Metal-Support Interaction and Charge Distribution in Ceria-Supported Au Particles Exposed to CO

. 2022 Sep 13 ; 34 (17) : 7916-7936. [epub] 20220823

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36117879

Understanding how reaction conditions affect metal-support interactions in catalytic materials is one of the most challenging tasks in heterogeneous catalysis research. Metal nanoparticles and their supports often undergo changes in structure and oxidation state when exposed to reactants, hindering a straightforward understanding of the structure-activity relations using only ex situ or ultrahigh vacuum techniques. Overcoming these limitations, we explored the metal-support interaction between gold nanoparticles and ceria supports in ultrahigh vacuum and after exposure to CO. A combination of in situ methods (on powder and model Au/CeO2 samples) and theoretical calculations was applied to investigate the gold/ceria interface and its reactivity toward CO exposure. X-ray photoelectron spectroscopy measurements rationalized by first-principles calculations reveal a distinctly inhomogeneous charge distribution, with Au+ atoms in contact with the ceria substrate and neutral Au0 atoms at the surface of the Au nanoparticles. Exposure to CO partially reduces the ceria substrate, leading to electron transfer to the supported Au nanoparticles. Transferred electrons can delocalize among the neutral Au atoms of the particle or contribute to forming inert Auδ- atoms near oxygen vacancies at the ceria surface. This charge redistribution is consistent with the evolution of the vibrational frequencies of CO adsorbed on Au particles obtained using diffuse reflectance infrared Fourier transform spectroscopy.

Zobrazit více v PubMed

Trovarelli A.; Llorca J. Ceria Catalysts at Nanoscale: How Do Crystal Shapes Shape Catalysis ?. ACS Catal. 2017, 7, 4716–4735. 10.1021/acscatal.7b01246. DOI

Grunwaldt J. D.; Kiener C.; Wögerbauer C.; Baiker A. Preparation of Supported Gold Catalysts for Low-Temperature CO Oxidation via “Size-Controlled” Gold Colloids. J. Catal. 1999, 181 (2), 223–232. 10.1006/jcat.1998.2298. DOI

Lopez N.; Janssens T. V. W.; Clausen B. S.; Xu Y.; Mavrikakis M.; Bligaard T.; Nørskov J. K. On the Origin of the Catalytic Activity of Gold Nanoparticles for Low-Temperature CO Oxidation. J. Catal. 2004, 223 (1), 232–235. 10.1016/j.jcat.2004.01.001. DOI

Lopez N.; Nørskov J. K. Catalytic CO Oxidation by a Gold Nanoparticle: A Density Functional Study. J. Am. Chem. Soc. 2002, 124 (38), 11262–11263. 10.1021/ja026998a. PubMed DOI

Remediakis I. N.; Lopez N.; Nørskov J. K. CO Oxidation on Rutile-Supported Au Nanoparticles. Angew. Chemie - Int. Ed. 2005, 44 (12), 1824–1826. 10.1002/anie.200461699. PubMed DOI

Bond G. C; Thompson D. T Gold-Catalysed Oxidation of Carbon Monoxide. Gold Bull. 2000, 33 (2), 41–50. 10.1007/BF03216579. DOI

Lohrenscheit M.; Hess C. Direct Evidence for the Participation of Oxygen Vacancies in the Oxidation of Carbon Monoxide over Ceria-Supported Gold Catalysts by Using Operando Raman Spectroscopy. ChemCatChem. 2016, 8 (3), 523–526. 10.1002/cctc.201501129. DOI

Rodriguez J. A.; Wang X.; Liu P.; Wen W.; Hanson J. C.; Hrbek J.; Pérez M.; Evans J. Gold Nanoparticles on Ceria: Importance of O Vacancies in the Activation of Gold. Top. Catal. 2007, 44 (1–2), 73–81. 10.1007/s11244-007-0280-1. DOI

Zhang X.; Duan D.; Li G.; Feng W.; Yang S.; Sun Z. Monolithic Au/CeO PubMed DOI

Chen S.; Li S.; You R.; Guo Z.; Wang F.; Li G.; Yuan W.; Zhu B.; Gao Y.; Zhang Z.; et al. Elucidation of Active Sites for CH DOI

Wang C.; Gu X. K.; Yan H.; Lin Y.; Li J.; Liu D.; Li W. X.; Lu J. Water-Mediated Mars-Van Krevelen Mechanism for CO Oxidation on Ceria-Supported Single-Atom Pt DOI

Duan Z.; Henkelman G. CO Oxidation at the Au/TiO DOI

Liu B.; Zhao Z.; Henkelman G.; Song W. Computational Design of a CeO DOI

Camellone M. F.; Fabris S. Reaction Mechanisms for the CO Oxidation on Au/CeO PubMed DOI

Widmann D.; Behm R. J. Activation of Molecular Oxygen and the Nature of the Active Oxygen Species for CO Oxidation on Oxide Supported Au Catalysts. Acc. Chem. Res. 2014, 47 (3), 740–749. 10.1021/ar400203e. PubMed DOI

Lawrence N. J.; Brewer J. R.; Wang L.; Wu T. S.; Wells-Kingsbury J.; Ihrig M. M.; Wang G.; Soo Y. L.; Mei W. N.; Cheung C. L. Defect Engineering in Cubic Cerium Oxide Nanostructures for Catalytic Oxidation. Nano Lett. 2011, 11 (7), 2666–2671. 10.1021/nl200722z. PubMed DOI

Castanet U.; Feral-Martin C.; Demourgues A.; Neale R. L.; Sayle D. C.; Caddeo F.; Flitcroft J. M.; Caygill R.; Pointon B. J.; Molinari M.; et al. Controlling the {111}/{110} Surface Ratio of Cuboidal Ceria Nanoparticles. ACS Appl. Mater. Interfaces 2019, 11 (12), 11384–11390. 10.1021/acsami.8b21667. PubMed DOI

Kim H. Y.; Lee H. M.; Henkelman G. CO Oxidation Mechanism of CeO PubMed DOI

Ha H.; Yoon S.; An K.; Kim H. Y. Catalytic CO Oxidation over Au Nanoparticles Supported on CeO DOI

Wang Y. G.; Mei D.; Glezakou V. A.; Li J.; Rousseau R. Dynamic Formation of Single-Atom Catalytic Active Sites on Ceria-Supported Gold Nanoparticles. Nat. Commun. 2015, 6, 6511. 10.1038/ncomms7511. PubMed DOI PMC

López-Haro M.; Yoshida K.; Del Río E.; Pérez-Omil J. A.; Boyes E. D.; Trasobares S.; Zuo J. M.; Gai P. L.; Calvino J. J. Strain Field in Ultrasmall Gold Nanoparticles Supported on Cerium-Based Mixed Oxides. Key Influence of the Support Redox State. Langmuir 2016, 32 (17), 4313–4322. 10.1021/acs.langmuir.6b00758. PubMed DOI

López-Haro M.; Cíes J. M.; Trasobares S.; Pérez-Omil J. A.; Delgado J. J.; Bernal S.; Bayle-Guillemaud P.; Stéphan O.; Yoshida K.; Boyes E. D.; et al. Imaging Nanostructural Modifications Induced by Electronic Metal-Support Interaction Effects at Au||cerium-Based Oxide Nanointerfaces. ACS Nano 2012, 6 (8), 6812–6820. 10.1021/nn301557u. PubMed DOI

Walsh M. J.; Yoshida K.; Kuwabara A.; Pay M. L.; Gai P. L.; Boyes E. D. On the Structural Origin of the Catalytic Properties of Inherently Strained Ultrasmall Decahedral Gold Nanoparticles. Nano Lett. 2012, 12 (4), 2027–2031. 10.1021/nl300067q. PubMed DOI

Klyushin A. Y.; Jones T. E.; Lunkenbein T.; Kube P.; Li X.; Hävecker M.; Knop-Gericke A.; Schlögl R. Strong Metal Support Interaction as a Key Factor of Au Activation in CO Oxidation. ChemCatChem. 2018, 10 (18), 3985–3989. 10.1002/cctc.201800972. DOI

Delannoy L.; Weiher N.; Tsapatsaris N.; Beesley A. M.; Nchari L.; Schroeder S. L. M.; Louis C. Reducibility of Supported Gold (III) Precursors: Influence of the Metal Oxide Support and Consequences for CO Oxidation Activity. Top. Catal. 2007, 44 (1–2), 263–273. 10.1007/s11244-007-0299-3. DOI

