Interaction of cisplatin in activated diaqua-form with His-Met dipeptide is explored using DFT approach with PCM model. First the conformation space of the dipeptide is explored to find the most stable structure (labeled 0683). Several functionals with double-zeta basis set are used for optimization and obtained order of conformers is confirmed by the CCSD(T) single-point calculations. Supermolecular model is used to determine reaction coordinate for the replacement of aqua ligands consequently by N-site of histidine and S-site of methionine and reversely. Despite the monoadduct of Pt-S(Met) is thermodynamically less stable this reaction passes substantially faster (by several orders of magnitude) than coordination of cisplatin to histidine. The consequent chelate formation occurs relatively fast with energy release up to 12 kcal mol-1.
The valorization of lignins as renewable aromatic feedstock is of utmost importance in terms of the use of sustainable resources. This study provides a deductive approach towards market-oriented lignin-derived antioxidants by ascertaining the direct effect of different structural features of lignin on the reactivity of its phenolic OH groups in the radical scavenging reactions. The antioxidant activity of a series of compounds, modeling lignin structural units, was experimentally characterized and rationalized, using thermodynamic descriptors. The calculated O-H bond dissociation enthalpies (BDE) of characteristic lignin subunits were used to predict the modification pathways of technical lignins. The last ones were isolated by soda delignification from different biomass sources and their oligomeric fractions were studied as a raw material for modification and production of optimized antioxidants. These were characterized in terms of chemical structure, molecular weight distribution, content of the functional groups, and the antioxidant activity. The developed approach for the targeted modification of lignins allowed the products competitive with two commercial synthetic phenolic antioxidants in both free radical scavenging and stabilization of thermooxidative destruction of polyurethane films.
- MeSH
- antioxidancia chemická syntéza MeSH
- dimerizace MeSH
- elektrony MeSH
- kinetika MeSH
- lignin chemie MeSH
- polyfenoly chemie MeSH
- polyurethany chemie MeSH
- protonová magnetická rezonanční spektroskopie MeSH
- spektroskopie infračervená s Fourierovou transformací MeSH
- teoretické modely * MeSH
- teorie funkcionálu hustoty * MeSH
- teplota MeSH
- vodík chemie MeSH
- Publikační typ
- časopisecké články MeSH
We designed 0D, 1D, and 2D supramolecular assemblies made of diaryliodonium salts (functioning as double σ-hole donors) and carboxylates (as σ-hole acceptors). The association was based on two charge-supported halogen bonds (XB), which occurred between IIII sites of the iodonium cations and the carboxylate anions. The sequential introduction of the carboxylic groups in the aryl ring of the benzoic acid added a dimension to the 0D supramolecular organization of the benzoate, which furnished 1D-chained and 2D-layered structures when terephthalate and trimesate anions, correspondingly, were applied as XB acceptors. The structure-directing XB were studied using DFT calculations under periodic boundary conditions and were followed by the one-electron-potential analysis and the Bader atoms-in-molecules topological analysis of electron density. These theoretical methods confirmed the existence of the XB and verified the philicities of the interaction partners in the designed solid-state structures.
The compounds 7-chloro-9-(2-hydroxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)-3,3-dimethyl-2,3,4,9-tetrahydro-1H-xanthen-1-one (5) and 5-[-7-chloro-2,4-dioxo-1H, 2H, 3H, 4H, 5H-chromeno[2,3-d]pyrimidin-5-yl)]-1,3-diazinane-2,4,6-trione (7), were synthesized from dimedone and barbituric acid and had their three-dimensional structures and precise chemical shifts assignments obtained by Nuclear Magnetic Resonance (NMR) from 1H, 13C, APT, COSY, HSQC, and HMBC spectra. Additional HOMO-LUMO DFT calculations corroborated the NMR results and pointed to the most stable stereoisomers of each compound. Besides, further docking and molecular dynamic studies suggest that the stereoisomers (9S)-7-chloro-9-(2-hydroxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)-3,3-dimethyl-2,3,4,9-tetrahydro-1H-xanthen-1-one, and 5-[(5S)-7-chloro-2,4-dioxo-1H, 2H, 3H, 4H, 5H-chromeno[2,3-d]pyrimidin-5-yl)]-1,3-diazinane-2,4,6-trione of these compounds may act as DNA intercalators and qualify as potential leads for the development of new anticancer drugs.Communicated by Ramaswamy H. Sarma.
Oxidative stress can lead to various derivatives of the tyrosine residue in peptides and proteins. A typical product is 3-nitro-L-tyrosine residue (Nit), which can affect protein behavior during neurodegenerative processes, such as those associated with Alzheimer's and Parkinson's diseases. Surface enhanced Raman spectroscopy (SERS) is a technique with potential for detecting peptides and their metabolic products at very low concentrations. To explore the applicability to Nit, we use SERS to monitor tyrosine nitration in Met-Enkephalin, rev-Prion protein, and α-synuclein models. Useful nitration indicators were the intensity ratio of two tyrosine marker bands at 825 and 870 cm-1 and a bending vibration of the nitro group. During the SERS measurement, a conversion of nitrotyrosine to azobenzene containing peptides was observed. The interpretation of the spectra has been based on density functional theory (DFT) simulations. The CAM-B3LYP and ωB97XD functionals were found to be most suitable for modeling the measured data. The secondary structure of the α-synuclein models was monitored by electronic and vibrational circular dichroism (ECD and VCD) spectroscopies and modeled by molecular dynamics (MD) simulations. The results suggest that the nitration in these peptides has a limited effect on the secondary structure, but may trigger their aggregation.
- MeSH
- azosloučeniny chemie MeSH
- cirkulární dichroismus MeSH
- peptidy chemická syntéza chemie MeSH
- Ramanova spektroskopie metody MeSH
- sekundární struktura proteinů MeSH
- simulace molekulární dynamiky MeSH
- teorie funkcionálu hustoty MeSH
- tyrosin analogy a deriváty analýza MeSH
- Publikační typ
- časopisecké články MeSH
Interactions of hydrated cisplatin complexes with sulphur-containing amino acids cysteine and methionine were explored. The square-planar cis-[Pt(NH3)2(H2O)X]+ complexes (where X=Cl- and OH-) were chosen as mono- and dihydrated reactants. Calculations using density functional theory (DFT) techniques with B3LYP functional were performed. The isolated molecules and the supermolecular approaches were employed for the determination of the reaction energies. Bond dissociation energies (BDE) were estimated in the model of isolated molecules and supermolecules were used for the determination of the association energies between the two interacting parts. Formation of monodentate complexes by replacing the aqua-ligand with the S, N, and O-sites of both amino acids represents an exothermic process. The highest BDE was found in cysteine structures for the Pt-S coordination. The bonding energy is about 114 kcal/mol, which is comparable with cisplatin-guanine adducts. Analogous BDE for methionine complexes is smaller by about 40 kcal/mol. This correlates well with the known fact that cysteine forms irreversible cisplatin adducts while similar adducts in the methionine case are reversible. The formation of chelate structures is an exothermic reaction only for the hydroxo-form of reactants in the supermolecular approach where additional association interactions between the released water and chelate molecules sufficiently stabilize the final product.
- MeSH
- biochemie metody MeSH
- cisplatina chemie metabolismus MeSH
- cystein chemie metabolismus MeSH
- financování organizované MeSH
- methionin chemie metabolismus MeSH
- platina chemie metabolismus MeSH
- statická elektřina MeSH
- sulfan metabolismus MeSH
- termodynamika MeSH
- výpočetní biologie MeSH
- Publikační typ
- srovnávací studie MeSH
A long-term exposition of antibiotics represents a serious problem for the environment, especially for human health. Heterogeneous photocatalysis opens a green way for their removal. Here, we correlated the structural-textural properties of TiO2 photocatalysts with their photocatalytic performance in ampicillin abatement. The tested nanoparticles included anatase and rutile and their defined mixtures. The nominal size range varied from 5 to 800 nm, Aeroxide P25 serving as an industrial benchmark reference. The degradation mechanism of photocatalytic ampicillin abatement was studied by employing both experimental (UPLC/MS/MS, hydroxyl radical scavenger) and theoretical (quantum calculations) approaches. Photocatalytic activity increased with the increasing particle size, generally, anatase being more active than rutile. Interestingly, in the dark, the ampicillin concentration decreased as well, especially in the presence of very small nanoparticles. Even if the photolysis of ampicillin was negligible, a very high degree of mineralization of antibiotic was achieved photocatalytically using the smallest nanoparticles of both allotropes and their mixtures. Furthermore, for anatase samples, the reaction rate constant increases with increasing crystallite size, while the degree of mineralization decreases. Importantly, the suggested degradation pathway mechanism determined by DFT modeling was in very good agreement with experimentally detected reaction products.
- Publikační typ
- časopisecké články MeSH
To find and calibrate a robust and reliable computational protocol for mapping conformational space of medium-sized molecules, exhaustive conformational sampling has been carried out for a series of seven macrocyclic compounds of varying ring size and one acyclic analogue. While five of them were taken from the MD/LLMOD/force field study by Shelley and co-workers ( Watts , K. S. ; Dalal , P. ; Tebben , A. J. ; Cheney , D. L. ; Shelley , J. C. Macrocycle Conformational Sampling with MacroModel . J. Chem. Inf. MODEL: 2014 , 54 , 2680 - 2696 ), three represent potential macrocyclic inhibitors of human cyclophilin A. The free energy values (GDFT/COSMO-RS) for all of the conformers of each compound were obtained by a composite protocol based on in vacuo quantum mechanics (DFT-D3 method in a large basis set), standard gas-phase thermodynamics, and the COSMO-RS solvation model. The GDFT/COSMO-RS values were used as the reference for evaluating the performance of conformational sampling algorithms: standard and extended MD/LLMOD search (simulated-annealing molecular dynamics with low-lying eigenvector following algorithms, employing the OPLS2005 force field plus GBSA solvation) available in MacroModel and plain molecular dynamics (MD) sampling at high temperature (1000 K) using the semiempirical quantum mechanics (SQM) potential SQM(PM6-D3H4/COSMO) followed by energy minimization of the snapshots. It has been shown that the former protocol (MD/LLMOD) may provide a more complete set of initial structures that ultimately leads to the identification of a greater number of low-energy conformers (as assessed by GDFT/COSMO-RS) than the latter (i.e., plain SQM MD). The CPU time needed to fully evaluate one medium-sized compound (∼100 atoms, typically resulting in several hundred or a few thousand conformers generated and treated quantum-mechanically) is approximately 1,000-100,000 CPU hours on today's computers, which transforms to 1-7 days on a small-sized computer cluster with a few hundred CPUs. Finally, our data sets based on the rigorous quantum-chemical approach allow us to formulate a composite conformational sampling protocol with multiple checkpoints and truncation of redundant structural data that offers superior insights at affordable computational cost.
- MeSH
- algoritmy MeSH
- kalibrace MeSH
- krystalografie MeSH
- kvantová teorie MeSH
- makrocyklické sloučeniny chemie MeSH
- molekulární konformace * MeSH
- rychlé screeningové testy MeSH
- simulace molekulární dynamiky MeSH
- termodynamika MeSH
- vysoká teplota MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH