A reactive neural network framework for water-loaded acidic zeolites
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
PRIMUS/20/SCI/004
Univerzita Karlova v Praze (Charles University)
ID:90254
Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
UNCE/SCI/014
Univerzita Karlova v Praze (Charles University)
CZ.02.1.01/0.0/0.0/15 003/0000417
Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
23-07616S
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
23-07616S
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
UNCE/SCI/014
Univerzita Karlova v Praze (Charles University)
23-07616S
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
CZ.02.1.01/0.0/0.0/15 003/0000417
Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
PubMed
38760371
PubMed Central
PMC11101627
DOI
10.1038/s41467-024-48609-2
PII: 10.1038/s41467-024-48609-2
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Under operating conditions, the dynamics of water and ions confined within protonic aluminosilicate zeolite micropores are responsible for many of their properties, including hydrothermal stability, acidity and catalytic activity. However, due to high computational cost, operando studies of acidic zeolites are currently rare and limited to specific cases and simplified models. In this work, we have developed a reactive neural network potential (NNP) attempting to cover the entire class of acidic zeolites, including the full range of experimentally relevant water concentrations and Si/Al ratios. This NNP has the potential to dramatically improve sampling, retaining the (meta)GGA DFT level accuracy, with the capacity for discovery of new chemistry, such as collective defect formation mechanisms at the zeolite surface. Furthermore, we exemplify how the NNP can be used as a basis for further extensions/improvements which include data-efficient adoption of higher-level (hybrid) references via Δ-learning and the acceleration of rare event sampling via automatic construction of collective variables. These developments represent a significant step towards accurate simulations of realistic catalysts under operando conditions.
Zobrazit více v PubMed
Mintova S, Jaber M, Valtchev V. Nanosized microporous crystals: emerging applications. Chem. Soc. Rev. 2015;44:7207–7233. doi: 10.1039/C5CS00210A. PubMed DOI
Li Y, Li L, Yu J. Applications of zeolites in sustainable chemistry. Chem. 2017;3:928–949. doi: 10.1016/j.chempr.2017.10.009. DOI
Vogt ETC, Weckhuysen BM. Fluid catalytic cracking: recent developments on the grand old lady of zeolite catalysis. Chem. Soc. Rev. 2015;44:7342–7370. doi: 10.1039/C5CS00376H. PubMed DOI PMC
Ennaert T, et al. Potential and challenges of zeolite chemistry in the catalytic conversion of biomass. Chem. Soc. Rev. 2016;45:584–611. doi: 10.1039/C5CS00859J. PubMed DOI
Speybroeck VV, et al. Advances in theory and their application within the field of zeolite chemistry. Chem. Soc. Rev. 2015;44:7044–7111. doi: 10.1039/C5CS00029G. PubMed DOI
Shamzhy M, Opanasenko M, Concepción P, Martínez A. New trends in tailoring active sites in zeolite-based catalysts. Chem. Soc. Rev. 2019;48:1095–1149. doi: 10.1039/C8CS00887F. PubMed DOI
Pfriem N, et al. Role of the ionic environment in enhancing the activity of reacting molecules in zeolite pores. Science. 2021;372:952–957. doi: 10.1126/science.abh3418. PubMed DOI
Bates JS, Bukowski BC, Greeley J, Gounder R. Structure and solvation of confined water and water–ethanol clusters within microporous Brønsted acids and their effects on ethanol dehydration catalysis. Chem. Sci. 2020;11:7102–7122. doi: 10.1039/D0SC02589E. PubMed DOI PMC