Guo L. W.; Du P. P.; Fu X. P.; Ma C.; Zeng J.; Si R.; Huang Y. Y.; Jia C. J.; Zhang Y. W.; Yan C. H. Contributions of Distinct Gold Species to Catalytic Reactivity for Carbon Monoxide Oxidation. Nat. Commun. 2016, 7, 1–8. 10.1038/ncomms13481. PubMed DOI PMC

Costello C. K.; Kung M. C.; Oh H.; Wang Y.; Kung H. H. Nature of the Active Site for CO Oxidation on Highly Active Au/γ-Al DOI

Guzman J.; Gates B. C. Catalysis by Supported Gold: Correlation between Catalytic Activity for CO Oxidation and Oxidation States of Gold. J. Am. Chem. Soc. 2004, 126 (9), 2672–2673. 10.1021/ja039426e. PubMed DOI

Shi H.; Stampfl C. First-Principles Investigations of the Structure and Stability of Oxygen Adsorption and Surface Oxide Formation at Au (111). Phys. Rev. B 2007, 76, 075327. 10.1103/PhysRevB.76.075327. DOI

Green I. X.; Tang W.; McEntee M.; Neurock M.; Yates J. T. Inhibition at Perimeter Sites of Au/TiO PubMed DOI

Zhang C.; Michaelides A.; King D. A.; Jenkins S. J. Positive Charge States and Possible Polymorphism of Gold Nanoclusters on Reduced Ceria. J. Am. Chem. Soc. 2010, 132 (7), 2175–2182. 10.1021/ja906687f. PubMed DOI

Engel J.; Schwartz E.; Catlow C. R. A.; Roldan A. The Influence of Oxygen Vacancy and Ce DOI

Fernández-García S.; Collins S. E.; Tinoco M.; Hungría A. B.; Calvino J. J.; Cauqui M. A.; Chen X. Influence of {111} Nanofaceting on the Dynamics of CO Adsorption and Oxidation over Au Supported on CeO DOI

Del Río E.; Collins S. E.; Aguirre A.; Chen X.; Delgado J. J.; Calvino J. J.; Bernal S. Reversible Deactivation of a Au/Ce DOI

Chang M. W.; Sheu W. S. The Charge States of Au on Gold-Substituted Ce PubMed DOI

Aleksandrov H. A.; Neyman K. M.; Hadjiivanov K. I.; Vayssilov G. N. Can the State of Platinum Species Be Unambiguously Determined by the Stretching Frequency of an Adsorbed CO Probe Molecule?. Phys. Chem. Chem. Phys. 2016, 18 (32), 22108–22121. 10.1039/C6CP03988J. PubMed DOI

Bezkrovnyi O. S.; Blaumeiser D.; Vorokhta M.; Kraszkiewicz P.; Pawlyta M.; Bauer T.; Libuda J.; Kepinski L. NAP-XPS and in Situ DRIFTS of the Interaction of CO with Au Nanoparticles Supported by Ce DOI

Centeno M.; Ramirez Reina T.; Ivanova S.; Laguna O.; Odriozola J. Au/CeO2 Catalysts: Structure and CO Oxidation Activity. Catalysts 2016, 6, 158. 10.3390/catal6100158. DOI

Glaspell G.; Fuoco L.; El-Shall M. S. Microwave Synthesis of Supported Au and Pd Nanoparticle Catalysts for CO Oxidation. J. Phys. Chem. B 2005, 109, 17350–17355. 10.1021/jp0526849. PubMed DOI

Baron M.; Bondarchuk O.; Stacchiola D.; Shaikhutdinov S.; Freund H. J. Interaction of Gold with Cerium Oxide Supports: CeO DOI

Šutara F.; Cabala M.; Sedláček L.; Skála T.; Škoda M.; Matolín V.; Prince K. C.; Cháb V. Epitaxial Growth of Continuous CeO DOI

Inoue T.; Ohtake H.; Otani J.-i.; Shida S. Optimization of Growth Parameters in Electron Beam Induced Orientation Selective Epitaxy of CeO DOI

Matolín V.; Cabala M.; Matolínova I.; Skoda M.; Libra J.; Vaclavu M.; Prince K. C.; Skala T.; Yoshikawa H.; Yamashita Y.; Ueda S.; Kobayashi K. Au DOI

