Constructing Collective Variables Using Invariant Learned Representations
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
36696574
PubMed Central
PMC9940718
DOI
10.1021/acs.jctc.2c00729
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
On the time scales accessible to atomistic numerical modeling, chemical reactions are considered rare events. Therefore, the atomistic simulations are commonly biased along a low-dimensional representation of a chemical reaction in an atomic structure space, i.e., along the collective variables. However, suitable collective variables are often complicated to guess a priori. We propose a novel method of collective variable discovery based on dimensionality reduction of the atomic representation vectors. These linear-scaling and invariant representations can be either fixed (untrained) or learned by supervised training of the end-to-end machine learning potential. The learned representations are expected to reflect not only the structural but also the energetic features of the system that are transferable to all of the reactive transformation covered by the machine learning potential. We demonstrate our approach on four high-barrier reactions ranging from a simple gas-phase hydrogen jump reaction to complex reactions in periodic models of industrially relevant heterogeneous catalysts. High data efficiency, automatized feature extraction, favorable scaling, and retention of inherent invariances are all properties that are expected to enable fast and largely automatic construction of suitable collective variables even in highly complex reactive scenarios such as reactive/catalytic transformations at solid-liquid interfaces.
Zobrazit více v PubMed
Swendsen R. H.; Wang J.-S. Replica Monte Carlo Simulation of Spin-Glasses. Phys. Rev. Lett. 1986, 57, 2607–2609. 10.1103/PhysRevLett.57.2607. PubMed DOI
Sørensen M. R.; Voter A. F. Temperature-accelerated dynamics for simulation of infrequent events. J. Chem. Phys. 2000, 112, 9599–9606. 10.1063/1.481576. DOI
Laio A.; Parrinello M. Escaping free-energy minima. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 12562–12566. 10.1073/pnas.202427399. PubMed DOI PMC
Torrie G.; Valleau J. Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling. J. Comput. Phys. 1977, 23, 187–199. 10.1016/0021-9991(77)90121-8. DOI
Sidky H.; Chen W.; Ferguson A. L. Machine learning for collective variable discovery and enhanced sampling in biomolecular simulation. Mol. Phys. 2020, 118, e1737742.10.1080/00268976.2020.1737742. DOI
Glielmo A.; Husic B. E.; Rodriguez A.; Clementi C.; Noé F.; Laio A. Unsupervised Learning Methods for Molecular Simulation Data. Chem. Rev. 2021, 121, 9722–9758. 10.1021/acs.chemrev.0c01195. PubMed DOI PMC
Sultan M. M.; Pande V. S. Automated design of collective variables using supervised machine learning. J. Chem. Phys. 2018, 149, 094106.10.1063/1.5029972. PubMed DOI
Chen W.; Tan A. R.; Ferguson A. L. Collective variable discovery and enhanced sampling using autoencoders: Innovations in network architecture and error function design. J. Chem. Phys. 2018, 149, 072312.10.1063/1.5023804. PubMed DOI
Belkacemi Z.; Gkeka P.; Leliévre T.; Stoltz G. Chasing Collective Variables Using Autoencoders and Biased Trajectories. J. Chem. Theory Comput. 2022, 18, 59–78. 10.1021/acs.jctc.1c00415. PubMed DOI
Wehmeyer C.; Noé F. Time-lagged autoencoders: Deep learning of slow collective variables for molecular kinetics. J. Chem. Phys. 2018, 148, 241703.10.1063/1.5011399. PubMed DOI
Duvenaud D.; Maclaurin D.; Aguilera-Iparraguirre J.; Gómez-Bombarelli R.; Hirzel T.; Aspuru-Guzik A.; Adams R. P.. Convolutional Networks on Graphs for Learning Molecular Fingerprints. In 28th Conference on Neural Information Processing Systems (NIPS 2015); Curran Associates, 2015; pp 2224–2232.
Coley C.; Jin W.; Rogers L.; Jamison T. F.; Jaakkola T. S.; Green W. H.; Barzilay R.; Jensen K. F. A graph-convolutional neural network model for the prediction of chemical reactivity. Chem. Sci. 2019, 10, 370–377. 10.1039/C8SC04228D. PubMed DOI PMC
Kensert A.; Bouwmeester R.; Efthymiadis K.; Van Broeck P.; Desmet G.; Cabooter D. Graph Convolutional Networks for Improved Prediction and Interpretability of Chromatographic Retention Data. Anal. Chem. 2021, 93, 15633–15641. 10.1021/acs.analchem.1c02988. PubMed DOI
Schütt K.; Kindermans P. J.; Sauceda H. E. S.; Chmiela S.; Tkatchenko A.; Müller K. R.. SchNet: A continuous-filter convolutional neural network for modeling quantum interactions. In 31st Conference on Neural Information Processing Systems (NIPS 2017); Curran Associates, 2017.
Schütt K. T.; Unke O. T.; Gastegger M. Equivariant message passing for the prediction of tensorial properties and molecular spectra. Proc. Mach. Learn. Res. 2021, 139, 9377–9388.
Batzner S.; Musaelian A.; Sun L.; Geiger M.; Mailoa J. P.; Kornbluth M.; Molinari N.; Smidt T. E.; Kozinsky B. E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials. Nat. Commun. 2022, 13, 2453.10.1038/s41467-022-29939-5. PubMed DOI PMC
Kingma D. P.; Welling M.. Auto-Encoding Variational Bayes arXiv (Statistics.Machine Learning), May 1, 2014, 1312.6114, ver. 10. https://arxiv.org/abs/1312.6114.
Cristovao P.; Nakada H.; Tanimura Y.; Asoh H. Generating In-Between Images Through Learned Latent Space Representation Using Variational Autoencoders. IEEE Access 2020, 8, 149456–149467. 10.1109/ACCESS.2020.3016313. DOI
Huang H.; Li Z.; He R.; Sun Z.; Tan T.. IntroVAE: Introspective Variational Autoencoders for Photographic Image Synthesis. In 32nd Conference on Neural Information Processing Systems (NeurIPS 2018); Curran Associates, 2018.
Gebauer N. W. A.; Gastegger M.; Schütt K.. Symmetry-adapted generation of 3d point sets for the targeted discovery of molecules. In 33rd Conference on Neural Information Processing Systems (NeurIPS 2019); Curran Associates, 2019; pp 7566–7578.
Behler J.; Parrinello M. Generalized Neural-Network Representation of High-Dimensional Potential-Energy Surfaces. Phys. Rev. Lett. 2007, 98, 146401.10.1103/PhysRevLett.98.146401. PubMed DOI
Behler J. Atom-centered symmetry functions for constructing high-dimensional neural network potentials. J. Chem. Phys. 2011, 134, 074106.10.1063/1.3553717. PubMed DOI
Himanen L.; Jäger M. O. J.; Morooka E. V.; Federici Canova F.; Ranawat Y. S.; Gao D. Z.; Rinke P.; Foster A. S. DScribe: Library of descriptors for machine learning in materials science. Comput. Phys. Commun. 2020, 247, 106949.10.1016/j.cpc.2019.106949. DOI
Sun L.; Vandermause J.; Batzner S.; Xie Y.; Clark D.; Chen W.; Kozinsky B. Multitask Machine Learning of Collective Variables for Enhanced Sampling of Rare Events. J. Chem. Theory Comput. 2022, 18, 2341–2353. 10.1021/acs.jctc.1c00143. PubMed DOI
Li Y.; Li L.; Yu J. Applications of Zeolites in Sustainable Chemistry. Chem 2017, 3, 928–949. 10.1016/j.chempr.2017.10.009. DOI
De Wispelaere K.; Ensing B.; Ghysels A.; Meijer E. J.; Van Speybroeck V. Complex Reaction Environments and Competing Reaction Mechanisms in Zeolite Catalysis: Insights from Advanced Molecular Dynamics. Chem. - Eur. J. 2015, 21, 9385–9396. 10.1002/chem.201500473. PubMed DOI
Nielsen M.; Hafreager A.; Brogaard R. Y.; De Wispelaere K.; Falsig H.; Beato P.; Van Speybroeck V.; Svelle S. Collective action of water molecules in zeolite dealumination. Catal. Sci. Technol. 2019, 9, 3721–3725. 10.1039/C9CY00624A. DOI
Heard C. J.; Grajciar L.; Rice C. M.; Pugh S. M.; Nachtigall P.; Ashbrook S. E.; Morris R. E. Fast room temperature lability of aluminosilicate zeolites. Nat. Commun. 2019, 10, 4690.10.1038/s41467-019-12752-y. PubMed DOI PMC
Database of Zeolite Structures. http://www.iza-structure.org/databases/.