Heard CJ, et al. Zeolite (In)Stability under Aqueous or Steaming Conditions. Adv. Mater. 2020;32:2003264. doi: 10.1002/adma.202003264. PubMed DOI
Fasano M, et al. Interplay between hydrophilicity and surface barriers on water transport in zeolite membranes. Nat. Commun. 2016;7:12762. doi: 10.1038/ncomms12762. PubMed DOI PMC
Cundy CS, Cox PA. The hydrothermal synthesis of zeolites: precursors, intermediates and reaction mechanism. Micropor. Mesopor. Mat. 2005;82:1–78. doi: 10.1016/j.micromeso.2005.02.016. DOI
Bukowski BC, Bates JS, Gounder R, Greeley J. Defect-mediated ordering of condensed water structures in microporous zeolites. Angew. Chem. Int. Ed. 2019;58:16422–16426. doi: 10.1002/anie.201908151. PubMed DOI
Silaghi M-C, et al. Regioselectivity of Al–O bond hydrolysis during zeolites dealumination unified by brønsted–evans–polanyi relationship. ACS Catal. 2015;5:11–15. doi: 10.1021/cs501474u. DOI
Silaghi M-C, Chizallet C, Sauer J, Raybaud P. Dealumination mechanisms of zeolites and extra-framework aluminum confinement. J. Catal. 2016;339:242–255. doi: 10.1016/j.jcat.2016.04.021. DOI
Heard CJ, et al. Fast room temperature lability of aluminosilicate zeolites. Nat. Commun. 2019;10:1–7. doi: 10.1038/s41467-019-12752-y. PubMed DOI PMC
Nielsen M, et al. Collective action of water molecules in zeolite dealumination. Catal. Sci. Technol. 2019;9:3721–3725. doi: 10.1039/C9CY00624A. DOI
Grifoni E, et al. Confinement effects and acid strength in zeolites. Nat. Commun. 2021;12:2630. doi: 10.1038/s41467-021-22936-0. PubMed DOI PMC
Jin M, et al. The role of water loading and germanium content in germanosilicate hydrolysis. J. Phys. Chem. C. 2021;125:23744–23757. doi: 10.1021/acs.jpcc.1c06873. DOI
Senftle TP, et al. The ReaxFF reactive force-field: development, applications and future directions. npj Comput. Mater. 2016;2:1–14. doi: 10.1038/npjcompumats.2015.11. DOI
Vandermause J, Xie Y, Lim JS, Owen CJ, Kozinsky B. Active learning of reactive Bayesian force fields applied to heterogeneous catalysis dynamics of H/Pt. Nat. Commun. 2022;13:5183. doi: 10.1038/s41467-022-32294-0. PubMed DOI PMC
Shchygol G, Yakovlev A, Trnka T, van Duin ACT, Verstraelen T. ReaxFF parameter optimization with Monte-Carlo and evolutionary algorithms: guidelines and insights. J. Chem. Theory Comput. 2019;15:6799–6812. doi: 10.1021/acs.jctc.9b00769. PubMed DOI
Unke OT, et al. Machine learning force fields. Chem. Rev. 2021;121:10142–10186. doi: 10.1021/acs.chemrev.0c01111. PubMed DOI PMC
Keith JA, et al. Combining machine learning and computational chemistry for predictive insights into chemical systems. Chem. Rev. 2021;121:9816–9872. doi: 10.1021/acs.chemrev.1c00107. PubMed DOI PMC
Ma S, Liu Z-P. Machine learning potential era of zeolite simulation. Chem. Sci. 2022;13:5055–5068. doi: 10.1039/D2SC01225A. PubMed DOI PMC
Takamoto S, et al. Towards universal neural network potential for material discovery applicable to arbitrary combination of 45 elements. Nat. Commun. 2022;13:2991. doi: 10.1038/s41467-022-30687-9. PubMed DOI PMC
Tran R, et al. The open catalyst 2022 (OC22) dataset and challenges for oxide electrocatalysts. ACS Catal. 2023;13:3066–3084. doi: 10.1021/acscatal.2c05426. DOI
Deng B, et al. CHGNet as a pretrained universal neural network potential for charge-informed atomistic modelling. Nat. Mach. Intell. 2023;5:1031–1041. doi: 10.1038/s42256-023-00716-3. DOI
Zhang, D. et al. DPA-2: Towards a universal large atomic model for molecular and material simulation. Preprint at 10.48550/arXiv.2312.15492 (2023).
Batatia, I. et al. A foundation model for atomistic materials chemistry. Preprint at 10.48550/arXiv.2401.00096 (2024).