Bezkrovnyi O. S.; Kraszkiewicz P.; Mista W.; Kepinski L. The Sintering of Au Nanoparticles on Flat {100}, {111} and Zigzagged {111}-Nanofacetted Structures of Ceria and Its Influence on Catalytic Activity in CO Oxidation and CO PROX. Catal. Lett. 2021, 151 (4), 1080–1090. 10.1007/s10562-020-03370-1. DOI

Wozniak P.; Kraszkiewicz P.; Małecka M.łg. A. Divergent Influence of {111} vs. {100} Crystal Planes and Yb DOI

Mullins D. R.; Radulovic P. V.; Overbury S. H. Ordered Cerium Oxide Thin Films Grown on Ru(0001) and Ni(111). Surf. Sci. 1999, 429, 186–198. 10.1016/S0039-6028(99)00369-6. DOI

Lu J.-L.; Gao H.-J.; Shaikhutdinov S.; Freund H.-J. Morphology and Defect Structure of the CeO DOI

Dvořák F.; Stetsovych O.; Steger M.; Cherradi E.; Matolínová I.; Tsud N.; Škoda M.; Skála T.; Mysliveček J.; Matolín V. Adjusting Morphology and Surface Reduction of CeO DOI

Xu T.; Schwarz M.; Werner K.; Mohr S.; Amende M.; Libuda J. The Surface Structure Matters: Thermal Stability of Phthalic Acid Anchored to Atomically-Defined Cobalt Oxide Films. Phys. Chem. Chem. Phys. 2016, 18 (15), 10419–10427. 10.1039/C6CP00296J. PubMed DOI

Bauer T.; Maisel S.; Blaumeiser D.; Vecchietti J.; Taccardi N.; Wasserscheid P.; Bonivardi A.; Görling A.; Libuda J. Operando DRIFTS and DFT Study of Propane Dehydrogenation over Solid- and Liquid-Supported Ga PubMed DOI PMC

Blaumeiser D.; Stepić R.; Wolf P.; Wick C. R.; Haumann M.; Wasserscheid P.; Smith D. M.; Smith A. S.; Bauer T.; Libuda J. Cu Carbonyls Enhance the Performance of Ru-Based SILP Water-Gas Shift Catalysts: A Combined: In Situ DRIFTS and DFT Study. Catal. Sci. Technol. 2020, 10 (1), 252–262. 10.1039/C9CY01852B. DOI

Lykhach Y.; Skála T.; Neitzel A.; Tsud N.; Beranová K.; Prince K. C.; Matolín V.; Libuda J. Nanoscale Architecture of Ceria-Based Model Catalysts: Pt-Co Nanostructures on Well-Ordered CeO DOI

Dvořák F.; Szabová L.; Johánek V.; Farnesi Camellone M.; Stetsovych V.; Vorokhta M.; Tovt A.; Skála T.; Matolínová I.; Tateyama Y.; et al. Bulk Hydroxylation and Effective Water Splitting by Highly Reduced Cerium Oxide: The Role of O Vacancy Coordination. ACS Catal. 2018, 8 (5), 4354–4363. 10.1021/acscatal.7b04409. DOI

Paparazzo E.; Ingo G. M.; Zacchetti N. X-ray Induced Reduction Effects at CeO DOI

Kresse G.; Furthmuller J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B 1996, 54 (16), 11169–11184. 10.1103/PhysRevB.54.11169. PubMed DOI

Kresse G.; Hafner J. Ab Initio Molecular Dynamics for Liquid Metals. Phys. Rev. B 1993, 47 (1), 558–561. 10.1103/PhysRevB.47.558. PubMed DOI

Perdew J. P.; Chevary J. A.; Vosko S. H.; Jackson K. A.; Pederson M. R.; Singh D. J.; Fiolhais C. Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation. Phys. Rev. B 1992, 46 (11), 6671–6687. 10.1103/PhysRevB.46.6671. PubMed DOI

Bruix A.; Lykhach Y.; Matolinova I.; Neitzel A.; Skala T.; Tsud N.; Vorokhta M.; Stetsovych V.; Sevcikova K.; Myslivecek J.; et al. Maximum Noble-Metal Efficiency in Catalytic Materials: Atomically Dispersed Surface Platinum. Angew. Chemie - Int. Ed. 2014, 53, 10525–10530. 10.1002/anie.201402342. PubMed DOI

