., Jeen H., Gao X., Petrie J. R., Chisholm M. F., Lee H. N., Adv. Electron. Mater. 2016, 2, 1500201/1.
Ogletree D. F., Bluhm H., Hebenstreit E. D., Salmeron M., Nucl. Instrum. Methods Phys. Res. Sect. A 2009, 601, 151.
Moos R., Menesklou W., Hardtl K. H., Appl. Phys. A 1995, 61, 389.
Kresse G., Furthmüller J., Comput. Mater. Sci. 1996, 6, 15.
Kresse G., Furthmüller J., Phys. Rev. B 1996, 54, 11169. PubMed
Kresse G., Hafner J., Phys. Rev. B 1993, 47, 558. PubMed
Perdew J. P., Burke K., Ernzerhof M., Phys. Rev. Lett. 1996, 77, 3865. PubMed
Blöchl P. E., Phys. Rev. B 1994, 50, 17953. PubMed
Dudarev S., Botton G., Savrasov S., Humphreys C., Sutton A., Phys. Rev. B 1998, 57, 1505.
Krause D., Thörnig P., J. Large‐Scale Res. Facil. 2018, 4, A132.
Space charge governs the kinetics of metal exsolution