Jinnouchi R, Lahnsteiner J, Karsai F, Kresse G, Bokdam M. Phase transitions of hybrid perovskites simulated by machine-learning force fields trained on the fly with Bayesian inference. Phys. Rev. Lett. 2019;122:225701. doi: 10.1103/PhysRevLett.122.225701. PubMed DOI
Vandermause J, et al. On-the-fly active learning of interpretable Bayesian force fields for atomistic rare events. npj Comput. Mater. 2020;6:1–11. doi: 10.1038/s41524-020-0283-z. DOI
Zheng, M. & Bukowski, B. C. Probing the role of acid site distribution on water structure in aluminosilicate zeolites: Insights from molecular dynamics. J. Phys. Chem. C18, 7549–7559 (2024)
Ramakrishnan R, Dral PO, Rupp M, von Lilienfeld OA. Big data meets quantum chemistry approximations: the Δ-machine learning approach. J. Chem. Theory Comput. 2015;11:2087–2096. doi: 10.1021/acs.jctc.5b00099. PubMed DOI
Šípka M, Erlebach A, Grajciar L. Constructing collective variables using invariant learned representations. J. Chem. Theory Comput. 2023;19:887–901. doi: 10.1021/acs.jctc.2c00729. PubMed DOI PMC
Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI
Grimme S, Antony J, Ehrlich S, Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010;132:154104. doi: 10.1063/1.3382344. PubMed DOI
Grimme S, Ehrlich S, Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011;32:1456–1465. doi: 10.1002/jcc.21759. PubMed DOI
Erlebach A, Nachtigall P, Grajciar L. Accurate large-scale simulations of siliceous zeolites by neural network potentials. npj Comput. Mater. 2022;8:1–12. doi: 10.1038/s41524-022-00865-w. DOI
Eldar Y, Lindenbaum M, Porat M, Zeevi Y. The farthest point strategy for progressive image sampling. IEEE Trans. Image Process. 1997;6:1305–1315. doi: 10.1109/83.623193. PubMed DOI
Imbalzano G, et al. Automatic selection of atomic fingerprints and reference configurations for machine-learning potentials. J. Chem. Phys. 2018;148:241730. doi: 10.1063/1.5024611. PubMed DOI
Bartók AP, Kondor R, Csányi G. On representing chemical environments. Phys. Rev. B. 2013;87:184115. doi: 10.1103/PhysRevB.87.184115. DOI
George J, Hautier G, Bartók AP, Csányi G, Deringer VL. Combining phonon accuracy with high transferability in Gaussian approximation potential models. J. Chem. Phys. 2020;153:044104. doi: 10.1063/5.0013826. PubMed DOI
Erhard LC, Rohrer J, Albe K, Deringer VL. A machine-learned interatomic potential for silica and its relation to empirical models. npj Comput. Mater. 2022;8:1–12. doi: 10.1038/s41524-022-00768-w. DOI
Sivaraman G, et al. Machine-learned interatomic potentials by active learning: amorphous and liquid hafnium dioxide. npj Comput. Mater. 2020;6:104. doi: 10.1038/s41524-020-00367-7. DOI
Heard CJ, Grajciar L, Nachtigall P. The effect of water on the validity of Löwenstein’s rule. Chem. Sci. 2019;10:5705–5711. doi: 10.1039/C9SC00725C. PubMed DOI PMC
Sun J, Ruzsinszky A, Perdew JP. Strongly constrained and appropriately normed semilocal density functional. Phys. Rev. Lett. 2015;115:036402. doi: 10.1103/PhysRevLett.115.036402. PubMed DOI
Bonati L, Parrinello M. Silicon liquid structure and crystal nucleation from ab initio deep metadynamics. Phys. Rev. Lett. 2018;121:265701. doi: 10.1103/PhysRevLett.121.265701. PubMed DOI
Bocus M, et al. Nuclear quantum effects on zeolite proton hopping kinetics explored with machine learning potentials and path integral molecular dynamics. Nat. Commun. 2023;14:1008. doi: 10.1038/s41467-023-36666-y. PubMed DOI PMC
Tan, A. R., Dietschreit, J. C. B. & Gomez-Bombarelli, R. Enhanced sampling of robust molecular datasets with uncertainty-based collective variables. Preprint at 10.48550/arXiv.2402.03753 (2024).
Temelso B, Archer KA, Shields GC. Benchmark structures and binding energies of small water clusters with anharmonicity corrections. J. Phys. Chem. A. 2011;115:12034–12046. doi: 10.1021/jp2069489. PubMed DOI
Schütt KT, Sauceda HE, Kindermans P-J, Tkatchenko A, Müller K-R. SchNet - A deep learning architecture for molecules and materials. J. Chem. Phys. 2018;148:241722. doi: 10.1063/1.5019779. PubMed DOI
Sours TG, Kulkarni AR. Predicting structural properties of pure silica zeolites using deep neural network potentials. J. Phys. Chem. C. 2023;127:1455–1463. doi: 10.1021/acs.jpcc.2c08429. PubMed DOI PMC
Schütt, K., Unke, O. & Gastegger, M. Equivariant message passing for the prediction of tensorial properties and molecular spectra. In Proceedings of the 38th International Conference on Machine Learning 9377–9388 (PMLR, 2021).
Batzner S, et al. E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials. Nat. Commun. 2022;13:2453. doi: 10.1038/s41467-022-29939-5. PubMed DOI PMC
Batatia I, Kovacs DP, Simm G, Ortner C, Csanyi G. MACE: higher order equivariant message passing neural networks for fast and accurate force fields. Adv. Neural Inf. Process. Syst. 2022;35:11423–11436.
van der Maaten L, Hinton G. Visualizing Data using t-SNE. J. Mach. Learn Res. 2008;9:2579–2605.
Hautier G, Ong SP, Jain A, Moore CJ, Ceder G. Accuracy of density functional theory in predicting formation energies of ternary oxides from binary oxides and its implication on phase stability. Phys. Rev. B. 2012;85:155208. doi: 10.1103/PhysRevB.85.155208. DOI
Joshi KL, Psofogiannakis G, van Duin ACT, Raman S. Reactive molecular simulations of protonation of water clusters and depletion of acidity in H-ZSM-5 zeolite. Phys. Chem. Chem. Phys. 2014;16:18433–18441. doi: 10.1039/C4CP02612H. PubMed DOI
Tsapatsis M. Toward high-throughput zeolite membranes. Science. 2011;334:767–768. doi: 10.1126/science.1205957. PubMed DOI
Yu N, Wang RZ, Wang LW. Sorption thermal storage for solar energy. Prog. Energ. Combust. 2013;39:489–514. doi: 10.1016/j.pecs.2013.05.004. DOI
Stanciakova K, Louwen JN, Weckhuysen BM, Bulo RE, Göltl F. Understanding water–zeolite interactions: on the accuracy of density functionals. J. Phys. Chem. C. 2021;125:20261–20274. doi: 10.1021/acs.jpcc.1c04270. DOI
Saha, I., Erlebach, A., Nachtigall, P., Heard, C. J. & Grajciar, L. Reactive Neural Network Potential for Aluminosilicate Zeolites and Water: Quantifying the effect of Si/Al ratio on proton solvation and water diffusion in H-FAU. Preprint at 10.26434/chemrxiv-2022-d1sj9-v3 (2022).
Resasco DE, Crossley SP, Wang B, White JL. Interaction of water with zeolites: a review. Cataly. Rev. 2021;63:302–362. doi: 10.1080/01614940.2021.1948301. DOI
Roy, S., Dürholt, J. P., Asche, T. S., Zipoli, F. & Gómez-Bombarelli, R. Learning a reactive potential for silica-water through uncertainty attribution. Preprint at 10.48550/arXiv.2307.01705 (2023). PubMed PMC
Zhang H, et al. Open-pore two-dimensional MFI zeolite nanosheets for the fabrication of hydrocarbon-isomer-selective membranes on porous polymer supports. Angew. Chem. Int. Ed. 2016;55:7184–7187. doi: 10.1002/anie.201601135. PubMed DOI
Jin M, Liu M, Nachtigall P, Grajciar L, Heard CJ. Mechanism of zeolite hydrolysis under basic conditions. Chem. Mater. 2021;33:9202–9212. doi: 10.1021/acs.chemmater.1c02799. DOI
Kubicki J, Xiao Y, Lasaga A. Theoretical reaction pathways for the formation of [Si(OH)5]1- and the deprotonation of orthosilicic acid in basic solution. Geochim. Cosmochim. Acta. 1993;57:3847–3853. doi: 10.1016/0016-7037(93)90338-W. DOI
Cypryk M, Apeloig Y. Mechanism of the acid-catalyzed Si-O bond cleavage in siloxanes and siloxanols. A theoretical study. Organometallics. 2002;21:2165–2175. doi: 10.1021/om011055s. DOI
