Fast room temperature lability of aluminosilicate zeolites

. 2019 Oct 16 ; 10 (1) : 4690. [epub] 20191016

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31619677
Odkazy

PubMed 31619677
PubMed Central PMC6795794
DOI 10.1038/s41467-019-12752-y
PII: 10.1038/s41467-019-12752-y
Knihovny.cz E-zdroje

Aluminosilicate zeolites are traditionally used in high-temperature applications at low water vapour pressures where the zeolite framework is generally considered to be stable and static. Increasingly, zeolites are being considered for applications under milder aqueous conditions. However, it has not yet been established how neutral liquid water at mild conditions affects the stability of the zeolite framework. Here, we show that covalent bonds in the zeolite chabazite (CHA) are labile when in contact with neutral liquid water, which leads to partial but fully reversible hydrolysis without framework degradation. We present ab initio calculations that predict novel, energetically viable reaction mechanisms by which Al-O and Si-O bonds rapidly and reversibly break at 300 K. By means of solid-state NMR, we confirm this prediction, demonstrating that isotopic substitution of 17O in the zeolitic framework occurs at room temperature in less than one hour of contact with enriched water.

Zobrazit více v PubMed

Li Y, Li L, Yu J. Applications of zeolites in sustainable chemistry. Chem. 2017;3:928–949. doi: 10.1016/j.chempr.2017.10.009. DOI

Agostini G, et al. In Situ XAS and XRPD parametric rietveld refinement to understand dealumination of Y zeolite catalyst. J. Am. Chem. Soc. 2010;132:667–678. doi: 10.1021/ja907696h. PubMed DOI

Kung HH, et al. Enhanced hydrocarbon cracking activity of Y zeolites. Top. Catal. 2000;10:59–64. doi: 10.1023/A:1019155832086. DOI

Nielsen M, et al. Kinetics of zeolite dealumination: insights from H-SSZ-13. ACS Catal. 2015;5:7131–7139. doi: 10.1021/acscatal.5b01496. DOI

Ma D, Deng F, Fu R, Han X, Bao X. MAS NMR studies on the dealumination of zeolite MCM-22. J. Phys. Chem. B. 2001;105:1770–1779. doi: 10.1021/jp003575r. DOI

Mizuno N, Mori H, Mineo K, Iwamoto M. Isotopic exchange of oxygen between proton-exchanged zeolites and water. J. Phys. Chem. B. 1999;103:10393–10399. doi: 10.1021/jp992258l. DOI

Freude D, Loeser T, Michel D, Pingel U, Prochnow D. 17O NMR studies of low silicate zeolites. Solid State Nucl. Magn. Reson. 2001;20:46–60. doi: 10.1006/snmr.2001.0029. PubMed DOI

Loeser T, Freude D, Mabande GTP, Schwieger W. 17O NMR studies of sodalites. Chem. Phys. Lett. 2003;370:32–38. doi: 10.1016/S0009-2614(03)00066-6. DOI

Silaghi M-C, et al. Regioselectivity of Al–O bond hydrolysis during zeolites dealumination unified by brønsted–evans–polanyi relationship. ACS Catal. 2014;5:11–15. doi: 10.1021/cs501474u. DOI

Silaghi M-C, Chizallet C, Sauer J, Raybaud P. Dealumination mechanisms of zeolites and extra-framework aluminum confinement. J. Catal. 2016;339:242–255. doi: 10.1016/j.jcat.2016.04.021. DOI

Stanciakova K, Ensing B, Göltl F, Bulo RE, Weckhuysen BM. Cooperative role of water molecules during the initial stage of water-induced zeolite dealumination. ACS Catal. 2019;9:5119–5135. doi: 10.1021/acscatal.9b00307. DOI

Nielsen M, et al. Collective action of water molecules in zeolite dealumination. Catal. Sci.Technol. 2019;9:3721–3725. doi: 10.1039/C9CY00624A. DOI

Ennaert T, et al. Conceptual frame rationalizing the self-stabilization of H-USY zeolites in hot liquid water. ACS Catal. 2014;5:754–768. doi: 10.1021/cs501559s. DOI

Ravenelle RM, et al. Stability of zeolites in hot liquid water. J. Phys. Chem. C. 2010;114:19582–19595. doi: 10.1021/jp104639e. DOI

Prodinger S, et al. Improving stability of zeolites in aqueous phase via selective removal of structural defects. J. Am. Chem. Soc. 2016;138:4408–4415. doi: 10.1021/jacs.5b12785. PubMed DOI

Xiong H, Pham HN, Datye AK. Hydrothermally stable heterogeneous catalysts for conversion of biorenewables. Green Chem. 2014;16:4627–4643. doi: 10.1039/C4GC01152J. DOI

Vjunov A, et al. Impact of aqueous medium on zeolite framework integrity. Chem. Mater. 2015;27:3533–3545. doi: 10.1021/acs.chemmater.5b01238. DOI

Roth WJ, et al. A family of zeolites with controlled pore size prepared using a top-down method. Nat. Chem. 2013;5:628–633. doi: 10.1038/nchem.1662. PubMed DOI

Eliášová P, et al. The ADOR mechanism for the synthesis of new zeolites. Chem. Soc. Rev. 2015;44:7177–7206. doi: 10.1039/C5CS00045A. PubMed DOI

Zhang L, Chen K, Chen B, White JL, Resasco DE. Factors that determine zeolite stability in hot liquid water. J. Am. Chem. Soc. 2015;137:11810–11819. doi: 10.1021/jacs.5b07398. PubMed DOI

Mazur M, et al. Synthesis of ‘unfeasible’ zeolites. Nat. Chem. 2015;8:58. doi: 10.1038/nchem.2374. PubMed DOI

Bignami GPM, et al. Synthesis, isotopic enrichment, and solid-state nmr characterization of zeolites derived from the assembly, disassembly, organization, reassembly process. J. Am. Chem. Soc. 2017;139:5140–5148. doi: 10.1021/jacs.7b00386. PubMed DOI PMC

Klemperer WG. 17O-NMR spectroscopy as a structural probe. Angew. Chem. 1978;17:246–254. doi: 10.1002/anie.197802461. DOI

Borfecchia E, et al. Cu-CHA – a model system for applied selective redox catalysis. Chem. Soc. Rev. 2018;47:8097–8133. doi: 10.1039/C8CS00373D. PubMed DOI

Groothaert MH, Smeets PJ, Sels BF, Jacobs PA, Schoonheydt RA. Selective oxidation of methane by the bis(μ-oxo)dicopper core stabilized on ZSM-5 and mordenite zeolites. J. Am. Chem. Soc. 2005;127:1394–1395. doi: 10.1021/ja047158u. PubMed DOI

Pappas DK, et al. Methane to methanol: structure–activity relationships for Cu-CHA. J. Am. Chem. Soc. 2017;139:14961–14975. doi: 10.1021/jacs.7b06472. PubMed DOI

De Wispelaere K, et al. Insight into the effect of water on the methanol-to-olefins conversion in H-SAPO-34 from molecular simulations and in situ microspectroscopy. ACS Catal. 2016;6:1991–2002. doi: 10.1021/acscatal.5b02139. DOI

De Wispelaere K, Ensing B, Ghysels A, Meijer EJ, Van Speybroeck V. Complex reaction environments and competing reaction mechanisms in zeolite catalysis: insights from advanced molecular dynamics. Chem. A Eur. J. 2015;21:9385–9396. doi: 10.1002/chem.201500473. PubMed DOI

Cypryk M, Apeloig Y. Mechanism of the acid-catalyzed Si–O bond cleavage in siloxanes and siloxanols. a theoretical study. Organometallics. 2002;21:2165–2175. doi: 10.1021/om011055s. DOI

Hühn C, Erlebach A, Mey D, Wondraczek L, Sierka M. Ab Initio energetics of Si–O bond cleavage. J. Comput. Chem. 2017;38:2349–2353. doi: 10.1002/jcc.24892. PubMed DOI

Pelmenschikov A, Leszczynski J, Pettersson LGM. Mechanism of dissolution of neutral silica surfaces: including effect of self-healing. J. Phys. Chem. A. 2001;105:9528–9532. doi: 10.1021/jp011820g. DOI

Tamada O, Gibbs GV, Boisen MB, Jr, Rimstidt JD. Silica dissolution catalyzed by NaOH: reaction kinetics and energy barriers simulated by quantum mechanical strategies. J. Mineral. Petrol. Sci. 2012;107:87–98. doi: 10.2465/jmps.110909. DOI

Heard CJ, Grajciar L, Nachtigall P. The effect of water on the validity of Löwenstein’s rule. Chem. Sci. 2019 doi: 10.1039/C9SC00725C. PubMed DOI PMC

Vener MV, Rozanska X, Sauer J. Protonation of water clusters in the cavities of acidic zeolites: (H2O)n·H-chabazite, n = 1–4. Phys. Chem. Chem. Phys. 2009;11:1702–1712. doi: 10.1039/b817905k. PubMed DOI

Schwarz K, Nusterer E, Blöchl PE. First-principles molecular dynamics study of small molecules in zeolites. Catal. Today. 1999;50:501–509. doi: 10.1016/S0920-5861(98)00484-2. DOI

Vjunov A, et al. Tracking the chemical transformations at the Brønsted acid site upon water-induced deprotonation in a zeolite pore. Chem. Mater. 2017;29:9030–9042. doi: 10.1021/acs.chemmater.7b02133. DOI

Silaghi M-C, et al. Regioselectivity of Al–O bond hydrolysis during zeolites dealumination unified by Brønsted–evans–polanyi relationship. ACS Catal. 2015;5:11–15. doi: 10.1021/cs501474u. DOI

Xu Z, Stebbins JF. Oxygen sites in the zeolite stilbite: a comparison of static, MAS, VAS, DAS and triple quantum MAS NMR techniques. Solid State Nucl. Magn. Reson. 1998;11:243–251. doi: 10.1016/S0926-2040(97)00019-2. PubMed DOI

Pingel UT, et al. High-field 17O NMR studies of the SiOAl bond in solids. Chem. Phys. Lett. 1998;294:345–350. doi: 10.1016/S0009-2614(98)00847-1. DOI

Peng L, Liu Y, Kim N, Readman JE, Grey CP. Detection of Brønsted acid sites in zeolite HY with high-field 17O-MAS-NMR techniques. Nat. Mater. 2005;4:216–219. doi: 10.1038/nmat1332. PubMed DOI

Zimmermann NER, Jakobtorweihen S, Beerdsen E, Smit B, Keil FJ. In-depth study of the influence of host-framework flexibility on the diffusion of small gas molecules in one-dimensional zeolitic pore systems. J. Phys. Chem. C. 2007;111:17370–17381. doi: 10.1021/jp0746446. DOI

Kapko V, Dawson C, Treacy MMJ, Thorpe MF. Flexibility of ideal zeolite frameworks. Phys. Chem. Chem. Phys. 2010;12:8531–8541. doi: 10.1039/c003977b. PubMed DOI

Morris RE, Brammer L. Coordination change, lability and hemilability in metal-organic frameworks. Chem. Soc. Rev. 2017;46:5444–5462. doi: 10.1039/C7CS00187H. PubMed DOI

Frydman L, Harwood JS. Isotropic spectra of half-integer quadrupolar spins from bidimensional magic-angle spinning NMR. J. Am. Chem. Soc. 1995;117:5367–5368. doi: 10.1021/ja00124a023. DOI

Amoureux J-P, Fernandez C, Steuernagel S. Z Filtering in MQMAS NMR. J. Magn. Reson. Ser. A. 1996;123:116–118. doi: 10.1006/jmra.1996.0221. PubMed DOI

Pike KJ, Malde RP, Ashbrook SE, McManus J, Wimperis S. Multiple-quantum MAS NMR of quadrupolar nuclei. Do five-, seven- and nine-quantum experiments yield higher resolution than the three-quantum experiment? Solid State Nucl. Magn. Reson. 2000;16:203–215. doi: 10.1016/S0926-2040(00)00081-3. PubMed DOI

Pronk S, et al. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics. 2013;29:845–854. doi: 10.1093/bioinformatics/btt055. PubMed DOI PMC

Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B. 1993;47:558–561. doi: 10.1103/PhysRevB.47.558. PubMed DOI

Kresse G, Hafner J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B. 1994;49:14251–14269. doi: 10.1103/PhysRevB.49.14251. PubMed DOI

Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996;6:15–50. doi: 10.1016/0927-0256(96)00008-0. PubMed DOI

Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 1996;54:11169–11186. doi: 10.1103/PhysRevB.54.11169. PubMed DOI

Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI

Grimme S, Antony J, Ehrlich S, Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010;132:154104. doi: 10.1063/1.3382344. PubMed DOI

Grimme S, Ehrlich S, Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011;32:1456–1465. doi: 10.1002/jcc.21759. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace