Metal-Support Interaction and Charge Distribution in Ceria-Supported Au Particles Exposed to CO
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
36117879
PubMed Central
PMC9476549
DOI
10.1021/acs.chemmater.2c01659
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Understanding how reaction conditions affect metal-support interactions in catalytic materials is one of the most challenging tasks in heterogeneous catalysis research. Metal nanoparticles and their supports often undergo changes in structure and oxidation state when exposed to reactants, hindering a straightforward understanding of the structure-activity relations using only ex situ or ultrahigh vacuum techniques. Overcoming these limitations, we explored the metal-support interaction between gold nanoparticles and ceria supports in ultrahigh vacuum and after exposure to CO. A combination of in situ methods (on powder and model Au/CeO2 samples) and theoretical calculations was applied to investigate the gold/ceria interface and its reactivity toward CO exposure. X-ray photoelectron spectroscopy measurements rationalized by first-principles calculations reveal a distinctly inhomogeneous charge distribution, with Au+ atoms in contact with the ceria substrate and neutral Au0 atoms at the surface of the Au nanoparticles. Exposure to CO partially reduces the ceria substrate, leading to electron transfer to the supported Au nanoparticles. Transferred electrons can delocalize among the neutral Au atoms of the particle or contribute to forming inert Auδ- atoms near oxygen vacancies at the ceria surface. This charge redistribution is consistent with the evolution of the vibrational frequencies of CO adsorbed on Au particles obtained using diffuse reflectance infrared Fourier transform spectroscopy.
Zobrazit více v PubMed
Trovarelli A.; Llorca J. Ceria Catalysts at Nanoscale: How Do Crystal Shapes Shape Catalysis ?. ACS Catal. 2017, 7, 4716–4735. 10.1021/acscatal.7b01246. DOI
Grunwaldt J. D.; Kiener C.; Wögerbauer C.; Baiker A. Preparation of Supported Gold Catalysts for Low-Temperature CO Oxidation via “Size-Controlled” Gold Colloids. J. Catal. 1999, 181 (2), 223–232. 10.1006/jcat.1998.2298. DOI
Lopez N.; Janssens T. V. W.; Clausen B. S.; Xu Y.; Mavrikakis M.; Bligaard T.; Nørskov J. K. On the Origin of the Catalytic Activity of Gold Nanoparticles for Low-Temperature CO Oxidation. J. Catal. 2004, 223 (1), 232–235. 10.1016/j.jcat.2004.01.001. DOI
Lopez N.; Nørskov J. K. Catalytic CO Oxidation by a Gold Nanoparticle: A Density Functional Study. J. Am. Chem. Soc. 2002, 124 (38), 11262–11263. 10.1021/ja026998a. PubMed DOI
Remediakis I. N.; Lopez N.; Nørskov J. K. CO Oxidation on Rutile-Supported Au Nanoparticles. Angew. Chemie - Int. Ed. 2005, 44 (12), 1824–1826. 10.1002/anie.200461699. PubMed DOI
Bond G. C; Thompson D. T Gold-Catalysed Oxidation of Carbon Monoxide. Gold Bull. 2000, 33 (2), 41–50. 10.1007/BF03216579. DOI
Lohrenscheit M.; Hess C. Direct Evidence for the Participation of Oxygen Vacancies in the Oxidation of Carbon Monoxide over Ceria-Supported Gold Catalysts by Using Operando Raman Spectroscopy. ChemCatChem. 2016, 8 (3), 523–526. 10.1002/cctc.201501129. DOI