Zhang L, Chen K, Chen B, White JL, Resasco DE. Factors that determine zeolite stability in hot liquid water. J. Am. Chem. Soc. 2015;137:11810–11819. doi: 10.1021/jacs.5b07398. PubMed DOI
Maag AR, et al. ZSM-5 decrystallization and dealumination in hot liquid water. Phys. Chem. Chem. Phys. 2019;21:17880–17892. doi: 10.1039/C9CP01490J. PubMed DOI
Ryder JA, Chakraborty AK, Bell AT. Density functional theory study of proton mobility in zeolites: proton migration and hydrogen exchange in ZSM-5. J. Phys. Chem. B. 2000;104:6998–7011. doi: 10.1021/jp9943427. DOI
Sierka M, Sauer J. Proton mobility in chabazite, faujasite, and ZSM-5 zeolite catalysts. comparison based on ab initio calculations. J. Phys. Chem. B. 2001;105:1603–1613. doi: 10.1021/jp004081x. DOI
Stanciakova K, Ensing B, Göltl F, Bulo RE, Weckhuysen BM. Cooperative role of water molecules during the initial stage of water-induced zeolite dealumination. ACS Catal. 2019;9:5119–5135. doi: 10.1021/acscatal.9b00307. DOI
Mardirossian N, Head-Gordon M. Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals. Mol. Phys. 2017;115:2315–2372. doi: 10.1080/00268976.2017.1333644. DOI
Barducci A, Bussi G, Parrinello M. Well-tempered metadynamics: a smoothly converging and tunable free-energy method. Phys. Rev. Lett. 2008;100:020603. doi: 10.1103/PhysRevLett.100.020603. PubMed DOI
Borgmans, S., Rogge, S. M., Vanduyfhuys, L. & Van Speybroeck, V. OGRe: Optimal grid refinement protocol for accurate free energy surfaces and its application to proton hopping in zeolites and 2D COF stacking. J. Chem. Theory Comput.19, 9032–9048 (2023). PubMed PMC
Mardirossian N, Head-Gordon M. ωB97X-V: a 10-parameter, range-separated hybrid, generalized gradient approximation density functional with nonlocal correlation, designed by a survival-of-the-fittest strategy. Phys. Chem. Chem. Phys. 2014;16:9904–9924. doi: 10.1039/c3cp54374a. PubMed DOI
Najibi A, Goerigk L. The nonlocal kernel in van der Waals density functionals as an additive correction: an extensive analysis with special emphasis on the B97M-V and ωB97M-V approaches. J. Chem. Theory Comput. 2018;14:5725–5738. doi: 10.1021/acs.jctc.8b00842. PubMed DOI
Huang B, Von Rudorff GF, Von Lilienfeld OA. The central role of density functional theory in the AI age. Science. 2023;381:170–175. doi: 10.1126/science.abn3445. PubMed DOI
Berger F, Rybicki M, Sauer J. Molecular dynamics with chemical accuracy-alkane adsorption in acidic zeolites. ACS Catal. 2023;13:2011–2024. doi: 10.1021/acscatal.2c05493. DOI
Klemm HW, et al. A silica bilayer supported on Ru(0001): following the crystalline-to vitreous transformation in real time with spectro-microscopy. Angew. Chem. Int. Ed. 2020;59:10587–10593. doi: 10.1002/anie.202002514. PubMed DOI PMC
Kirfel A, Eichhorn K. Accurate structure analysis with synchrotron radiation. The electron density in Al2O3 and Cu2O. Acta Crystallogr. Sect. A. 1990;46:271–284. doi: 10.1107/S0108767389012596. DOI
Zhou R-S, Snyder RL. Structures and transformation mechanisms of the η, γ and θ transition aluminas. Acta Crystallogr. Sect. B. 1991;47:617–630. doi: 10.1107/S0108768191002719. DOI
Christensen AN, et al. Deuteration of crystalline hydroxides. hydrogen bonds of gamma-AlOO(H,D) and gamma-FeOO(H,D) Acta Chem. Scand. 1982;36a:303–308. doi: 10.3891/acta.chem.scand.36a-0303. DOI
Balan E, Lazzeri M, Morin G, Mauri F. First-principles study of the OH-stretching modes of gibbsite. Am. Mineral. 2006;91:115–119. doi: 10.2138/am.2006.1922. DOI
Stuckenschmidt, E., Joswig, W. & Baur, W. H. Flexibility and distortion of the collapsible framework of NAT topology: the crystal structure of H3O-natrolite. Eur. J. Mineral. 8, 85–92 (1996).
Dera P, Prewitt CT, Japel S, Bish DL, Johnston CT. Pressure-controlled polytypism in hydrous layered materials. Am. Mineral. 2003;88:1428–1435. doi: 10.2138/am-2003-1006. DOI
Bryantsev VS, Diallo MS, van Duin ACT, Goddard WAI. Evaluation of B3LYP, X3LYP, and M06-class density functionals for predicting the binding energies of neutral, protonated, and deprotonated water clusters. J. Chem. Theory Comput. 2009;5:1016–1026. doi: 10.1021/ct800549f. PubMed DOI
Kamb B. Ice. II. A proton-ordered form of ice. Acta Crystallogr. 1964;17:1437–1449. doi: 10.1107/S0365110X64003553. DOI
Bernal JD, Fowler RH. A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions. J. Chem. Phys. 1933;1:515–548. doi: 10.1063/1.1749327. DOI
Nosé S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984;81:511–519. doi: 10.1063/1.447334. DOI
Hoover WG. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A. 1985;31:1695–1697. doi: 10.1103/PhysRevA.31.1695. PubMed DOI
Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. In 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings (eds Bengio, Y. & LeCun, Y.) (ICLR, 2015).
Thang HV, et al. The Brønsted acidity of three- and two-dimensional zeolites. Micropor. Mesopor. Mat. 2019;282:121–132. doi: 10.1016/j.micromeso.2019.03.033. DOI
Treps L, Gomez A, de Bruin T, Chizallet C. Environment, stability and acidity of external surface sites of silicalite-1 and ZSM-5 micro and nano slabs, sheets, and crystals. ACS Catal. 2020;10:3297–3312. doi: 10.1021/acscatal.9b05103. DOI
Baerlocher, C.H., Meier, W. M. & Olson, D. M. Attas of Zeolite Framework Types, 5th edn. (Elsevier, Amsterdam, 2001).
Baerlocher, C.H. & McCusker, L. Database of zeolite structures http://www.iza-structure.org/databases/ (accessed: 8 February 2023).
Piccione PM, et al. Thermochemistry of pure-silica zeolites. J. Phys. Chem. B. 2000;104:10001–10011. doi: 10.1021/jp002148a. DOI
Tribello GA, Bonomi M, Branduardi D, Camilloni C, Bussi G. PLUMED 2: New feathers for an old bird. Comput. Phys. Commun. 2014;185:604–613. doi: 10.1016/j.cpc.2013.09.018. DOI
Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B. 1993;47:558–561. doi: 10.1103/PhysRevB.47.558. PubMed DOI
Kresse G, Hafner J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B. 1994;49:14251–14269. doi: 10.1103/PhysRevB.49.14251. PubMed DOI
Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 1996;6:15–50. doi: 10.1016/0927-0256(96)00008-0. PubMed DOI
Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 1996;54:11169–11186. doi: 10.1103/PhysRevB.54.11169. PubMed DOI
Blöchl PE. Projector augmented-wave method. Phys. Rev. B. 1994;50:17953–17979. doi: 10.1103/PhysRevB.50.17953. PubMed DOI
Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999;59:1758–1775. doi: 10.1103/PhysRevB.59.1758. DOI
Gale JD, Rohl AL. The General Utility Lattice Program (GULP) Mol. Simul. 2003;29:291–341. doi: 10.1080/0892702031000104887. DOI
Schütt KT, et al. SchNetPack: a deep learning toolbox for atomistic systems. J. Chem. Theory Comput. 2019;15:448–455. doi: 10.1021/acs.jctc.8b00908. PubMed DOI
Larsen AH, et al. The atomic simulation environment-a Python library for working with atoms. J. Phys. Condens. Matter. 2017;29:273002. doi: 10.1088/1361-648X/aa680e. PubMed DOI
BIOVIA, Dassault Systèmes, Materials Studio, Version 22.1, San Diego: Dassault Systèmes. Version 17.1.0.48, Dassault Systèmes BIOVIA Corp., Dassault Systèmes (2022).