machine learning potentials
Dotaz
Zobrazit nápovědu
Článek je věnován použití metod strojového učení vyvintitých v průběhu posledních patnácti let v rámci umělé inteligence pro podporu lékařské diagnostiky. Úvodem jsou vysvětleny principy strojového učení z klasifikovaných příkladů. Pozornost je především věnována počítačovému programu [2,4,3], který je uživatelsky příjemnou implementací algoritmu Intelligent Dichotomizer ID3 [10,11]. Navazující části prověřují možnost využít popsaný postup pro zpracování a vyhodnocení EEG, přesněfi kmenových sluchových evokovaných potenciálů (BAEP). Výsledným programem navržený rozhodovací strom je schopen identifikovat pacienty s nálezem lišícím se od normálu s přesností mírně nad 90%.
BACKGROUND: Presentation of visual stimuli can induce changes in EEG signals that are typically detectable by averaging together data from multiple trials for individual participant analysis as well as for groups or conditions analysis of multiple participants. This study proposes a new method based on the discrete wavelet transform with Huffman coding and machine learning for single-trial analysis of evenal (ERPs) and classification of different visual events in the visual object detection task. METHODS: EEG single trials are decomposed with discrete wavelet transform (DWT) up to the [Formula: see text] level of decomposition using a biorthogonal B-spline wavelet. The coefficients of DWT in each trial are thresholded to discard sparse wavelet coefficients, while the quality of the signal is well maintained. The remaining optimum coefficients in each trial are encoded into bitstreams using Huffman coding, and the codewords are represented as a feature of the ERP signal. The performance of this method is tested with real visual ERPs of sixty-eight subjects. RESULTS: The proposed method significantly discards the spontaneous EEG activity, extracts the single-trial visual ERPs, represents the ERP waveform into a compact bitstream as a feature, and achieves promising results in classifying the visual objects with classification performance metrics: accuracies 93.60[Formula: see text], sensitivities 93.55[Formula: see text], specificities 94.85[Formula: see text], precisions 92.50[Formula: see text], and area under the curve (AUC) 0.93[Formula: see text] using SVM and k-NN machine learning classifiers. CONCLUSION: The proposed method suggests that the joint use of discrete wavelet transform (DWT) with Huffman coding has the potential to efficiently extract ERPs from background EEG for studying evoked responses in single-trial ERPs and classifying visual stimuli. The proposed approach has O(N) time complexity and could be implemented in real-time systems, such as the brain-computer interface (BCI), where fast detection of mental events is desired to smoothly operate a machine with minds.
S postupující digitalizací patologie se do popředí zájmu dostávají i aplikace metod strojového učení a umělé inteligence. Výzkum a vývoj v této oblasti je velmi rychlý, ale aplikace učících systémů v klinické praxi stále zaostávají. Cílem tohoto textu je přiblížit proces tvorby a nasazení učících systémů v digitální patologii. Začneme popisem základních vlastností dat produkovaných v rámci digitální patologie. Konkrétně pojednáme o skenerech a skenování vzorků, o ukládání a přenosu dat, o kontrole jejich kvality a přípravě pro zpracování pomocí učících systémů, zejména o anotacích. Naším cílem je prezentovat aktuální přístupy k řešení technických problémů a zároveň upozornit na úskalí, na která lze narazit při zpracování dat z digitální patologie. V první části také naznačíme, jak vypadají aktuální softwarová řešení pro prohlížení naskenovaných vzorků a implementace diagnostických postupů zahrnujících učící systémy. Ve druhé části textu popíšeme obvyklé úlohy digitální patologie a naznačíme obvyklé přístupy k jejich řešení. V této části zejména vysvětlíme, jak je nutné modifikovat standardní metody strojového učení pro zpracování velkých skenů a pojednáme o konkrétních aplikacích v diagnostice. Na závěr textu poskytneme rychlý náhled dalšího možného vývoje učících systémů v digitální patologii. Zejména ilustrujeme podstatu přechodu na velké základní modely a naznačíme problematiku virtuálního barvení vzorků. Doufáme, že tento text přispěje k lepší orientaci v rapidně se vyvíjející oblasti strojového učení v digitální patologii a tím přispěje k rychlejší adopci učících metod v této oblasti.
