Machine learning potentials for complex aqueous systems made simple
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34518232
PubMed Central
PMC8463804
DOI
10.1073/pnas.2110077118
PII: 2110077118
Knihovny.cz E-zdroje
- Klíčová slova
- aqueous phase, machine learning potentials, solid–liquid systems,
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Simulation techniques based on accurate and efficient representations of potential energy surfaces are urgently needed for the understanding of complex systems such as solid-liquid interfaces. Here we present a machine learning framework that enables the efficient development and validation of models for complex aqueous systems. Instead of trying to deliver a globally optimal machine learning potential, we propose to develop models applicable to specific thermodynamic state points in a simple and user-friendly process. After an initial ab initio simulation, a machine learning potential is constructed with minimum human effort through a data-driven active learning protocol. Such models can afterward be applied in exhaustive simulations to provide reliable answers for the scientific question at hand or to systematically explore the thermal performance of ab initio methods. We showcase this methodology on a diverse set of aqueous systems comprising bulk water with different ions in solution, water on a titanium dioxide surface, and water confined in nanotubes and between molybdenum disulfide sheets. Highlighting the accuracy of our approach with respect to the underlying ab initio reference, the resulting models are evaluated in detail with an automated validation protocol that includes structural and dynamical properties and the precision of the force prediction of the models. Finally, we demonstrate the capabilities of our approach for the description of water on the rutile titanium dioxide (110) surface to analyze the structure and mobility of water on this surface. Such machine learning models provide a straightforward and uncomplicated but accurate extension of simulation time and length scales for complex systems.
Charles University Faculty of Mathematics and Physics 121 16 Prague 2 Czech Republic
Department of Physics and Astronomy University College London London WC1E 6BT United Kingdom
London Centre for Nanotechnology University College London London WC1E 6BT United Kingdom
Thomas Young Centre University College London London WC1E 6BT United Kingdom
Yusuf Hamied Department of Chemistry University of Cambridge Cambridge CB2 1EW United Kingdom
Yusuf Hamied Department of Chemistry University of Cambridge Cambridge CB2 1EW United Kingdom;
Zobrazit více v PubMed
Zaera F., Probing liquid/solid interfaces at the molecular level. Chem. Rev. 112, 2920–2986 (2012). PubMed
Björneholm O., et al. ., Water at interfaces. Chem. Rev. 116, 7698–7726 (2016). PubMed
Behler J., Perspective: Machine learning potentials for atomistic simulations. J. Chem. Phys. 145, 170901 (2016). PubMed
Butler K. T., Davies D. W., Cartwright H., Isayev O., Walsh A., Machine learning for molecular and materials science. Nature 559, 547–555 (2018). PubMed
Deringer V. L., Caro M. A., Csányi G., Machine learning interatomic potentials as emerging tools for materials science. Adv. Mater. 31, e1902765 (2019). PubMed
Kang P. L., Shang C., Liu Z. P., Large-scale atomic simulation via machine learning potentials constructed by global potential energy surface exploration. Acc. Chem. Res. 53, 2119–2129 (2020). PubMed
Behler J., Four generations of high-dimensional neural network potentials. Chem. Rev., 10.1021/acs.chemrev.0c00868 (2021). PubMed
Morawietz T., Singraber A., Dellago C., Behler J., How van der Waals interactions determine the unique properties of water. Proc. Natl. Acad. Sci. U.S.A. 113, 8368–8373 (2016). PubMed PMC
Cheng B., Engel E. A., Behler J., Dellago C., Ceriotti M., Ab initio thermodynamics of liquid and solid water. Proc. Natl. Acad. Sci. U.S.A. 116, 1110–1115 (2019). PubMed PMC
Gartner T. E. 3rd, et al. ., Signatures of a liquid-liquid transition in an ab initio deep neural network model for water. Proc. Natl. Acad. Sci. U.S.A. 117, 26040–26046 (2020). PubMed PMC
Deringer V. L., et al. ., Origins of structural and electronic transitions in disordered silicon. Nature 589, 59–64 (2021). PubMed
Jinnouchi R., Lahnsteiner J., Karsai F., Kresse G., Bokdam M., Phase transitions of hybrid perovskites simulated by machine-learning force fields trained on the fly with Bayesian inference. Phys. Rev. Lett. 122, 225701 (2019). PubMed
Behler J., Parrinello M., Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 98, 146401 (2007). PubMed
Ghasemi S. A., Hofstetter A., Saha S., Goedecker S., Interatomic potentials for ionic systems with density functional accuracy based on charge densities obtained by a neural network. Phys. Rev. B Condens. Matter Mater. Phys. 92, 045131 (2015).
Schütt K. T., Arbabzadah F., Chmiela S., Müller K. R., Tkatchenko A., Quantum-chemical insights from deep tensor neural networks. Nat. Commun. 8, 13890 (2017). PubMed PMC
Zhang L., Han J., Wang H., Car R., E W., Deep potential molecular dynamics: A scalable model with the accuracy of quantum mechanics. Phys. Rev. Lett. 120, 143001 (2018). PubMed
Unke O. T., Meuwly M., PhysNet: A neural network for predicting energies, forces, dipole moments, and partial charges. J. Chem. Theory Comput. 15, 3678–3693 (2019). PubMed
Bartók A. P., Payne M. C., Kondor R., Csányi G., Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons. Phys. Rev. Lett. 104, 136403 (2010). PubMed
Rupp M., Tkatchenko A., Müller K. R., von Lilienfeld O. A., Fast and accurate modeling of molecular atomization energies with machine learning. Phys. Rev. Lett. 108, 058301 (2012). PubMed
Thompson A. P., Swiler L. P., Trott C. R., Foiles S. M., Tucker G. J., Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials. J. Comput. Phys. 285, 316–330 (2015).
Shapeev A. V., Moment tensor potentials: A class of systematically improvable interatomic potentials. Multiscale Model. Simul. 14, 1153–1173 (2015).
Li Z., Kermode J. R., De Vita A., Molecular dynamics with on-the-fly machine learning of quantum-mechanical forces. Phys. Rev. Lett. 114, 096405 (2015). PubMed
Chmiela S., et al. ., Machine learning of accurate energy-conserving molecular force fields. Sci. Adv. 3, e1603015 (2017). PubMed PMC
Gastegger M., Behler J., Marquetand P., Machine learning molecular dynamics for the simulation of infrared spectra. Chem. Sci. (Camb.) 8, 6924–6935 (2017). PubMed PMC
Podryabinkin E. V., Shapeev A. V., Active learning of linearly parametrized interatomic potentials. Comput. Mater. Sci. 140, 171–180 (2017).
Zhang L., Lin D.-Y., Wang H., Car R., E W., Active learning of uniformly accurate interatomic potentials for materials simulation. Phys. Rev. Mater. 3, 023804 (2019).
Smith J. S., Nebgen B., Lubbers N., Isayev O., Roitberg A. E., Less is more: Sampling chemical space with active learning. J. Chem. Phys. 148, 241733 (2018). PubMed
Deringer V. L., Pickard C. J., Csányi G., Data-driven learning of total and local energies in elemental boron. Phys. Rev. Lett. 120, 156001 (2018). PubMed
Schütt K. T., Sauceda H. E., Kindermans P. J., Tkatchenko A., Müller K. R., SchNet - A deep learning architecture for molecules and materials. J. Chem. Phys. 148, 241722 (2018). PubMed
Musil F., et al. ., Machine learning for the structure-energy-property landscapes of molecular crystals. Chem. Sci. (Camb.) 9, 1289–1300 (2017). PubMed PMC
Schran C., Behler J., Marx D., Automated fitting of neural network potentials at coupled cluster accuracy: Protonated water clusters as testing ground. J. Chem. Theory Comput. 16, 88–99 (2020). PubMed
Bartók A. P., Kermode J., Bernstein N., Csányi G., Machine learning a general-purpose interatomic potential for silicon. Phys. Rev. X 8, 041048 (2018).
Rowe P., Deringer V. L., Gasparotto P., Csányi G., Michaelides A., An accurate and transferable machine learning potential for carbon. J. Chem. Phys. 153, 034702 (2020). PubMed
Deringer V. L., Caro M. A., Csányi G., A general-purpose machine-learning force field for bulk and nanostructured phosphorus. Nat. Commun. 11, 5461 (2020). PubMed PMC
Natarajan S. K., Behler J., Neural network molecular dynamics simulations of solid-liquid interfaces: Water at low-index copper surfaces. Phys. Chem. Chem. Phys. 18, 28704–28725 (2016). PubMed
Hellström M., Quaranta V., Behler J., One-dimensional vs. two-dimensional proton transport processes at solid-liquid zinc-oxide-water interfaces. Chem. Sci. (Camb.) 10, 1232–1243 (2018). PubMed PMC
Marcos F., et al. , Free energy of proton transfer at the water-TiO2 interface from: Ab initio deep potential molecular dynamics. Chem. Sci. (Camb.) 11, 2335–2341 (2020). PubMed PMC
Ghorbanfekr H., Behler J., Peeters F. M., Insights into water permeation through hBN nanocapillaries by ab initio machine learning molecular dynamics simulations. J. Phys. Chem. Lett. 11, 7363–7370 (2020). PubMed
Artrith N., Machine learning for the modeling of interfaces in energy storage and conversion materials. J. Phys. Energy 1, 032002 (2019).
Jinnouchi R., Miwa K., Karsai F., Kresse G., Asahi R., On-the-fly active learning of interatomic potentials for large-scale atomistic simulations. J. Phys. Chem. Lett. 11, 6946–6955 (2020). PubMed
Vandermause J., et al. ., On-the-fly active learning of interpretable Bayesian force fields for atomistic rare events. npj Comput. Mater. 6, 1–11 (2020).
Bisbo M. K., Hammer B., Efficient global structure optimization with a machine-learned surrogate model. Phys. Rev. Lett. 124, 086102 (2020). PubMed
Schran C., Marsalek O., MarsalekGroup/aml: AML Python package. GitHub. https://github.com/MarsalekGroup/aml. Deposited 31 May 2021.
Schran C., Brezina K., Marsalek O., Committee neural network potentials control generalization errors and enable active learning. J. Chem. Phys. 153, 104105 (2020). PubMed
Behler J., First principles neural network potentials for reactive simulations of large molecular and condensed systems. Angew. Chem. Int. Ed. Engl. 56, 12828–12840 (2017). PubMed
Artrith N., Morawietz T., Behler J., High-dimensional neural-network potentials for multicomponent systems: Applications to zinc oxide. Phys. Rev. B Condens. Matter Mater. Phys. 83, 153101 (2011).
Grisafi A., Ceriotti M., Incorporating long-range physics in atomic-scale machine learning. J. Chem. Phys. 151, 204105 (2019). PubMed
Ko T. W., Finkler J. A., Goedecker S., Behler J., A fourth-generation high-dimensional neural network potential with accurate electrostatics including non-local charge transfer. Nat. Commun. 12, 398 (2021). PubMed PMC
Yue S., et al. ., When do short-range atomistic machine-learning models fall short? J. Chem. Phys. 154, 034111 (2021). PubMed
Imbalzano G., et al. ., Uncertainty estimation for molecular dynamics and sampling. J. Chem. Phys. 154, 074102 (2021). PubMed
Behler J., Atom-centered symmetry functions for constructing high-dimensional neural network potentials. J. Chem. Phys. 134, 074106 (2011). PubMed
Grossman J. C., Schwegler E., Draeger E. W., Gygi F., Galli G., Towards an assessment of the accuracy of density functional theory for first principles simulations of water. J. Chem. Phys. 120, 300–311 (2004). PubMed
R. A. DiStasio, Jr, Santra B., Li Z., Wu X., Car R., The individual and collective effects of exact exchange and dispersion interactions on the ab initio structure of liquid water. J. Chem. Phys. 141, 084502 (2014). PubMed
Forster-Tonigold K., Groß A., Dispersion corrected RPBE studies of liquid water. J. Chem. Phys. 141, 064501 (2014). PubMed