Rodriguez J. A.; Wang X.; Liu P.; Wen W.; Hanson J. C.; Hrbek J.; Pérez M.; Evans J. Gold Nanoparticles on Ceria: Importance of O Vacancies in the Activation of Gold. Top. Catal. 2007, 44 (1–2), 73–81. 10.1007/s11244-007-0280-1. DOI
Zhang X.; Duan D.; Li G.; Feng W.; Yang S.; Sun Z. Monolithic Au/CeO2 Nanorod Framework Catalyst Prepared by Dealloying for Lowerature CO Oxidation. Nanotechnology 2018, 29 (9), 095606.10.1088/1361-6528/aaa726. PubMed DOI
Chen S.; Li S.; You R.; Guo Z.; Wang F.; Li G.; Yuan W.; Zhu B.; Gao Y.; Zhang Z.; et al. Elucidation of Active Sites for CH4 Catalytic Oxidation over Pd/CeO2 via Tailoring Metal-support Interactions. ACS Catal. 2021, 11 (9), 5666–5677. 10.1021/acscatal.1c00839. DOI
Wang C.; Gu X. K.; Yan H.; Lin Y.; Li J.; Liu D.; Li W. X.; Lu J. Water-Mediated Mars-Van Krevelen Mechanism for CO Oxidation on Ceria-Supported Single-Atom Pt1 Catalyst. ACS Catal. 2017, 7 (1), 887–891. 10.1021/acscatal.6b02685. DOI
Duan Z.; Henkelman G. CO Oxidation at the Au/TiO2 Boundary: The Role of the Au/Ti5c Site. ACS Catal. 2015, 5 (3), 1589–1595. 10.1021/cs501610a. DOI
Liu B.; Zhao Z.; Henkelman G.; Song W. Computational Design of a CeO2-Supported Pd-Based Bimetallic Nanorod for CO Oxidation. J. Phys. Chem. C 2016, 120 (10), 5557–5564. 10.1021/acs.jpcc.6b00253. DOI
Camellone M. F.; Fabris S. Reaction Mechanisms for the CO Oxidation on Au/CeO2 Catalysts: Activity of Substitutional Au3+/Au+ Cations and Deactivation of Supported Au+ Adatoms. J. Am. Chem. Soc. 2009, 131 (30), 10473–10483. 10.1021/ja902109k. PubMed DOI
Widmann D.; Behm R. J. Activation of Molecular Oxygen and the Nature of the Active Oxygen Species for CO Oxidation on Oxide Supported Au Catalysts. Acc. Chem. Res. 2014, 47 (3), 740–749. 10.1021/ar400203e. PubMed DOI
Lawrence N. J.; Brewer J. R.; Wang L.; Wu T. S.; Wells-Kingsbury J.; Ihrig M. M.; Wang G.; Soo Y. L.; Mei W. N.; Cheung C. L. Defect Engineering in Cubic Cerium Oxide Nanostructures for Catalytic Oxidation. Nano Lett. 2011, 11 (7), 2666–2671. 10.1021/nl200722z. PubMed DOI
Castanet U.; Feral-Martin C.; Demourgues A.; Neale R. L.; Sayle D. C.; Caddeo F.; Flitcroft J. M.; Caygill R.; Pointon B. J.; Molinari M.; et al. Controlling the {111}/{110} Surface Ratio of Cuboidal Ceria Nanoparticles. ACS Appl. Mater. Interfaces 2019, 11 (12), 11384–11390. 10.1021/acsami.8b21667. PubMed DOI
Kim H. Y.; Lee H. M.; Henkelman G. CO Oxidation Mechanism of CeO2-Supported Au Nanoparticles. J. Am. Chem. Soc. 2012, 134 (3), 1560–1570. 10.1021/ja207510v. PubMed DOI
Ha H.; Yoon S.; An K.; Kim H. Y. Catalytic CO Oxidation over Au Nanoparticles Supported on CeO2 Nanocrystals: Effect of the Au-CeO2 Interface. ACS Catal. 2018, 8 (12), 11491–11501. 10.1021/acscatal.8b03539. DOI
Wang Y. G.; Mei D.; Glezakou V. A.; Li J.; Rousseau R. Dynamic Formation of Single-Atom Catalytic Active Sites on Ceria-Supported Gold Nanoparticles. Nat. Commun. 2015, 6, 6511.10.1038/ncomms7511. PubMed DOI PMC
López-Haro M.; Yoshida K.; Del Río E.; Pérez-Omil J. A.; Boyes E. D.; Trasobares S.; Zuo J. M.; Gai P. L.; Calvino J. J. Strain Field in Ultrasmall Gold Nanoparticles Supported on Cerium-Based Mixed Oxides. Key Influence of the Support Redox State. Langmuir 2016, 32 (17), 4313–4322. 10.1021/acs.langmuir.6b00758. PubMed DOI