With the advancing digitalization of pathology, the application of machine learning and artificial intelligence methods is becoming increasingly important. Research and development in this field are progressing rapidly, but the clinical implementation of learning systems still lags behind. The aim of this text is to provide an overview of the process of developing and deploying learning systems in digital pathology. We begin by describing the fundamental characteristics of data produced in digital pathology. Specifically, we discuss scanners and sample scanning, data storage and transmission, quality control, and preparation for processing by learning systems, with a particular focus on annotations. Our goal is to present current approaches to addressing technical challenges while also highlighting potential pitfalls in processing digital pathology data. In the first part of the text, we also outline existing software solutions for viewing scanned samples and implementing diagnostic procedures that incorporate learning systems. In the second part of the text, we describe common tasks in digital pathology and outline typical approaches to solving them. Here, we explain the necessary modifications to standard machine learning methods for processing large scans and discuss specific diagnostic applications. Finally, we provide a brief overview of the potential future development of learning systems in digital pathology. We illustrate the transition to large foundational models and introduce the topic of virtual staining of samples. We hope that this text will contribute to a better understanding of the rapidly evolving field of machine learning in digital pathology and, in turn, facilitate the faster adoption of learning-based methods in this domain.
The utilization of prescient quality marks to help clinical choice is turning out to be increasingly significant. Profound learning has a gigantic potential in the expectation of aggregate from quality articulation profiles. Nonetheless, neural organizations are seen as secret elements, where precise forecasts are given with no clarification. The necessities for these models to become interpretable are expanding, particularly in the clinical field.
- MeSH
- lidé MeSH
- neuronové sítě MeSH
- strojové učení MeSH
- umělá inteligence * MeSH
- výpočetní biologie MeSH
- Check Tag
- lidé MeSH
OBJECTIVES: Class imbalance in datasets is one of the challenges of machine learning (ML) in medical image analysis. We employed synthetic data to overcome class imbalance when segmenting bitewing radiographs as an exemplary task for using ML. METHODS: After segmenting bitewings into classes, i.e. dental structures, restorations, and background, the pixel-level representation of implants in the training set (1543 bitewings) and testing set (177 bitewings) was 0.03 % and 0.07 %, respectively. A diffusion model and a generative adversarial network (pix2pix) were used to generate a dataset synthetically enriched in implants. A U-Net segmentation model was trained on (1) the original dataset, (2) the synthetic dataset, (3) on the synthetic dataset and fine-tuned on the original dataset, or (4) on a dataset which was naïvely oversampled with images containing implants. RESULTS: U-Net trained on the original dataset was unable to segment implants in the testing set. Model performance was significantly improved by naïve over-sampling, achieving the highest precision. The model trained only on synthetic data performed worse than naïve over-sampling in all metrics, but with fine-tuning on original data, it resulted in the highest Dice score, recall, F1 score and ROC AUC, respectively. The performance on other classes than implants was similar for all strategies except training only on synthetic data, which tended to perform worse. CONCLUSIONS: The use of synthetic data alone may deteriorate the performance of segmentation models. However, fine-tuning on original data could significantly enhance model performance, especially for heavily underrepresented classes. CLINICAL SIGNIFICANCE: This study explored the use of synthetic data to enhance segmentation of bitewing radiographs, focusing on underrepresented classes like implants. Pre-training on synthetic data followed by fine-tuning on original data yielded the best results, highlighting the potential of synthetic data to advance AI-driven dental imaging and ultimately support clinical decision-making.
- MeSH
- lidé MeSH
- počítačové zpracování obrazu * metody MeSH
- strojové učení * MeSH
- zubní implantáty MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Covering: up to the end of 2020. The machine learning field can be defined as the study and application of algorithms that perform classification and prediction tasks through pattern recognition instead of explicitly defined rules. Among other areas, machine learning has excelled in natural language processing. As such methods have excelled at understanding written languages (e.g. English), they are also being applied to biological problems to better understand the "genomic language". In this review we focus on recent advances in applying machine learning to natural products and genomics, and how those advances are improving our understanding of natural product biology, chemistry, and drug discovery. We discuss machine learning applications in genome mining (identifying biosynthetic signatures in genomic data), predictions of what structures will be created from those genomic signatures, and the types of activity we might expect from those molecules. We further explore the application of these approaches to data derived from complex microbiomes, with a focus on the human microbiome. We also review challenges in leveraging machine learning approaches in the field, and how the availability of other "omics" data layers provides value. Finally, we provide insights into the challenges associated with interpreting machine learning models and the underlying biology and promises of applying machine learning to natural product drug discovery. We believe that the application of machine learning methods to natural product research is poised to accelerate the identification of new molecular entities that may be used to treat a variety of disease indications.
- MeSH
- biologické přípravky * chemie farmakologie MeSH
- biosyntetické dráhy genetika MeSH
- genomika * MeSH
- lidé MeSH
- mikrobiota MeSH
- objevování léků MeSH
- strojové učení * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Nowadays, the vastly increasing demand for novel biotechnological products is supported by the continuous development of biocatalytic applications that provide sustainable green alternatives to chemical processes. The success of a biocatalytic application is critically dependent on how quickly we can identify and characterize enzyme variants fitting the conditions of industrial processes. While miniaturization and parallelization have dramatically increased the throughput of next-generation sequencing systems, the subsequent characterization of the obtained candidates is still a limiting process in identifying the desired biocatalysts. Only a few commercial microfluidic systems for enzyme analysis are currently available, and the transformation of numerous published prototypes into commercial platforms is still to be streamlined. This review presents the state-of-the-art, recent trends, and perspectives in applying microfluidic tools in the functional and structural analysis of biocatalysts. We discuss the advantages and disadvantages of available technologies, their reproducibility and robustness, and readiness for routine laboratory use. We also highlight the unexplored potential of microfluidics to leverage the power of machine learning for biocatalyst development.
Pathophysiological recordings of patients measured from various testing methods are frequently used in the medical field for determining symptoms as well as for probability prediction for selected diseases. There are numerous symptoms among the Parkinson's disease (PD) population, however changes in speech and articulation – is potentially the most significant biomarker. This article is focused on PD diagnosis classification based on their speech signals using pattern recognition methods (AdaBoost, Bagged trees, Quadratic SVM and k-NN). The dataset investigated in the article consists of 30 PD and 30 HC individuals' voice measurements, with each individual being represented with 2 recordings within the dataset. Training signals for PD and HC underwent an extraction of relatively well-discriminating features relating to energy and spectral speech properties. Model implementations included a 5-fold cross validation. The accuracy of the values obtained employing the models was calculated using the confusion matrix. The average value of the overall accuracy = 82.3 % and averaged AUC = 0.88 (min. AUC = 0.86) on the available data.
BACKGROUND: An early diagnosis together with an accurate disease progression monitoring of multiple sclerosis is an important component of successful disease management. Prior studies have established that multiple sclerosis is correlated with speech discrepancies. Early research using objective acoustic measurements has discovered measurable dysarthria. METHOD: The objective was to determine the potential clinical utility of machine learning and deep learning/AI approaches for the aiding of diagnosis, biomarker extraction and progression monitoring of multiple sclerosis using speech recordings. A corpus of 65 MS-positive and 66 healthy individuals reading the same text aloud was used for targeted acoustic feature extraction utilizing automatic phoneme segmentation. A series of binary classification models was trained, tuned, and evaluated regarding their Accuracy and area-under-the-curve. RESULTS: The Random Forest model performed best, achieving an Accuracy of 0.82 on the validation dataset and an area-under-the-curve of 0.76 across 5 k-fold cycles on the training dataset. 5 out of 7 acoustic features were statistically significant. CONCLUSION: Machine learning and artificial intelligence in automatic analyses of voice recordings for aiding multiple sclerosis diagnosis and progression tracking seems promising. Further clinical validation of these methods and their mapping onto multiple sclerosis progression is needed, as well as a validating utility for English-speaking populations.
- MeSH
- lidé MeSH
- pilotní projekty MeSH
- řeč * MeSH
- roztroušená skleróza * MeSH
- strojové učení MeSH
- umělá inteligence MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND AND OBJECTIVES: Research in Multiple Sclerosis (MS) has recently focused on extracting knowledge from real-world clinical data sources. This type of data is more abundant than data produced during clinical trials and potentially more informative about real-world clinical practice. However, this comes at the cost of less curated and controlled data sets. In this work we aim to predict disability progression by optimally extracting information from longitudinal patient data in the real-world setting, with a special focus on the sporadic sampling problem. METHODS: We use machine learning methods suited for patient trajectories modeling, such as recurrent neural networks and tensor factorization. A subset of 6682 patients from the MSBase registry is used. RESULTS: We can predict disability progression of patients in a two-year horizon with an ROC-AUC of 0.85, which represents a 32% decrease in the ranking pair error (1-AUC) compared to reference methods using static clinical features. CONCLUSIONS: Compared to the models available in the literature, this work uses the most complete patient history for MS disease progression prediction and represents a step forward towards AI-assisted precision medicine in MS.
- MeSH
- lidé MeSH
- neuronové sítě MeSH
- roztroušená skleróza * MeSH
- strojové učení * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH