Electronic and Structural Properties of Thin Iron Oxide Films on CeO2
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39167683
PubMed Central
PMC11378155
DOI
10.1021/acsami.4c05542
Knihovny.cz E-zdroje
- Klíčová slova
- 2D layer, CeO2, DFT, STM, XPS, catalysis, ceria, iron oxide,
- Publikační typ
- časopisecké články MeSH
Modification of CeO2 (ceria) with 3d transition metals, particularly iron, has been proven to significantly enhance its catalytic efficiency in oxidation or combustion reactions. Although this phenomenon is widely reported, the nature of the iron-ceria interaction responsible for this improvement remains debated. To address this issue, we prepared well-defined model FeOx/CeO2(111) catalytic systems and studied their structure and interfacial electronic properties using photoelectron spectroscopy, scanning tunneling microscopy, and low-energy electron diffraction, coupled with density functional theory (DFT) calculations. Our results show that under ultrahigh vacuum conditions, Fe deposition leads to the formation of small FeOx clusters on the ceria surface. Subsequent annealing results in the growth of large amorphous FeOx particles and a 2D FeOx layer. Annealing in an oxygen-rich atmosphere further oxidizes iron up to the Fe3+ state and improves the crystallinity of both the 2D layer and the 3D particles. Our DFT calculations indicate that the 2D FeOx layer interacts strongly with the ceria surface, exhibiting structural corrugations and transferred electrons between Fe2+/Fe3+ and Ce4+/Ce3+ redox pairs. The novel 2D FeOx/CeO2(111) phase may explain the enhancement of the catalytic properties of CeO2 by iron. Moreover, the corrugated 2D FeOx layer can serve as a template for the ordered nucleation of other catalytically active metals, in which the redox properties of the 2D FeOx/CeO2(111) system are exploited to modulate the charge of the supported metals.
Zobrazit více v PubMed
Kowsuki K.; Nirmala R.; Ra Y.-H.; Navamathavan R. Recent Advances in Cerium Oxide-Based Nanocomposites in Synthesis, Characterization, and Energy Storage Applications: A Comprehensive Review. Results Chem. 2023, 5, 100877.10.1016/j.rechem.2023.100877. DOI
Ebrahimi P.; Kumar A.; Khraisheh M. A Review of CeO2 Supported Catalysts for CO2 Reduction to CO through the Reverse Water Gas Shift Reaction. Catalysts 2022, 12 (10), 1101.10.3390/catal12101101. DOI
Kim K.; Han J. W. Mechanistic Study for Enhanced CO Oxidation Activity on (Mn,Fe) Co-Doped CeO2(111). Catal. Today 2017, 293–294, 82–88. 10.1016/j.cattod.2016.11.046. DOI
Li H.; Li K.; Wang H.; Zhu X.; Wei Y.; Yan D.; Cheng X.; Zhai K. Soot Combustion over Ce1-xFexO2-δ and CeO2/Fe2O3 Catalysts: Roles of Solid Solution and Interfacial Interactions in the Mixed Oxides. Appl. Surf. Sci. 2016, 390, 513–525. 10.1016/j.apsusc.2016.08.122. DOI
Krcha M. D.; Mayernick A. D.; Janik M. J. Periodic Trends of Oxygen Vacancy Formation and C–H Bond Activation over Transition Metal-Doped CeO2(1 1 1) Surfaces. J. Catal. 2012, 293, 103–115. 10.1016/j.jcat.2012.06.010. DOI
