-
Je něco špatně v tomto záznamu ?
The application potential of machine learning and genomics for understanding natural product diversity, chemistry, and therapeutic translatability
D. Prihoda, JM. Maritz, O. Klempir, D. Dzamba, CH. Woelk, DJ. Hazuda, DA. Bitton, GD. Hannigan
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články, přehledy
PubMed
33245088
DOI
10.1039/d0np00055h
Knihovny.cz E-zdroje
- MeSH
- biologické přípravky * chemie farmakologie MeSH
- biosyntetické dráhy genetika MeSH
- genomika * MeSH
- lidé MeSH
- mikrobiota MeSH
- objevování léků MeSH
- strojové učení * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Covering: up to the end of 2020. The machine learning field can be defined as the study and application of algorithms that perform classification and prediction tasks through pattern recognition instead of explicitly defined rules. Among other areas, machine learning has excelled in natural language processing. As such methods have excelled at understanding written languages (e.g. English), they are also being applied to biological problems to better understand the "genomic language". In this review we focus on recent advances in applying machine learning to natural products and genomics, and how those advances are improving our understanding of natural product biology, chemistry, and drug discovery. We discuss machine learning applications in genome mining (identifying biosynthetic signatures in genomic data), predictions of what structures will be created from those genomic signatures, and the types of activity we might expect from those molecules. We further explore the application of these approaches to data derived from complex microbiomes, with a focus on the human microbiome. We also review challenges in leveraging machine learning approaches in the field, and how the availability of other "omics" data layers provides value. Finally, we provide insights into the challenges associated with interpreting machine learning models and the underlying biology and promises of applying machine learning to natural product drug discovery. We believe that the application of machine learning methods to natural product research is poised to accelerate the identification of new molecular entities that may be used to treat a variety of disease indications.
Exploratory Science Center Merck and Co Inc Cambridge MA USA
R and D Informatics Solutions MSD Czech Republic s r o Prague Czech Republic
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc22004190
- 003
- CZ-PrNML
- 005
- 20220127145443.0
- 007
- ta
- 008
- 220113s2021 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1039/d0np00055h $2 doi
- 035 __
- $a (PubMed)33245088
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Prihoda, David $u R&D Informatics Solutions, MSD Czech Republic s.r.o., Prague, Czech Republic and Department of Informatics and Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Prague, Czech Republic
- 245 14
- $a The application potential of machine learning and genomics for understanding natural product diversity, chemistry, and therapeutic translatability / $c D. Prihoda, JM. Maritz, O. Klempir, D. Dzamba, CH. Woelk, DJ. Hazuda, DA. Bitton, GD. Hannigan
- 520 9_
- $a Covering: up to the end of 2020. The machine learning field can be defined as the study and application of algorithms that perform classification and prediction tasks through pattern recognition instead of explicitly defined rules. Among other areas, machine learning has excelled in natural language processing. As such methods have excelled at understanding written languages (e.g. English), they are also being applied to biological problems to better understand the "genomic language". In this review we focus on recent advances in applying machine learning to natural products and genomics, and how those advances are improving our understanding of natural product biology, chemistry, and drug discovery. We discuss machine learning applications in genome mining (identifying biosynthetic signatures in genomic data), predictions of what structures will be created from those genomic signatures, and the types of activity we might expect from those molecules. We further explore the application of these approaches to data derived from complex microbiomes, with a focus on the human microbiome. We also review challenges in leveraging machine learning approaches in the field, and how the availability of other "omics" data layers provides value. Finally, we provide insights into the challenges associated with interpreting machine learning models and the underlying biology and promises of applying machine learning to natural product drug discovery. We believe that the application of machine learning methods to natural product research is poised to accelerate the identification of new molecular entities that may be used to treat a variety of disease indications.
- 650 12
- $a biologické přípravky $x chemie $x farmakologie $7 D001688
- 650 _2
- $a biosyntetické dráhy $x genetika $7 D053898
- 650 _2
- $a objevování léků $7 D055808
- 650 12
- $a genomika $7 D023281
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a strojové učení $7 D000069550
- 650 _2
- $a mikrobiota $7 D064307
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a přehledy $7 D016454
- 700 1_
- $a Maritz, Julia M $u Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, USA. geoffrey.hannigan@merck.com
- 700 1_
- $a Klempir, Ondrej $u R&D Informatics Solutions, MSD Czech Republic s.r.o., Prague, Czech Republic
- 700 1_
- $a Dzamba, David $u R&D Informatics Solutions, MSD Czech Republic s.r.o., Prague, Czech Republic
- 700 1_
- $a Woelk, Christopher H $u Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, USA. geoffrey.hannigan@merck.com
- 700 1_
- $a Hazuda, Daria J $u Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, USA. geoffrey.hannigan@merck.com
- 700 1_
- $a Bitton, Danny A $u R&D Informatics Solutions, MSD Czech Republic s.r.o., Prague, Czech Republic
- 700 1_
- $a Hannigan, Geoffrey D $u Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, USA. geoffrey.hannigan@merck.com
- 773 0_
- $w MED00005450 $t Natural product reports $x 1460-4752 $g Roč. 38, č. 6 (2021), s. 1100-1108
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/33245088 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20220113 $b ABA008
- 991 __
- $a 20220127145440 $b ABA008
- 999 __
- $a ok $b bmc $g 1751597 $s 1155339
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2021 $b 38 $c 6 $d 1100-1108 $e 20210623 $i 1460-4752 $m Natural product reports $n Nat Prod Rep $x MED00005450
- LZP __
- $a Pubmed-20220113