López-Haro M.; Cíes J. M.; Trasobares S.; Pérez-Omil J. A.; Delgado J. J.; Bernal S.; Bayle-Guillemaud P.; Stéphan O.; Yoshida K.; Boyes E. D.; et al. Imaging Nanostructural Modifications Induced by Electronic Metal-Support Interaction Effects at Au||cerium-Based Oxide Nanointerfaces. ACS Nano 2012, 6 (8), 6812–6820. 10.1021/nn301557u. PubMed DOI
Walsh M. J.; Yoshida K.; Kuwabara A.; Pay M. L.; Gai P. L.; Boyes E. D. On the Structural Origin of the Catalytic Properties of Inherently Strained Ultrasmall Decahedral Gold Nanoparticles. Nano Lett. 2012, 12 (4), 2027–2031. 10.1021/nl300067q. PubMed DOI
Klyushin A. Y.; Jones T. E.; Lunkenbein T.; Kube P.; Li X.; Hävecker M.; Knop-Gericke A.; Schlögl R. Strong Metal Support Interaction as a Key Factor of Au Activation in CO Oxidation. ChemCatChem. 2018, 10 (18), 3985–3989. 10.1002/cctc.201800972. DOI
Delannoy L.; Weiher N.; Tsapatsaris N.; Beesley A. M.; Nchari L.; Schroeder S. L. M.; Louis C. Reducibility of Supported Gold (III) Precursors: Influence of the Metal Oxide Support and Consequences for CO Oxidation Activity. Top. Catal. 2007, 44 (1–2), 263–273. 10.1007/s11244-007-0299-3. DOI
Guo L. W.; Du P. P.; Fu X. P.; Ma C.; Zeng J.; Si R.; Huang Y. Y.; Jia C. J.; Zhang Y. W.; Yan C. H. Contributions of Distinct Gold Species to Catalytic Reactivity for Carbon Monoxide Oxidation. Nat. Commun. 2016, 7, 1–8. 10.1038/ncomms13481. PubMed DOI PMC
Costello C. K.; Kung M. C.; Oh H.; Wang Y.; Kung H. H. Nature of the Active Site for CO Oxidation on Highly Active Au/γ-Al2O3. Appl. Catal. A Gen. 2002, 232, 159–168. 10.1016/S0926-860X(02)00092-3. DOI
Guzman J.; Gates B. C. Catalysis by Supported Gold: Correlation between Catalytic Activity for CO Oxidation and Oxidation States of Gold. J. Am. Chem. Soc. 2004, 126 (9), 2672–2673. 10.1021/ja039426e. PubMed DOI
Shi H.; Stampfl C. First-Principles Investigations of the Structure and Stability of Oxygen Adsorption and Surface Oxide Formation at Au (111). Phys. Rev. B 2007, 76, 075327.10.1103/PhysRevB.76.075327. DOI
Green I. X.; Tang W.; McEntee M.; Neurock M.; Yates J. T. Inhibition at Perimeter Sites of Au/TiO2 Oxidation Catalyst by Reactant Oxygen. J. Am. Chem. Soc. 2012, 134 (30), 12717–12723. 10.1021/ja304426b. PubMed DOI
Zhang C.; Michaelides A.; King D. A.; Jenkins S. J. Positive Charge States and Possible Polymorphism of Gold Nanoclusters on Reduced Ceria. J. Am. Chem. Soc. 2010, 132 (7), 2175–2182. 10.1021/ja906687f. PubMed DOI
Engel J.; Schwartz E.; Catlow C. R. A.; Roldan A. The Influence of Oxygen Vacancy and Ce3+ Ion Positions on the Properties of Small Gold Clusters Supported on CeO2-X(111). J. Mater. Chem. A 2020, 8 (31), 15695–15705. 10.1039/D0TA01398F. DOI
Fernández-García S.; Collins S. E.; Tinoco M.; Hungría A. B.; Calvino J. J.; Cauqui M. A.; Chen X. Influence of {111} Nanofaceting on the Dynamics of CO Adsorption and Oxidation over Au Supported on CeO2 Nanocubes: An Operando DRIFT Insight. Catal. Today 2019, 336, 90–98. 10.1016/j.cattod.2019.01.078. DOI
Del Río E.; Collins S. E.; Aguirre A.; Chen X.; Delgado J. J.; Calvino J. J.; Bernal S. Reversible Deactivation of a Au/Ce0.62Zr0.38O2 Catalyst in CO Oxidation: A Systematic Study of CO2-Triggered Carbonate Inhibition. J. Catal. 2014, 316, 210–218. 10.1016/j.jcat.2014.05.016. DOI