Bruix A.; Rodriguez J. A.; Ramirez P. J.; Senanayake S. D.; Evans J.; Park J. B.; Stacchiola D.; Liu P.; Hrbek J.; Illas F. A New Type of Strong Metal-Support Interaction and the Production of H PubMed DOI

Vayssilov G. N.; Lykhach Y.; Migani A.; Staudt T.; Petrova G. P.; Tsud N.; Skála T.; Bruix A.; Illas F.; Prince K. C.; et al. Support Nanostructure Boosts Oxygen Transfer to Catalytically Active Platinum Nanoparticles. Nat. Mater. 2011, 10 (4), 310–315. 10.1038/nmat2976. PubMed DOI

Migani A.; Vayssilov G. N.; Bromley S. T.; Illas F.; Neyman K. M. Dramatic Reduction of the Oxygen Vacancy Formation Energy in Ceria Particles: A Possible Key to Their Remarkable Reactivity at the Nanoscale. J. Mater. Chem. 2010, 20 (46), 10535. 10.1039/c0jm01908a. DOI

Bruix A.; Neyman K. M. Modeling Ceria-Based Nanomaterials for Catalysis and Related Applications. Catal. Lett. 2016, 146 (10), 2053–2080. 10.1007/s10562-016-1799-1. DOI

Blöchl P. E. Projector Augmented-Wave Method. Phys. Rev. B 1994, 50 (24), 17953–17979. 10.1103/PhysRevB.50.17953. PubMed DOI

Aleksandrov H. A.; Neyman K. M.; Hadjiivanov K. I.; Vayssilov G. N. Can the State of Platinum Species Be Unambiguously Determined by the Stretching Frequency of an Adsorbed CO Probe Molecule?. Phys. Chem. Chem. Phys. 2016, 18 (32), 22108–22121. 10.1039/C6CP03988J. PubMed DOI

Janak J. F. F. Proof That ∂E/∂n DOI

Perdew J. P.; Levy M. Comment on ‘“Significance of the Highest Occupied Kohn-Sham Eigenvalue.”’. Phys. Rev. B 1997, 56 (24), 16021–16028. 10.1103/PhysRevB.56.16021. DOI

Ganduglia-Pirovano M. V.; Scheffler M.; Baraldi A.; Lizzit S.; Comelli G.; Paolucci G.; Rosei R. Oxygen-Induced Rh 3d DOI

Lizzit S.; Baraldi A.; Groso A.; Reuter K.; Ganduglia-Pirovano M. V.; Stampfl C.; Scheffler M.; Stichler M.; Keller C.; Wurth W.; et al. Surface Core-Level Shifts of Clean and Oxygen-Covered Ru(0001). Phys. Rev. B 2001, 63 (20), 205419. 10.1103/PhysRevB.63.205419. DOI

Köhler L.; Kresse G. Density Functional Study of CO on Rh(111). Phys. Rev. B 2004, 70 (16), 1–9. 10.1103/PhysRevB.70.165405. DOI

Kim H. Y.; Henkelman G. CO Oxidation at the Interface of Au Nanoclusters and the Stepped-CeO PubMed DOI

Bezkrovnyi O.; Kraszkiewicz P.; Krivtsov I.; Quesada J.; Ordonez S.; Kepinski L. Thermally Induced Sintering and Redispersion of Au Nanoparticles Supported on Ce DOI

Rodriguez J. A.; Si R.; Evans J.; Xu W.; Hanson J. C.; Tao J.; Zhu Y. Active Gold-Ceria and Gold-Ceria/Titania Catalysts for CO Oxidation: From Single-Crystal Model Catalysts to Powder Catalysts. Catal. Today 2015, 240 (PB), 229–235. 10.1016/j.cattod.2014.06.033. DOI

Bezkrovnyi O.S.; Kraszkiewicz P.; Ptak M.; Kepinski L. Thermally Induced Reconstruction of Ceria Nanocubes into Zigzag {111}- Nanofacetted Structures and Its Influence on Catalytic Activity in CO Oxidation. Catal. Commun. 2018, 117, 94–98. 10.1016/j.catcom.2018.08.005. DOI