Chu K.; Cheng Y.; Li Q.; Liu Y.; Tian Y. Fe-Doping Induced Morphological Changes, Oxygen Vacancies and Ce3+–Ce3+ Pairs in CeO2 for Promoting Electrocatalytic Nitrogen Fixation. J. Mater. Chem. A 2020, 8 (12), 5865–5873. 10.1039/C9TA14260F. DOI
Lykaki M.; Stefa S.; Carabineiro S.; Pandis P.; Stathopoulos V.; Konsolakis M. Facet-Dependent Reactivity of Fe2O3/CeO2 Nanocomposites: Effect of Ceria Morphology on CO Oxidation. Catalysts 2019, 9 (4), 371.10.3390/catal9040371. DOI
Laguna O. H.; Centeno M. A.; Arzamendi G.; Gandía L. M.; Romero-Sarria F.; Odriozola J. A. Iron-Modified Ceria and Au/Ceria Catalysts for Total and Preferential Oxidation of CO (TOX and PROX). Catal. Today 2010, 157 (1–4), 155–159. 10.1016/j.cattod.2010.04.011. DOI
Li G.; Smith R. L.; Inomata H. Synthesis of Nanoscale Ce1-xFexO2 Solid Solutions via a Low-Temperature Approach. J. Am. Chem. Soc. 2001, 123 (44), 11091–11092. 10.1021/ja016502+. PubMed DOI
Laguna O. H.; Centeno M. A.; Boutonnet M.; Odriozola J. A. Fe-Doped Ceria Solids Synthesized by the Microemulsion Method for CO Oxidation Reactions. Appl. Catal., B 2011, 106 (3–4), 621–629. 10.1016/j.apcatb.2011.06.025. DOI
Polychronopoulou K.; AlKhoori A. A.; Efstathiou A. M.; Jaoude M. A.; Damaskinos C. M.; Baker M. A.; Almutawa A.; Anjum D. H.; Vasiliades M. A.; Belabbes A.; Vega L. F.; Zedan A. F.; Hinder S. J. Design Aspects of Doped CeO2 for Low-Temperature Catalytic CO Oxidation: Transient Kinetics and DFT Approach. ACS Appl. Mater. Interfaces 2021, 13 (19), 22391–22415. 10.1021/acsami.1c02934. PubMed DOI PMC
Zhao L.; Bishop S. R.; Hyodo J.; Ishihara T.; Sasaki K. XRD and Raman Spectroscopy Study of Fe Solubility in Cerium Oxide. ECS Trans. 2013, 50 (40), 53–58. 10.1149/05040.0053ecst. DOI
Tianshu Z.; Hing P.; Huang H.; Kilner J. The Effect of Fe Doping on the Sintering Behavior of Commercial CeO2 Powder. J. Mater. Process. Technol. 2001, 113 (1–3), 463–468. 10.1016/S0924-0136(01)00600-8. DOI
Luo Y.; Chen R.; Peng W.; Tang G.; Gao X. Inverse CeO2-Fe2O3 Catalyst for Superior Low-Temperature CO Conversion Efficiency. Appl. Surf. Sci. 2017, 416, 911–917. 10.1016/j.apsusc.2017.04.225. DOI
Chen H.-T.; Chang J.-G. Computational Investigation of CO Adsorption and Oxidation on Iron-Modified Cerium Oxide. J. Phys. Chem. C 2011, 115 (30), 14745–14753. 10.1021/jp201231d. DOI
Reddy A. S.; Chen C.-Y.; Chen C.-C.; Chien S.-H.; Lin C.-J.; Lin K.-H.; Chen C.-L.; Chang S.-C. Synthesis and Characterization of Fe/CeO2 Catalysts: Epoxidation of Cyclohexene. J. Mol. Catal. Chem. 2010, 318 (1–2), 60–67. 10.1016/j.molcata.2009.11.008. DOI
Bao H.; Qian K.; Fang J.; Huang W. Fe-Doped CeO2 Solid Solutions: Substituting-Site Doping versus Interstitial-Site Doping, Bulk Doping versus Surface Doping. Appl. Surf. Sci. 2017, 414, 131–139. 10.1016/j.apsusc.2017.04.018. DOI
Piliai L.; Matvija P.; Dinhová T. N.; Khalakhan I.; Skála T.; Doležal Z.; Bezkrovnyi O.; Kepinski L.; Vorokhta M.; Matolínová I. In Situ Spectroscopy and Microscopy Insights into the CO Oxidation Mechanism on Au/CeO2 (111). ACS Appl. Mater. Interfaces 2022, 14 (50), 56280–56289. 10.1021/acsami.2c15792. PubMed DOI