Chang M. W.; Sheu W. S. The Charge States of Au on Gold-Substituted Ce1-XO2(111) Surfaces with Multiple Oxygen Vacancies. Phys. Chem. Chem. Phys. 2016, 18 (23), 15884–15893. 10.1039/C6CP02647H. PubMed DOI
Aleksandrov H. A.; Neyman K. M.; Hadjiivanov K. I.; Vayssilov G. N. Can the State of Platinum Species Be Unambiguously Determined by the Stretching Frequency of an Adsorbed CO Probe Molecule?. Phys. Chem. Chem. Phys. 2016, 18 (32), 22108–22121. 10.1039/C6CP03988J. PubMed DOI
Bezkrovnyi O. S.; Blaumeiser D.; Vorokhta M.; Kraszkiewicz P.; Pawlyta M.; Bauer T.; Libuda J.; Kepinski L. NAP-XPS and in Situ DRIFTS of the Interaction of CO with Au Nanoparticles Supported by Ce1-xEuxO2 Nanocubes. J. Phys. Chem. C 2020, 124 (10), 5647–5656. 10.1021/acs.jpcc.9b10142. DOI
Centeno M.; Ramirez Reina T.; Ivanova S.; Laguna O.; Odriozola J. Au/CeO2 Catalysts: Structure and CO Oxidation Activity. Catalysts 2016, 6, 158.10.3390/catal6100158. DOI
Glaspell G.; Fuoco L.; El-Shall M. S. Microwave Synthesis of Supported Au and Pd Nanoparticle Catalysts for CO Oxidation. J. Phys. Chem. B 2005, 109, 17350–17355. 10.1021/jp0526849. PubMed DOI
Baron M.; Bondarchuk O.; Stacchiola D.; Shaikhutdinov S.; Freund H. J. Interaction of Gold with Cerium Oxide Supports: CeO2(111) Thin Films vs CeOx Nanoparticles. J. Phys. Chem. C 2009, 113 (15), 6042–6049. 10.1021/jp9001753. DOI
Šutara F.; Cabala M.; Sedláček L.; Skála T.; Škoda M.; Matolín V.; Prince K. C.; Cháb V. Epitaxial Growth of Continuous CeO2(111) Ultra-Thin Films on Cu(111). Thin Solid Films 2008, 516 (18), 6120–6124. 10.1016/j.tsf.2007.11.013. DOI
Inoue T.; Ohtake H.; Otani J.-i.; Shida S. Optimization of Growth Parameters in Electron Beam Induced Orientation Selective Epitaxy of CeO2(100)/Si(100) Structures. ECS Trans. 2008, 13 (2), 341–351. 10.1149/1.2908647. DOI
Matolín V.; Cabala M.; Matolínova I.; Skoda M.; Libra J.; Vaclavu M.; Prince K. C.; Skala T.; Yoshikawa H.; Yamashita Y.; Ueda S.; Kobayashi K. Au+ and Au3+ Ions in CeO2 Rf-Sputtered Thin Films. J. Phys. D Appl. Phys. 2009, 42, 115301.10.1088/0022-3727/42/11/115301. DOI
Bezkrovnyi O. S.; Kraszkiewicz P.; Mista W.; Kepinski L. The Sintering of Au Nanoparticles on Flat {100}, {111} and Zigzagged {111}-Nanofacetted Structures of Ceria and Its Influence on Catalytic Activity in CO Oxidation and CO PROX. Catal. Lett. 2021, 151 (4), 1080–1090. 10.1007/s10562-020-03370-1. DOI
Wozniak P.; Kraszkiewicz P.; Małecka M.łg. A. Divergent Influence of {111} vs. {100} Crystal Planes and Yb3+ Dopant on CO Oxidation Paths in Mixed Nano-Sized Oxide Au/Ce1-xYbxO2-x/2 (x = 0 or 0.1) Systems. CrystEngComm 2020, 22, 5828–5840. 10.1039/D0CE00891E. DOI
Mullins D. R.; Radulovic P. V.; Overbury S. H. Ordered Cerium Oxide Thin Films Grown on Ru(0001) and Ni(111). Surf. Sci. 1999, 429, 186–198. 10.1016/S0039-6028(99)00369-6. DOI
Lu J.-L.; Gao H.-J.; Shaikhutdinov S.; Freund H.-J. Morphology and Defect Structure of the CeO2(111) Films Grown on Ru(0001) as Studied by Scanning Tunneling Microscopy. Surf. Sci. 2006, 600, 5004–5010. 10.1016/j.susc.2006.08.023. DOI
Dvořák F.; Stetsovych O.; Steger M.; Cherradi E.; Matolínová I.; Tsud N.; Škoda M.; Skála T.; Mysliveček J.; Matolín V. Adjusting Morphology and Surface Reduction of CeO2(111) Thin Films on Cu(111). J. Phys. Chem. C 2011, 115 (15), 7496–7503. 10.1021/jp1121646. DOI