Chen Y.; Chen Y.; Qiu C.; Chen C.; Wang Z. HAADF STEM Observation of the Au/CeO DOI

Ta N.; Liu J.; Chenna S.; Crozier P. A.; Li Y.; Chen A.; Shen W. Stabilized Gold Nanoparticles on Ceria Nanorods by Strong Interfacial Anchoring. J. Am. Chem. Soc. 2012, 134 (51), 20585–20588. 10.1021/ja310341j. PubMed DOI

Lu J.-L.; Gao H.-J.; Shaikhutdinov S.; Freund H.-J. Gold Supported on Well-Ordered Ceria Films: Nucleation, Growth and Morphology in CO Oxidation Reaction. Catal. Lett. 2007, 114 (1–2), 8–16. 10.1007/s10562-007-9039-3. DOI

Skála T.; Šutara F.; Škoda M.; Prince K. C.; Matolín V.; Sutara F.; Skoda M.; Prince K. C.; Matolín V. Palladium Interaction with CeO PubMed DOI

Deng W.; Carpenter C.; Yi N.; Flytzani-stephanopoulos M. Comparison of the Activity of Au/CeO DOI

Manzoli M.; Boccuzzi F.; Chiorino A.; Vindigni F.; Deng W.; Flytzani-Stephanopoulos M. Spectroscopic Features and Reactivity of CO Adsorbed on Different Au/CeO DOI

Gougis M.; Pereira A.; Ma D.; Mohamedi M. Simultaneous Deposition of Cerium Oxide and Gold Nanostructures-Characterization and Analytical Properties toward Glucose Electro-Oxidation and Sensing. RSC Adv. 2014, 4, 39955–39961. 10.1039/C4RA05374E. DOI

Klyushin A. Y.; Rocha T. C. R.; Hävecker M.; Knop-Gericke A.; Schlögl R. A near Ambient Pressure XPS Study of Au Oxidation. Phys. Chem. Chem. Phys. 2014, 16 (17), 7881–7886. 10.1039/c4cp00308j. PubMed DOI

Zhang C.; Michaelides A.; Jenkins S. J. Theory of Gold on Ceria. Phys. Chem. Chem. Phys. 2011, 13 (1), 22–33. 10.1039/C0CP01123A. PubMed DOI

Bader R.Atoms in Molecules: A Quantum Theory; Oxford University Press, 1994.

Kozlov S. M.; Neyman K. M. Effects of Electron Transfer in Model Catalysts Composed of Pt. J. Catal. 2016, 344, 507–514. 10.1016/j.jcat.2016.10.014. DOI

Lykhach Y.; Kozlov S. M.; Skála T.; Tovt A.; Stetsovych V.; Tsud N.; Dvořák F.; Johánek V.; Neitzel A.; Mysliveček J.; et al. Counting Electrons on Supported Nanoparticles. Nat. Mater. 2016, 15 (3), 284–288. 10.1038/nmat4500. PubMed DOI

Daelman N.; Capdevila-Cortada M.; López N. Dynamic Charge and Oxidation State of Pt/CeO PubMed DOI

Abdel-Mageed A. M.; Klyushin A.; Rezvani A.; Knop-Gericke A.; Schlögl R.; Behm R. J. Negative Charging of Au Nanoparticles during Methanol Synthesis from CO PubMed DOI

Liu N.; Xu M.; Yang Y.; Zhang S.; Zhang J.; Wang W.; Zheng L.; Hong S.; Wei M. Au DOI

Bruix A.; Migani A.; Vayssilov G. N.; Neyman K. M.; Libuda J.; Illas F. Effects of Deposited Pt Particles on the Reducibility of CeO PubMed DOI

Uchiyama T.; Yoshida H.; Kuwauchi Y.; Ichikawa S.; Shimada S.; Haruta M.; Takeda S. Systematic Morphology Changes of Gold Nanoparticles Supported on CeO PubMed DOI

Tovt A.; Bagolini L.; Dvorak F.; Tran N.-D.; Vorokhta M.; Beranova K.; Johanek V.; Farnesi Camellone M.; Skala T.; Matolinova I.; et al. Ultimate Dispersion of Metallic and Ionic Platinum on Ceria. J. Mater. Chem. A 2019, 7 (21), 13019–13028. 10.1039/c9ta00823c. DOI