Simanenko A.; Kastenmeier M.; Piliai L.; Kosto Y.; Skála T.; Tsud N.; Mehl S.; Vorokhta M.; Matolínová I.; Lykhach Y.; Libuda J. Probing the Redox Capacity of Pt–CeO2 Model Catalyst for Low-Temperature CO Oxidation. J. Mater. Chem. A 2023, 11 (31), 16659–16670. 10.1039/D3TA02507A. DOI
Bezkrovnyi O.; Bruix A.; Blaumeiser D.; Piliai L.; Schötz S.; Bauer T.; Khalakhan I.; Skála T.; Matvija P.; Kraszkiewicz P.; Pawlyta M.; Vorokhta M.; Matolínová I.; Libuda J.; Neyman K. M.; Kȩpiński L. Metal–Support Interaction and Charge Distribution in Ceria-Supported Au Particles Exposed to CO. Chem. Mater. 2022, 34 (17), 7916–7936. 10.1021/acs.chemmater.2c01659. PubMed DOI PMC
Dvořák F.; Stetsovych O.; Steger M.; Cherradi E.; Matolínová I.; Tsud N.; Škoda M.; Skála T.; Mysliveček J.; Matolín V. Adjusting Morphology and Surface Reduction of CeO2 (111) Thin Films on Cu(111). J. Phys. Chem. C 2011, 115 (15), 7496–7503. 10.1021/jp1121646. DOI
Torbrügge S.; Schaff O.; Rychen J. Application of the KolibriSensor® to Combined Atomic-Resolution Scanning Tunneling Microscopy and Noncontact Atomic-Force Microscopy Imaging. J. Vac. Sci. Technol. B 2010, 28 (3), C412–C420. 10.1116/1.3430544. DOI
Perdew J. P.; Wang Y. Accurate and Simple Analytic Representation of the Electron-Gas Correlation Energy. Phys. Rev. B 1992, 45 (23), 13244–13249. 10.1103/PhysRevB.45.13244. PubMed DOI
Kresse G.; Furthmüller J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B 1996, 54 (16), 11169–11186. 10.1103/PhysRevB.54.11169. PubMed DOI
Kresse G.; Hafner J. Ab Initio Molecular Dynamics for Liquid Metals. Phys. Rev. B 1993, 47 (1), 558–561. 10.1103/PhysRevB.47.558. PubMed DOI
Kresse G.; Furthmüller J. Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Comput. Mater. Sci. 1996, 6 (1), 15–50. 10.1016/0927-0256(96)00008-0. DOI
Rollmann G.; Rohrbach A.; Entel P.; Hafner J. First-Principles Calculation of the Structure and Magnetic Phases of Hematite. Phys. Rev. B 2004, 69 (16), 165107.10.1103/PhysRevB.69.165107. DOI
Loschen C.; Carrasco J.; Neyman K. M.; Illas F. First-Principles LDA+U and GGA+U Study of Cerium Oxides: Dependence on the Effective U Parameter. Phys. Rev. B 2007, 75 (3), 035115.10.1103/PhysRevB.75.035115. DOI
Castro-Latorre P.; Neyman K. M.; Bruix A. Systematic Characterization of Electronic Metal–Support Interactions in Ceria-Supported Pt Particles. J. Phys. Chem. C 2023, 127 (36), 17700–17710. 10.1021/acs.jpcc.3c03383. PubMed DOI PMC
Grimme S. Semiempirical GGA-Type Density Functional Constructed with a Long-Range Dispersion Correction. J. Comput. Chem. 2006, 27 (15), 1787–1799. 10.1002/jcc.20495. PubMed DOI
Bučko T.; Hafner J.; Lebègue S.; Ángyán J. G. Improved Description of the Structure of Molecular and Layered Crystals: Ab Initio DFT Calculations with van Der Waals Corrections. J. Phys. Chem. A 2010, 114, 11814–11824. 10.1021/jp106469x. PubMed DOI
Kośmider K.; Brázdová V.; Ganduglia-Pirovano M. V.; Pérez R. Do Au Atoms Titrate Ce3+ Ions at the CeO2-x(111) Surface?. J. Phys. Chem. C 2016, 120 (2), 927–933. 10.1021/acs.jpcc.5b05335. DOI
Penschke C.; Paier J.; Sauer J. Oligomeric Vanadium Oxide Species Supported on the CeO2(111) Surface: Structure and Reactivity Studied by Density Functional Theory. J. Phys. Chem. C 2013, 117 (10), 5274–5285. 10.1021/jp400520j. DOI
Yamashita T.; Hayes P. Analysis of XPS Spectra of Fe2+ and Fe3+ Ions in Oxide Materials. Appl. Surf. Sci. 2008, 254 (8), 2441–2449. 10.1016/j.apsusc.2007.09.063. DOI
McIntyre N. S.; Zetaruk D. G. X-Ray Photoelectron Spectroscopic Studies of Iron Oxides. Anal. Chem. 1977, 49 (11), 1521–1529. 10.1021/ac50019a016. DOI
Grosvenor A. P.; Kobe B. A.; Biesinger M. C.; McIntyre N. S. Investigation of Multiplet Splitting of Fe 2p XPS Spectra and Bonding in Iron Compounds. Surf. Interface Anal. 2004, 36 (12), 1564–1574. 10.1002/sia.1984. DOI
Biesinger M. C.; Payne B. P.; Grosvenor A. P.; Lau L. W. M.; Gerson A. R.; Smart R. S. C. Resolving Surface Chemical States in XPS Analysis of First Row Transition Metals, Oxides and Hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257 (7), 2717–2730. 10.1016/j.apsusc.2010.10.051. DOI
Temesghen W.; Sherwood P. Analytical Utility of Valence Band X-Ray Photoelectron Spectroscopy of Iron and Its Oxides, with Spectral Interpretation by Cluster and Band Structure Calculations. Anal. Bioanal. Chem. 2002, 373 (7), 601–608. 10.1007/s00216-002-1362-3. PubMed DOI
Arranz A.; Pérez-Dieste V.; Palacio C. Growth, Electronic Properties and Thermal Stability of the Fe/Al2O3 Interface. Surf. Sci. 2002, 521 (1–2), 77–83. 10.1016/S0039-6028(02)02306-3. DOI
Madej E.; Spiridis N.; Socha R. P.; Wolanin B.; Korecki J. The Nucleation, Growth and Thermal Stability of Iron Clusters on a TiO2(110) Surface. Appl. Surf. Sci. 2017, 416, 144–151. 10.1016/j.apsusc.2017.04.114. DOI
Wett D.; Demund A.; Schmidt H.; Szargan R. The Fe/ZnO(0001) Interface: Formation and Thermal Stability. Appl. Surf. Sci. 2008, 254 (8), 2309–2318. 10.1016/j.apsusc.2007.09.020. DOI
Figueroba A.; Kovács G.; Bruix A.; Neyman K. M. Towards Stable Single-Atom Catalysts: Strong Binding of Atomically Dispersed Transition Metals on the Surface of Nanostructured Ceria. Catal. Sci. Technol. 2016, 6 (18), 6806–6813. 10.1039/C6CY00294C. DOI
Fu Q.; Wagner T. Interaction of Nanostructured Metal Overlayers with Oxide Surfaces. Surf. Sci. Rep. 2007, 62 (11), 431–498. 10.1016/j.surfrep.2007.07.001. DOI
Lykhach Y.; Kozlov S. M.; Skála T.; Tovt A.; Stetsovych V.; Tsud N.; Dvořák F.; Johánek V.; Neitzel A.; Mysliveček J.; Fabris S.; Matolín V.; Neyman K. M.; Libuda J. Counting Electrons on Supported Nanoparticles. Nat. Mater. 2016, 15 (3), 284–288. 10.1038/nmat4500. PubMed DOI
Vayssilov G. N.; Lykhach Y.; Migani A.; Staudt T.; Petrova G. P.; Tsud N.; Skála T.; Bruix A.; Illas F.; Prince K. C.; Matolín V.; Neyman K. M.; Libuda J. Support Nanostructure Boosts Oxygen Transfer to Catalytically Active Platinum Nanoparticles. Nat. Mater. 2011, 10 (4), 310–315. 10.1038/nmat2976. PubMed DOI
Kepp K. P. A Quantitative Scale of Oxophilicity and Thiophilicity. Inorg. Chem. 2016, 55 (18), 9461–9470. 10.1021/acs.inorgchem.6b01702. PubMed DOI
Saito M.; Roberts C. A.; Ling C. DFT+U Study of the Adsorption and Oxidation of an Iron Oxide Cluster on CeO2 Support. J. Phys. Chem. C 2015, 119 (30), 17202–17208. 10.1021/acs.jpcc.5b04569. DOI
Duchoň T.; Dvořák F.; Aulická M.; Stetsovych V.; Vorokhta M.; Mazur D.; Veltruská K.; Skála T.; Mysliveček J.; Matolínová I.; Matolín V. Ordered Phases of Reduced Ceria As Epitaxial Films on Cu(111). J. Phys. Chem. C 2014, 118 (1), 357–365. 10.1021/jp409220p. DOI
Skála T.; Tsud N.; Prince K. C.; Matolín V. Interaction of Tungsten with CeO2 (111) Layers as a Function of Temperature: A Photoelectron Spectroscopy Study. J. Phys.: Condens. Matter 2011, 23 (21), 215001.10.1088/0953-8984/23/21/215001. PubMed DOI
Ritter M.; Ranke W.; Weiss W. Growth and Structure of Ultrathin FeO Films on Pt(111) Studied by STM and LEED. Phys. Rev. B 1998, 57 (12), 7240–7251. 10.1103/PhysRevB.57.7240. DOI
Matvija P.; Sobotík P.; Ošt́ádal I.; Kocán P. Diverse Growth of Mn, In and Sn Islands on Thallium-Passivated Si(111) Surface. Appl. Surf. Sci. 2015, 331, 339–345. 10.1016/j.apsusc.2015.01.067. DOI
Ketteler G.; Ranke W. Heteroepitaxial Growth and Nucleation of Iron Oxide Films on Ru(0001). J. Phys. Chem. B 2003, 107 (18), 4320–4333. 10.1021/jp027265f. DOI
Ossowski T.; Wang Y.; Carraro G.; Kiejna A.; Lewandowski M. Structure of Mono- and Bilayer FeO on Ru(0001): STM and DFT Study. J. Magn. Magn. Mater. 2022, 546, 168832.10.1016/j.jmmm.2021.168832. DOI
Hermann K. Periodic Overlayers and Moiré Patterns: Theoretical Studies of Geometric Properties. J. Phys.: condens. Matter 2012, 24 (31), 314210.10.1088/0953-8984/24/31/314210. PubMed DOI
Yang S.; Gou J.; Cheng P.; Chen L.; Wu K. Precise Determination of Moiré Pattern in Monolayer FeO(111) Films on Au(111) by Scanning Tunneling Microscopy. Phys. Rev. Mater. 2020, 4 (7), 074004.10.1103/PhysRevMaterials.4.074004. DOI
Lustemberg P. G.; Palomino R. M.; Gutiérrez R. A.; Grinter D. C.; Vorokhta M.; Liu Z.; Ramírez P. J.; Matolín V.; Ganduglia-Pirovano M. V.; Senanayake S. D.; Rodriguez J. A. Direct Conversion of Methane to Methanol on Ni-Ceria Surfaces: Metal–Support Interactions and Water-Enabled Catalytic Conversion by Site Blocking. J. Am. Chem. Soc. 2018, 140 (24), 7681–7687. 10.1021/jacs.8b03809. PubMed DOI
Bruix A.; Rodriguez J. A.; Ramírez P. J.; Senanayake S. D.; Evans J.; Park J. B.; Stacchiola D.; Liu P.; Hrbek J.; Illas F. A New Type of Strong Metal–Support Interaction and the Production of H2 through the Transformation of Water on Pt/CeO2(111) and Pt/CeOx/TiO2(110) Catalysts. J. Am. Chem. Soc. 2012, 134 (21), 8968–8974. 10.1021/ja302070k. PubMed DOI
Mullins D. R. The Surface Chemistry of Cerium Oxide. Surf. Sci. Rep. 2015, 70 (1), 42–85. 10.1016/j.surfrep.2014.12.001. DOI
Bruix A.; Neyman K. M. Modeling Ceria-Based Nanomaterials for Catalysis and Related Applications. Catal. Lett. 2016, 146 (10), 2053–2080. 10.1007/s10562-016-1799-1. DOI
Lide D. R.CRC Handbook of Chemistry and Physics, 90 th ed.(CD-ROM Version 2010); CRC Press/Taylor and Francis: Boca Raton, FL, 2010.