Gillan M. J., Alfè D., Michaelides A., Perspective: How good is DFT for water? J. Chem. Phys. 144, 130901 (2016). PubMed
Chen M., et al. ., Ab initio theory and modeling of water. Proc. Natl. Acad. Sci. U.S.A. 114, 10846–10851 (2017). PubMed PMC
Marsalek O., Markland T. E., Quantum dynamics and spectroscopy of ab initio liquid water: The interplay of nuclear and electronic quantum effects. J. Phys. Chem. Lett. 8, 1545–1551 (2017). PubMed
Brandenburg J. G., Zen A., Alfè D., Michaelides A., Interaction between water and carbon nanostructures: How good are current density functional approximations? J. Chem. Phys. 151, 164702 (2019). PubMed
Schienbein P., Marx D., Supercritical water is not hydrogen bonded. Angew. Chem. Int. Ed. Engl. 59, 18578–18585 (2020). PubMed PMC
Sharkas K., et al. ., Self-interaction error overbinds water clusters but cancels in structural energy differences. Proc. Natl. Acad. Sci. U.S.A. 117, 11283–11288 (2020). PubMed PMC
Wagle K., et al. ., Self-interaction correction in water-ion clusters. J. Chem. Phys. 154, 094302 (2021). PubMed
Duignan T. T., Kathmann S. M., Schenter G. K., Mundy C. J., Toward a first-principles framework for predicting collective properties of electrolytes. Acc. Chem. Res. 54, 2833–2843 (2021). PubMed
Pang C. L., Lindsay R., Thornton G., Structure of clean and adsorbate-covered single-crystal rutile TiO2 surfaces. Chem. Rev. 113, 3887–3948 (2013). PubMed
Diebold U., Perspective: A controversial benchmark system for water-oxide interfaces: H2O/TiO2(110). J. Chem. Phys. 147, 040901 (2017). PubMed
Předota M., Cummings P. T., Wesolowski D. J., Electric double layer at the rutile (110) surface. 3. Inhomogeneous viscosity and diffusivity measurement by computer simulations. J. Phys. Chem. C 111, 3071–3079 (2007).
Li M. L., Zhang C., Thornton G., Michaelides A., Structure and dynamics of liquid water on rutile TiO2(110). Phys. Rev. B Condens. Matter Mater. Phys. 82, 161415 (2010).
Spencer E. C., et al. ., Inelastic neutron scattering study of confined surface water on rutile nanoparticles. J. Phys. Chem. A 113, 2796–2800 (2009). PubMed
English N. J., Kavathekar R. S., MacElroy J. M. D., Hydrogen bond dynamical properties of adsorbed liquid water monolayers with various TiO2 interfaces. Mol. Phys. 110, 2919–2925 (2012).
Agosta L., Brandt E. G., Lyubartsev A. P., Diffusion and reaction pathways of water near fully hydrated TiO2 surfaces from ab initio molecular dynamics. J. Chem. Phys. 147, 024704 (2017). PubMed
Klimeš J., Bowler D. R., Michaelides A., Chemical accuracy for the van der Waals density functional. J. Phys. Condens. Matter 22, 022201 (2010). PubMed
Pluhařová E., Jungwirth P., Matubayasi N., Marsalek O., Structure and dynamics of the hydration shell: Spatially decomposed time correlation approach. J. Chem. Theory Comput. 15, 803–812 (2019). PubMed
Heard C. J., et al. ., Fast room temperature lability of aluminosilicate zeolites. Nat. Commun. 10, 4690 (2019). PubMed PMC
Singraber A., Morawietz T., Behler J., Dellago C., Parallel multistream training of high-dimensional neural network potentials. J. Chem. Theory Comput. 15, 3075–3092 (2019). PubMed
Schran C., water-ice-group/simple-MLP: Supporting data for published paper. Zenodo. 10.5281/zenodo.5235246. Deposited 23 August 2021. DOI
Kühne T. D., et al. ., CP2K: An electronic structure and molecular dynamics software package - Quickstep: Efficient and accurate electronic structure calculations. J. Chem. Phys. 152, 194103 (2020). PubMed
Bussi G., Donadio D., Parrinello M., Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007). PubMed
Reducing the Cost of Neural Network Potential Generation for Reactive Molecular Systems