Bezkrovnyi O.; Małecka M. A.; Lisiecki R.; Ostroushko V.; Thomas A. G.; Gorantla S.; Kepinski L. The Effect of Eu Doping on the Growth, Structure and Red-Ox Activity of Ceria Nanocubes. CrystEngComm 2018, 20 (12), 1698–1704. 10.1039/C8CE00155C. DOI

Roldán A.; González S.; Ricart J. M.; Illas F. Critical Size for O PubMed DOI

Liu J. X.; Filot I. A. W.; Su Y.; Zijlstra B.; Hensen E. J. M. Optimum Particle Size for Gold-Catalyzed CO Oxidation. J. Phys. Chem. C 2018, 122 (15), 8327–8340. 10.1021/acs.jpcc.7b12711. PubMed DOI PMC

Ta N.; Liu J. J.; Shen W. Tuning the Shape of Ceria Nanomaterials for Catalytic Applications. Cuihua Xuebao/Chin. J. Catal. 2013, 34 (5), 838–850. 10.1016/S1872-2067(12)60573-7. DOI

Chen M.; Goodman D. W. Catalytically Active Gold: From Nanoparticles to Ultrathin Films. Acc. Chem. Res. 2006, 39 (10), 739–746. 10.1021/ar040309d. PubMed DOI

Green I. X.; Tang W.; Neurock M.; Yates J. T.; et al. Spectroscopic Observation of Dual Catalytic Sites During Oxidation of CO on a Au/TiO PubMed DOI

Kolasinski K. W.Surface Science: Foundations of Catalysis and Nanoscience; Wiley, 2019.

Mavrikakis M.; Stoltze P.; Nørskov J. K. Making Gold Less Noble. Catal. Lett. 2000, 64, 101–106. 10.1023/A:1019028229377. DOI

Shaikhutdinov S. K.; Meyer R.; Naschitzki M.; Baumer M.; Freund H.-J. Size and Support Effects for CO Adsorption on Gold Model Catalysts. Catal. Lett. 2003, 86 (4), 211–219. 10.1023/A:1022616102162. DOI

Feldt C. D.; Moreira R.; Meyer E.; Clawin P.; Riedel W.; Risse T.; Moskaleva L.; Dononelli W.; Klüner T. CO Adsorption on Au(332): Combined Infrared Spectroscopy and Density Functional Theory Study. J. Phys. Chem. C 2019, 123 (13), 8187–8197. 10.1021/acs.jpcc.8b08406. DOI

Loffreda D.; Simon D.; Sautet P. Dependence of Stretching Frequency on Surface Coverage and Adsorbate-Adsorbate Interactions: A Density-Functional Theory Approach of CO on Pd (111). Surf. Sci. 1999, 425 (1), 68–80. 10.1016/S0039-6028(99)00186-7. DOI

Collins S. E.; Cíes J. M.; Del Río E.; López-Haro M.; Trasobares S.; Calvino J. J.; Pintado J. M.; Bernal S. Hydrogen Interaction with a Ceria-Zirconia Supported Gold Catalyst Influence of CO Co-Adsorption and Pretreatment Conditions. J. Phys. Chem. C 2007, 111 (39), 14371–14379. 10.1021/jp071968l. DOI

López-Haro M.; Delgado J. J.; Cies J. M.; del Rio E.; Bernal S.; Burch R.; Cauqui M. A.; Trasobares S.; Pérez-Omil J. A.; Bayle-Guillemaud P.; et al. Bridging the Gap between CO Adsorption Studies on Gold Model Surfaces and Supported Nanoparticles. Angew. Chem. 2010, 122 (11), 2025–2029. 10.1002/ange.200903403. PubMed DOI

Álvarez-Moreno M.; De Graaf C.; López N.; Maseras F.; Poblet J. M.; Bo C. Managing the Computational Chemistry Big Data Problem: The IoChem-BD Platform. J. Chem. Inf. Model. 2015, 55 (1), 95–103. 10.1021/ci500593j. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Electronic and Structural Properties of Thin Iron Oxide Films on CeO2

. 2024 Sep 04 ; 16 (35) : 46858-46871. [epub] 20240821

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...