Xu T.; Schwarz M.; Werner K.; Mohr S.; Amende M.; Libuda J. The Surface Structure Matters: Thermal Stability of Phthalic Acid Anchored to Atomically-Defined Cobalt Oxide Films. Phys. Chem. Chem. Phys. 2016, 18 (15), 10419–10427. 10.1039/C6CP00296J. PubMed DOI
Bauer T.; Maisel S.; Blaumeiser D.; Vecchietti J.; Taccardi N.; Wasserscheid P.; Bonivardi A.; Görling A.; Libuda J. Operando DRIFTS and DFT Study of Propane Dehydrogenation over Solid- and Liquid-Supported GaxPty Catalysts. ACS Catal. 2019, 9 (4), 2842–2853. 10.1021/acscatal.8b04578. PubMed DOI PMC
Blaumeiser D.; Stepić R.; Wolf P.; Wick C. R.; Haumann M.; Wasserscheid P.; Smith D. M.; Smith A. S.; Bauer T.; Libuda J. Cu Carbonyls Enhance the Performance of Ru-Based SILP Water-Gas Shift Catalysts: A Combined: In Situ DRIFTS and DFT Study. Catal. Sci. Technol. 2020, 10 (1), 252–262. 10.1039/C9CY01852B. DOI
Lykhach Y.; Skála T.; Neitzel A.; Tsud N.; Beranová K.; Prince K. C.; Matolín V.; Libuda J. Nanoscale Architecture of Ceria-Based Model Catalysts: Pt-Co Nanostructures on Well-Ordered CeO2(111) Thin Films. Chin. J. Catal. 2020, 41, 985–997. 10.1016/S1872-2067(19)63462-5. DOI
Dvořák F.; Szabová L.; Johánek V.; Farnesi Camellone M.; Stetsovych V.; Vorokhta M.; Tovt A.; Skála T.; Matolínová I.; Tateyama Y.; et al. Bulk Hydroxylation and Effective Water Splitting by Highly Reduced Cerium Oxide: The Role of O Vacancy Coordination. ACS Catal. 2018, 8 (5), 4354–4363. 10.1021/acscatal.7b04409. DOI
Paparazzo E.; Ingo G. M.; Zacchetti N. X-ray Induced Reduction Effects at CeO2 Surfaces: An X-ray Photoelectron Spectroscopy Study. J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 1991, 9 (3), 1416–1420. 10.1116/1.577638. DOI
Kresse G.; Furthmuller J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B 1996, 54 (16), 11169–11184. 10.1103/PhysRevB.54.11169. PubMed DOI
Kresse G.; Hafner J. Ab Initio Molecular Dynamics for Liquid Metals. Phys. Rev. B 1993, 47 (1), 558–561. 10.1103/PhysRevB.47.558. PubMed DOI
Perdew J. P.; Chevary J. A.; Vosko S. H.; Jackson K. A.; Pederson M. R.; Singh D. J.; Fiolhais C. Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation. Phys. Rev. B 1992, 46 (11), 6671–6687. 10.1103/PhysRevB.46.6671. PubMed DOI
Bruix A.; Lykhach Y.; Matolinova I.; Neitzel A.; Skala T.; Tsud N.; Vorokhta M.; Stetsovych V.; Sevcikova K.; Myslivecek J.; et al. Maximum Noble-Metal Efficiency in Catalytic Materials: Atomically Dispersed Surface Platinum. Angew. Chemie - Int. Ed. 2014, 53, 10525–10530. 10.1002/anie.201402342. PubMed DOI
Bruix A.; Rodriguez J. A.; Ramirez P. J.; Senanayake S. D.; Evans J.; Park J. B.; Stacchiola D.; Liu P.; Hrbek J.; Illas F. A New Type of Strong Metal-Support Interaction and the Production of H2 through the Transformation of Water on Pt/ CeO2(111) and Pt/CeOx/TiO2(110) Catalysts. J. Am. Chem. Soc. 2012, 134 (111), 8968–8974. 10.1021/ja302070k. PubMed DOI
Vayssilov G. N.; Lykhach Y.; Migani A.; Staudt T.; Petrova G. P.; Tsud N.; Skála T.; Bruix A.; Illas F.; Prince K. C.; et al. Support Nanostructure Boosts Oxygen Transfer to Catalytically Active Platinum Nanoparticles. Nat. Mater. 2011, 10 (4), 310–315. 10.1038/nmat2976. PubMed DOI