Jin M.; Liu M.; Nachtigall P.; Grajciar L.; Heard C. J. Mechanism of Zeolite Hydrolysis under Basic Conditions. Chem. Mater. 2021, 33, 9202–9212. 10.1021/acs.chemmater.1c02799. DOI
Rimola A.; Costa D.; Sodupe M.; Lambert J.-F.; Ugliengo P. Silica Surface Features and Their Role in the Adsorption of Biomolecules: Computational Modeling and Experiments. Chem. Rev. 2013, 113, 4216–4313. 10.1021/cr3003054. PubMed DOI
Jin M.; Veselý O.; Heard C. J.; Kubu M.; Nachtigall P.; Čejka J.; Grajciar L. The Role of Water Loading and Germanium Content in Germanosilicate Hydrolysis. J. Phys. Chem. C 2021, 125, 23744–23757. 10.1021/acs.jpcc.1c06873. DOI
Erlebach A.; Nachtigall P.; Grajciar L. Accurate large-scale simulations of siliceous zeolites by neural network potentials. npj Comput. Mater. 2022, 8, 174.10.1038/s41524-022-00865-w. DOI
Ang S. J.; Wang W.; Schwalbe-Koda D.; Axelrod S.; Gómez-Bombarelli R. Active learning accelerates ab initio molecular dynamics on reactive energy surfaces. Chem 2021, 7, 738–751. 10.1016/j.chempr.2020.12.009. DOI
Saha I.; Erlebach A.; Nachtigall P.; Heard C. J.; Grajciar L. Reactive Neural Network Potential for Aluminosilicate Zeolites and Water: Quantifying the effect of Si/Al ratio on proton solvation and water diffusion in H-FAU. ChemRxiv 2022, 10.26434/chemrxiv-2022-d1sj9. DOI
Promoting transparency and reproducibility in enhanced molecular simulations. Nat. Methods 2019, 16, 670–673. 10.1038/s41592-019-0506-8. PubMed DOI
Tribello G. A.; Bonomi M.; Branduardi D.; Camilloni C.; Bussi G. PLUMED 2: New feathers for an old bird. Phys. Commun. 2014, 185, 604–613. 10.1016/j.cpc.2013.09.018. DOI
Woo T. K.; Margl P. M.; Blöchl P. E.; Ziegler T. A Combined Car-Parrinello QM/MM Implementation for ab Initio Molecular Dynamics Simulations of Extended Systems: Application to Transition Metal Catalysis. J. Phys. Chem. B 1997, 101, 7877–7880. 10.1021/jp9717296. DOI
Grubmüller H.; Heymann B.; Tavan P. Ligand Binding: Molecular Mechanics Calculation of the Streptavidin-Biotin Rupture Force. Science 1996, 271, 997–999. 10.1126/science.271.5251.997. PubMed DOI
Kühne T. D.; Iannuzzi M.; Del Ben M.; Rybkin V. V.; Seewald P.; Stein F.; Laino T.; Khaliullin R. Z.; Schütt O.; Schiffmann F.; Golze D.; Wilhelm J.; Chulkov S.; Bani-Hashemian M. H.; Weber V.; Borštnik U.; Taillefumier M.; Jakobovits A. S.; Lazzaro A.; Pabst H.; Müller T.; Schade R.; Guidon M.; Andermatt S.; Holmberg N.; Schenter G. K.; Hehn A.; Bussy A.; Belleflamme F.; Tabacchi G.; Glöß A.; Lass M.; Bethune I.; Mundy C. J.; Plessl C.; Watkins M.; VandeVondele J.; Krack M.; Hutter J. CP2K: An electronic structure and molecular dynamics software package - Quickstep: Efficient and accurate electronic structure calculations. J. Chem. Phys. 2020, 152, 194103.10.1063/5.0007045. PubMed DOI
Stewart J. Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements. J. Mol. Model. 2007, 13, 1173–213. 10.1007/s00894-007-0233-4. PubMed DOI PMC
Schütt K. T.; Kessel P.; Gastegger M.; Nicoli K. A.; Tkatchenko A.; Müller K.-R. SchNetPack: A Deep Learning Toolbox For Atomistic Systems. J. Chem. Theory Comput. 2019, 15, 448–455. 10.1021/acs.jctc.8b00908. PubMed DOI
Larsen A. H.; Mortensen J. J.; Blomqvist J.; Castelli I. E.; Christensen R.; Du lak M.; Friis J.; Groves M. N.; Hammer B.; Hargus C.; Hermes E. D.; Jennings P. C.; Jensen P. B.; Kermode J.; Kitchin J. R.; Kolsbjerg E. L.; Kubal J.; Kaasbjerg K.; Lysgaard S.; Maronsson J. B.; Maxson T.; Olsen T.; Pastewka L.; Peterson A.; Rostgaard C.; Schiøtz J.; Scḧutt O.; Strange M.; Thygesen K. S.; Vegge T.; Vilhelmsen L.; Walter M.; Zeng Z.; Jacobsen K. W. The atomic simulation environment—a Python library for working with atoms. J. Phys.: Condens. Matter 2017, 29, 273002.10.1088/1361-648X/aa680e. PubMed DOI
Dietschreit J. C. B.; Diestler D. J.; Ochsenfeld C. How to obtain reaction free energies from free-energy profiles. J. Chem. Phys. 2022, 156, 114105.10.1063/5.0083423. PubMed DOI
Sierka M.; Sauer J. Finding transition structures in extended systems: A strategy based on a combined quantum mechanics-empirical valence bond approach. J. Chem. Phys. 2000, 112, 6983–6996. 10.1063/1.481296. DOI
Chen W.; Ferguson A. L. Molecular enhanced sampling with autoencoders: On-the-fly collective variable discovery and accelerated free energy landscape exploration. J. Chem. Theory Comput. 2018, 39, 2079–2102. 10.1002/jcc.25520. PubMed DOI
Mauro J. C.; Loucks R. J.; Balakrishnan J. A simplified eigenvector-following technique for locating transition points in an energy landscape. J. Phys. Chem. A 2005, 109, 9578–9583. 10.1021/jp053581t. PubMed DOI
Ribeiro J. M. L.; Bravo P.; Wang Y.; Tiwary P. Reweighted autoencoded variational Bayes for enhanced sampling (RAVE). J. Chem. Phys. 2018, 149, 072301.10.1063/1.5025487. PubMed DOI
Rohrdanz M. A.; Zheng W.; Clementi C. Discovering Mountain Passes via Torchlight: Methods for the Definition of Reaction Coordinates and Pathways in Complex Macromolecular Reactions. Annu. Rev. Phys. Chem. 2013, 64, 295–316. 10.1146/annurev-physchem-040412-110006. PubMed DOI
Kresse G.; Hafner J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561. 10.1103/PhysRevB.47.558. PubMed DOI
Perdew J. P.; Burke K.; Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. 10.1103/PhysRevLett.77.3865. PubMed DOI
Blöchl P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. 10.1103/PhysRevB.50.17953. PubMed DOI
Kresse G.; Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. 10.1103/PhysRevB.59.1758. DOI
Grimme S.; Antony J.; Ehrlich S.; Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.10.1063/1.3382344. PubMed DOI
Grimme S.; Ehrlich S.; Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. 10.1002/jcc.21759. PubMed DOI