• Je něco špatně v tomto záznamu ?

The application potential of machine learning and genomics for understanding natural product diversity, chemistry, and therapeutic translatability

D. Prihoda, JM. Maritz, O. Klempir, D. Dzamba, CH. Woelk, DJ. Hazuda, DA. Bitton, GD. Hannigan

. 2021 ; 38 (6) : 1100-1108. [pub] 20210623

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/bmc22004190

Covering: up to the end of 2020. The machine learning field can be defined as the study and application of algorithms that perform classification and prediction tasks through pattern recognition instead of explicitly defined rules. Among other areas, machine learning has excelled in natural language processing. As such methods have excelled at understanding written languages (e.g. English), they are also being applied to biological problems to better understand the "genomic language". In this review we focus on recent advances in applying machine learning to natural products and genomics, and how those advances are improving our understanding of natural product biology, chemistry, and drug discovery. We discuss machine learning applications in genome mining (identifying biosynthetic signatures in genomic data), predictions of what structures will be created from those genomic signatures, and the types of activity we might expect from those molecules. We further explore the application of these approaches to data derived from complex microbiomes, with a focus on the human microbiome. We also review challenges in leveraging machine learning approaches in the field, and how the availability of other "omics" data layers provides value. Finally, we provide insights into the challenges associated with interpreting machine learning models and the underlying biology and promises of applying machine learning to natural product drug discovery. We believe that the application of machine learning methods to natural product research is poised to accelerate the identification of new molecular entities that may be used to treat a variety of disease indications.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22004190
003      
CZ-PrNML
005      
20220127145443.0
007      
ta
008      
220113s2021 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1039/d0np00055h $2 doi
035    __
$a (PubMed)33245088
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Prihoda, David $u R&D Informatics Solutions, MSD Czech Republic s.r.o., Prague, Czech Republic and Department of Informatics and Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Prague, Czech Republic
245    14
$a The application potential of machine learning and genomics for understanding natural product diversity, chemistry, and therapeutic translatability / $c D. Prihoda, JM. Maritz, O. Klempir, D. Dzamba, CH. Woelk, DJ. Hazuda, DA. Bitton, GD. Hannigan
520    9_
$a Covering: up to the end of 2020. The machine learning field can be defined as the study and application of algorithms that perform classification and prediction tasks through pattern recognition instead of explicitly defined rules. Among other areas, machine learning has excelled in natural language processing. As such methods have excelled at understanding written languages (e.g. English), they are also being applied to biological problems to better understand the "genomic language". In this review we focus on recent advances in applying machine learning to natural products and genomics, and how those advances are improving our understanding of natural product biology, chemistry, and drug discovery. We discuss machine learning applications in genome mining (identifying biosynthetic signatures in genomic data), predictions of what structures will be created from those genomic signatures, and the types of activity we might expect from those molecules. We further explore the application of these approaches to data derived from complex microbiomes, with a focus on the human microbiome. We also review challenges in leveraging machine learning approaches in the field, and how the availability of other "omics" data layers provides value. Finally, we provide insights into the challenges associated with interpreting machine learning models and the underlying biology and promises of applying machine learning to natural product drug discovery. We believe that the application of machine learning methods to natural product research is poised to accelerate the identification of new molecular entities that may be used to treat a variety of disease indications.
650    12
$a biologické přípravky $x chemie $x farmakologie $7 D001688
650    _2
$a biosyntetické dráhy $x genetika $7 D053898
650    _2
$a objevování léků $7 D055808
650    12
$a genomika $7 D023281
650    _2
$a lidé $7 D006801
650    12
$a strojové učení $7 D000069550
650    _2
$a mikrobiota $7 D064307
655    _2
$a časopisecké články $7 D016428
655    _2
$a přehledy $7 D016454
700    1_
$a Maritz, Julia M $u Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, USA. geoffrey.hannigan@merck.com
700    1_
$a Klempir, Ondrej $u R&D Informatics Solutions, MSD Czech Republic s.r.o., Prague, Czech Republic
700    1_
$a Dzamba, David $u R&D Informatics Solutions, MSD Czech Republic s.r.o., Prague, Czech Republic
700    1_
$a Woelk, Christopher H $u Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, USA. geoffrey.hannigan@merck.com
700    1_
$a Hazuda, Daria J $u Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, USA. geoffrey.hannigan@merck.com
700    1_
$a Bitton, Danny A $u R&D Informatics Solutions, MSD Czech Republic s.r.o., Prague, Czech Republic
700    1_
$a Hannigan, Geoffrey D $u Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, USA. geoffrey.hannigan@merck.com
773    0_
$w MED00005450 $t Natural product reports $x 1460-4752 $g Roč. 38, č. 6 (2021), s. 1100-1108
856    41
$u https://pubmed.ncbi.nlm.nih.gov/33245088 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20220113 $b ABA008
991    __
$a 20220127145440 $b ABA008
999    __
$a ok $b bmc $g 1751597 $s 1155339
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 38 $c 6 $d 1100-1108 $e 20210623 $i 1460-4752 $m Natural product reports $n Nat Prod Rep $x MED00005450
LZP    __
$a Pubmed-20220113

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...