Migani A.; Vayssilov G. N.; Bromley S. T.; Illas F.; Neyman K. M. Dramatic Reduction of the Oxygen Vacancy Formation Energy in Ceria Particles: A Possible Key to Their Remarkable Reactivity at the Nanoscale. J. Mater. Chem. 2010, 20 (46), 10535.10.1039/c0jm01908a. DOI
Bruix A.; Neyman K. M. Modeling Ceria-Based Nanomaterials for Catalysis and Related Applications. Catal. Lett. 2016, 146 (10), 2053–2080. 10.1007/s10562-016-1799-1. DOI
Blöchl P. E. Projector Augmented-Wave Method. Phys. Rev. B 1994, 50 (24), 17953–17979. 10.1103/PhysRevB.50.17953. PubMed DOI
Aleksandrov H. A.; Neyman K. M.; Hadjiivanov K. I.; Vayssilov G. N. Can the State of Platinum Species Be Unambiguously Determined by the Stretching Frequency of an Adsorbed CO Probe Molecule?. Phys. Chem. Chem. Phys. 2016, 18 (32), 22108–22121. 10.1039/C6CP03988J. PubMed DOI
Janak J. F. F. Proof That ∂E/∂ni=εi in Density-Functional Theory. Phys. Rev. B 1978, 18 (12), 7165–7168. 10.1103/PhysRevB.18.7165. DOI
Perdew J. P.; Levy M. Comment on ‘“Significance of the Highest Occupied Kohn-Sham Eigenvalue.”’. Phys. Rev. B 1997, 56 (24), 16021–16028. 10.1103/PhysRevB.56.16021. DOI
Ganduglia-Pirovano M. V.; Scheffler M.; Baraldi A.; Lizzit S.; Comelli G.; Paolucci G.; Rosei R. Oxygen-Induced Rh 3d5/2 Surface Core-Level Shifts on Rh(111). Phys. Rev. B 2001, 63, 205415.10.1103/PhysRevB.63.205415. DOI
Lizzit S.; Baraldi A.; Groso A.; Reuter K.; Ganduglia-Pirovano M. V.; Stampfl C.; Scheffler M.; Stichler M.; Keller C.; Wurth W.; et al. Surface Core-Level Shifts of Clean and Oxygen-Covered Ru(0001). Phys. Rev. B 2001, 63 (20), 205419.10.1103/PhysRevB.63.205419. DOI
Köhler L.; Kresse G. Density Functional Study of CO on Rh(111). Phys. Rev. B 2004, 70 (16), 1–9. 10.1103/PhysRevB.70.165405. DOI
Kim H. Y.; Henkelman G. CO Oxidation at the Interface of Au Nanoclusters and the Stepped-CeO2(111) Surface by the Mars-van Krevelen Mechanism. J. Phys. Chem. Lett. 2013, 4 (1), 216–221. 10.1021/jz301778b. PubMed DOI
Bezkrovnyi O.; Kraszkiewicz P.; Krivtsov I.; Quesada J.; Ordonez S.; Kepinski L. Thermally Induced Sintering and Redispersion of Au Nanoparticles Supported on Ce1-xEuxO2 Nanocubes and Their Influence on Catalytic CO Oxidation. Catal. Commun. 2019, 131, 105798.10.1016/j.catcom.2019.105798. DOI
Rodriguez J. A.; Si R.; Evans J.; Xu W.; Hanson J. C.; Tao J.; Zhu Y. Active Gold-Ceria and Gold-Ceria/Titania Catalysts for CO Oxidation: From Single-Crystal Model Catalysts to Powder Catalysts. Catal. Today 2015, 240 (PB), 229–235. 10.1016/j.cattod.2014.06.033. DOI
Bezkrovnyi O.S.; Kraszkiewicz P.; Ptak M.; Kepinski L. Thermally Induced Reconstruction of Ceria Nanocubes into Zigzag {111}- Nanofacetted Structures and Its Influence on Catalytic Activity in CO Oxidation. Catal. Commun. 2018, 117, 94–98. 10.1016/j.catcom.2018.08.005. DOI
Chen Y.; Chen Y.; Qiu C.; Chen C.; Wang Z. HAADF STEM Observation of the Au/CeO2 Nanostructures. Mater. Lett. 2015, 141, 31–34. 10.1016/j.matlet.2014.11.048. DOI
Ta N.; Liu J.; Chenna S.; Crozier P. A.; Li Y.; Chen A.; Shen W. Stabilized Gold Nanoparticles on Ceria Nanorods by Strong Interfacial Anchoring. J. Am. Chem. Soc. 2012, 134 (51), 20585–20588. 10.1021/ja310341j. PubMed DOI
Lu J.-L.; Gao H.-J.; Shaikhutdinov S.; Freund H.-J. Gold Supported on Well-Ordered Ceria Films: Nucleation, Growth and Morphology in CO Oxidation Reaction. Catal. Lett. 2007, 114 (1–2), 8–16. 10.1007/s10562-007-9039-3. DOI
Skála T.; Šutara F.; Škoda M.; Prince K. C.; Matolín V.; Sutara F.; Skoda M.; Prince K. C.; Matolín V. Palladium Interaction with CeO2, Sn-Ce-O and Ga-Ce-O Layers. J. Phys.: Condens. Matter 2009, 21 (5), 055005.10.1088/0953-8984/21/5/055005. PubMed DOI
Deng W.; Carpenter C.; Yi N.; Flytzani-stephanopoulos M. Comparison of the Activity of Au/CeO2 and Au/Fe2O3 Catalysts for the CO Oxidation and the Water-Gas Shift Reactions. Top. Catal. 2007, 44 (June), 199–208. 10.1007/s11244-007-0293-9. DOI
Manzoli M.; Boccuzzi F.; Chiorino A.; Vindigni F.; Deng W.; Flytzani-Stephanopoulos M. Spectroscopic Features and Reactivity of CO Adsorbed on Different Au/CeO2 Catalysts. J. Catal. 2007, 245 (2), 308–315. 10.1016/j.jcat.2006.10.021. DOI
Gougis M.; Pereira A.; Ma D.; Mohamedi M. Simultaneous Deposition of Cerium Oxide and Gold Nanostructures-Characterization and Analytical Properties toward Glucose Electro-Oxidation and Sensing. RSC Adv. 2014, 4, 39955–39961. 10.1039/C4RA05374E. DOI
Klyushin A. Y.; Rocha T. C. R.; Hävecker M.; Knop-Gericke A.; Schlögl R. A near Ambient Pressure XPS Study of Au Oxidation. Phys. Chem. Chem. Phys. 2014, 16 (17), 7881–7886. 10.1039/c4cp00308j. PubMed DOI
Zhang C.; Michaelides A.; Jenkins S. J. Theory of Gold on Ceria. Phys. Chem. Chem. Phys. 2011, 13 (1), 22–33. 10.1039/C0CP01123A. PubMed DOI
Bader R.Atoms in Molecules: A Quantum Theory; Oxford University Press, 1994.
Kozlov S. M.; Neyman K. M. Effects of Electron Transfer in Model Catalysts Composed of Pt. J. Catal. 2016, 344, 507–514. 10.1016/j.jcat.2016.10.014. DOI
Lykhach Y.; Kozlov S. M.; Skála T.; Tovt A.; Stetsovych V.; Tsud N.; Dvořák F.; Johánek V.; Neitzel A.; Mysliveček J.; et al. Counting Electrons on Supported Nanoparticles. Nat. Mater. 2016, 15 (3), 284–288. 10.1038/nmat4500. PubMed DOI
Daelman N.; Capdevila-Cortada M.; López N. Dynamic Charge and Oxidation State of Pt/CeO2 Single-Atom Catalysts. Nat. Mater. 2019, 18 (11), 1215–1221. 10.1038/s41563-019-0444-y. PubMed DOI
Abdel-Mageed A. M.; Klyushin A.; Rezvani A.; Knop-Gericke A.; Schlögl R.; Behm R. J. Negative Charging of Au Nanoparticles during Methanol Synthesis from CO2/H2 on a Au/ZnO Catalyst: Insights from Operando IR and Near-Ambient-Pressure XPS and XAS Measurements. Angew. Chemie - Int. Ed. 2019, 58 (30), 10325–10329. 10.1002/anie.201900150. PubMed DOI
Liu N.; Xu M.; Yang Y.; Zhang S.; Zhang J.; Wang W.; Zheng L.; Hong S.; Wei M. AuΔ- - Ov - Ti3+ Interfacial Site: Catalytic Active Center toward Low- Temperature Water Gas Shift Reaction. ACS Catal. 2019, 9, 2707–2717. 10.1021/acscatal.8b04913. DOI
Bruix A.; Migani A.; Vayssilov G. N.; Neyman K. M.; Libuda J.; Illas F. Effects of Deposited Pt Particles on the Reducibility of CeO2(111). Phys. Chem. Chem. Phys. 2011, 13 (23), 11384–11392. 10.1039/c1cp20950g. PubMed DOI
Uchiyama T.; Yoshida H.; Kuwauchi Y.; Ichikawa S.; Shimada S.; Haruta M.; Takeda S. Systematic Morphology Changes of Gold Nanoparticles Supported on CeO2 during CO Oxidation. Angew. Chemie - Int. Ed. 2011, 50, 10157–10160. 10.1002/anie.201102487. PubMed DOI