Zhou J.; Du L.; Braedt D. L.; Miao J.; Senanayake S. D. G. Sintering, and Chemical States of Co Supported on Reducible CeO2(111) Thin Films: The Effects of the Metal Coverage and the Nature of the Support. J. Chem. Phys. 2021, 154 (4), 044704.10.1063/5.0036952. PubMed DOI
Zhou Y.; Zhou J. Interactions of Ni Nanoparticles with Reducible CeO2 (111) Thin Films. J. Phys. Chem. C 2012, 116 (17), 9544–9549. 10.1021/jp300259y. DOI
Šutara F.; Cabala M.; Sedláček L.; Skála T.; Škoda M.; Matolín V.; Prince K. C.; Cháb V. Epitaxial Growth of Continuous CeO2(111) Ultra-Thin Films on Cu(111). Thin Solid Films 2008, 516 (18), 6120–6124. 10.1016/j.tsf.2007.11.013. DOI
Chambers S. A. Epitaxial Growth and Properties of Thin Film Oxides. Surf. Sci. Rep. 2000, 39 (5–6), 105–180. 10.1016/S0167-5729(00)00005-4. DOI
Zhang S.; Li K.; Ma Y.; Bu Y.; Liang Z.; Yang Z.; Zhang J. The Adsorption Mechanism of Hydrogen on FeO Crystal Surfaces: A Density Functional Theory Study. Nanomaterials 2023, 13 (14), 2051.10.3390/nano13142051. PubMed DOI PMC
Kholtobina A. S.; Forslund A.; Ruban A. V.; Johansson B.; Skorodumova N. V. Temperature Dependence of (111) and (110) Ceria Surface Energy. Phys. Rev. B 2023, 107 (3), 035407.10.1103/PhysRevB.107.035407. DOI
Li Y.; Zhang Y.; Qian K.; Huang W. Metal–Support Interactions in Metal/Oxide Catalysts and Oxide–Metal Interactions in Oxide/Metal Inverse Catalysts. ACS Catal. 2022, 12 (2), 1268–1287. 10.1021/acscatal.1c04854. DOI
Weng X.; Zhang K.; Pan Q.; Martynova Y.; Shaikhutdinov S.; Freund H.-J. Support Effects on CO Oxidation on Metal-Supported Ultrathin FeO(1 1 1) Films. ChemCatchem 2017, 9 (4), 705–712. 10.1002/cctc.201601447. DOI
Merte L. R.; Bechstein R.; Peng G.; Rieboldt F.; Farberow C. A.; Zeuthen H.; Knudsen J.; Lægsgaard E.; Wendt S.; Mavrikakis M.; Besenbacher F. Water Clustering on Nanostructured Iron Oxide Films. Nat. Commun. 2014, 5 (1), 4193.10.1038/ncomms5193. PubMed DOI
Luo X.; Sun X.; Yi Z.; Lin L.; Ning Y.; Fu Q.; Bao X. Periodic Arrays of Metal Nanoclusters on Ultrathin Fe-Oxide Films Modulated by Metal-Oxide Interactions. JACS Au 2023, 3 (1), 176–184. 10.1021/jacsau.2c00580. PubMed DOI PMC