Tovt A.; Bagolini L.; Dvorak F.; Tran N.-D.; Vorokhta M.; Beranova K.; Johanek V.; Farnesi Camellone M.; Skala T.; Matolinova I.; et al. Ultimate Dispersion of Metallic and Ionic Platinum on Ceria. J. Mater. Chem. A 2019, 7 (21), 13019–13028. 10.1039/c9ta00823c. DOI
Bezkrovnyi O.; Małecka M. A.; Lisiecki R.; Ostroushko V.; Thomas A. G.; Gorantla S.; Kepinski L. The Effect of Eu Doping on the Growth, Structure and Red-Ox Activity of Ceria Nanocubes. CrystEngComm 2018, 20 (12), 1698–1704. 10.1039/C8CE00155C. DOI
Roldán A.; González S.; Ricart J. M.; Illas F. Critical Size for O2 Dissociation by Au Nanoparticles. ChemPhysChem 2009, 10 (2), 348–351. 10.1002/cphc.200800702. PubMed DOI
Liu J. X.; Filot I. A. W.; Su Y.; Zijlstra B.; Hensen E. J. M. Optimum Particle Size for Gold-Catalyzed CO Oxidation. J. Phys. Chem. C 2018, 122 (15), 8327–8340. 10.1021/acs.jpcc.7b12711. PubMed DOI PMC
Ta N.; Liu J. J.; Shen W. Tuning the Shape of Ceria Nanomaterials for Catalytic Applications. Cuihua Xuebao/Chin. J. Catal. 2013, 34 (5), 838–850. 10.1016/S1872-2067(12)60573-7. DOI
Chen M.; Goodman D. W. Catalytically Active Gold: From Nanoparticles to Ultrathin Films. Acc. Chem. Res. 2006, 39 (10), 739–746. 10.1021/ar040309d. PubMed DOI
Green I. X.; Tang W.; Neurock M.; Yates J. T.; et al. Spectroscopic Observation of Dual Catalytic Sites During Oxidation of CO on a Au/TiO2 Catalyst. Science 2011, 333, 736–739. 10.1126/science.1207272. PubMed DOI
Kolasinski K. W.Surface Science: Foundations of Catalysis and Nanoscience; Wiley, 2019.
Mavrikakis M.; Stoltze P.; Nørskov J. K. Making Gold Less Noble. Catal. Lett. 2000, 64, 101–106. 10.1023/A:1019028229377. DOI
Shaikhutdinov S. K.; Meyer R.; Naschitzki M.; Baumer M.; Freund H.-J. Size and Support Effects for CO Adsorption on Gold Model Catalysts. Catal. Lett. 2003, 86 (4), 211–219. 10.1023/A:1022616102162. DOI
Feldt C. D.; Moreira R.; Meyer E.; Clawin P.; Riedel W.; Risse T.; Moskaleva L.; Dononelli W.; Klüner T. CO Adsorption on Au(332): Combined Infrared Spectroscopy and Density Functional Theory Study. J. Phys. Chem. C 2019, 123 (13), 8187–8197. 10.1021/acs.jpcc.8b08406. DOI
Loffreda D.; Simon D.; Sautet P. Dependence of Stretching Frequency on Surface Coverage and Adsorbate-Adsorbate Interactions: A Density-Functional Theory Approach of CO on Pd (111). Surf. Sci. 1999, 425 (1), 68–80. 10.1016/S0039-6028(99)00186-7. DOI
Collins S. E.; Cíes J. M.; Del Río E.; López-Haro M.; Trasobares S.; Calvino J. J.; Pintado J. M.; Bernal S. Hydrogen Interaction with a Ceria-Zirconia Supported Gold Catalyst Influence of CO Co-Adsorption and Pretreatment Conditions. J. Phys. Chem. C 2007, 111 (39), 14371–14379. 10.1021/jp071968l. DOI
López-Haro M.; Delgado J. J.; Cies J. M.; del Rio E.; Bernal S.; Burch R.; Cauqui M. A.; Trasobares S.; Pérez-Omil J. A.; Bayle-Guillemaud P.; et al. Bridging the Gap between CO Adsorption Studies on Gold Model Surfaces and Supported Nanoparticles. Angew. Chem. 2010, 122 (11), 2025–2029. 10.1002/ange.200903403. PubMed DOI
Álvarez-Moreno M.; De Graaf C.; López N.; Maseras F.; Poblet J. M.; Bo C. Managing the Computational Chemistry Big Data Problem: The IoChem-BD Platform. J. Chem. Inf. Model. 2015, 55 (1), 95–103. 10.1021/ci500593j. PubMed DOI
Electronic and Structural Properties of Thin Iron Oxide Films on CeO2