High extracellular K(+) evokes changes in voltage-dependent K(+) and Na (+) currents and volume regulation in astrocytes

. 2007 Mar ; 453 (6) : 839-49. [epub] 20061010

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid17031668

[K(+)](e) increase accompanies many pathological states in the CNS and evokes changes in astrocyte morphology and glial fibrillary acidic protein expression, leading to astrogliosis. Changes in the electrophysiological properties and volume regulation of astrocytes during the early stages of astrocytic activation were studied using the patch-clamp technique in spinal cords from 10-day-old rats after incubation in 50 mM K(+). In complex astrocytes, incubation in high K(+) caused depolarization, an input resistance increase, a decrease in membrane capacitance, and an increase in the current densities (CDs) of voltage-dependent K(+) and Na(+) currents. In passive astrocytes, the reversal potential shifted to more positive values and CDs decreased. No changes were observed in astrocyte precursors. Under hypotonic stress, astrocytes in spinal cords pre-exposed to high K(+) revealed a decreased K(+) accumulation around the cell membrane after a depolarizing prepulse, suggesting altered volume regulation. 3D confocal morphometry and the direct visualization of astrocytes in enhanced green fluorescent protein/glial fibrillary acidic protein mice showed a smaller degree of cell swelling in spinal cords pre-exposed to high K(+) compared to controls. We conclude that exposure to high K(+), an early event leading to astrogliosis, caused not only morphological changes in astrocytes but also changes in their membrane properties and cell volume regulation.

Zobrazit více v PubMed

Pflugers Arch. 1981 Aug;391(2):85-100 PubMed

J Neurophysiol. 1966 Jul;29(4):788-806 PubMed

Glia. 1989;2(1):45-50 PubMed

Neurochem Res. 1999 Feb;24(2):213-8 PubMed

Brain Pathol. 1994 Jul;4(3):239-43 PubMed

Glia. 1995 Oct;15(2):173-87 PubMed

J Neurosci. 1997 Oct 1;17(19):7316-29 PubMed

Annu Rev Physiol. 1979;41:159-77 PubMed

Eur J Neurosci. 1995 Jan 1;7(1):129-42 PubMed

Brain Res. 2000 Apr 17;862(1-2):187-93 PubMed

Eur J Neurosci. 1995 Jun 1;7(6):1188-98 PubMed

Neuroreport. 2000 Sep 28;11(14):3151-5 PubMed

Prog Biophys Mol Biol. 1983;42(2-3):135-89 PubMed

Neuroreport. 1994 Jan 31;5(5):639-41 PubMed

J Neurophysiol. 2001 Apr;85(4):1719-31 PubMed

J Neurosci. 1996 Apr 15;16(8):2532-45 PubMed

J Neurosci. 1999 Sep 15;19(18):8152-62 PubMed

Glia. 1999 Nov;28(2):166-74 PubMed

Glia. 2001 Sep;35(3):189-203 PubMed

Glia. 2001 Jan;33(1):72-86 PubMed

Eur J Neurosci. 2000 Jun;12(6):2087-96 PubMed

Neuroscience. 2000;100(2):431-8 PubMed

Brain Res Brain Res Rev. 2000 Apr;32(2-3):380-412 PubMed

Brain Res. 1995 Mar 20;674(2):314-28 PubMed

J Neurosci Res. 1999 Jun 1;56(5):493-505 PubMed

J Neurochem. 1995 Apr;64(4):1576-84 PubMed

Prog Neurobiol. 2003 Jul;70(4):363-86 PubMed

Glia. 2000 Mar;30(1):27-38 PubMed

Neuroscience. 2004;129(4):1045-56 PubMed

J Cereb Blood Flow Metab. 1995 May;15(3):409-16 PubMed

Brain Res. 1992 Oct 23;594(1):19-30 PubMed

J Neurosci Res. 2001 Jul 15;65(2):129-38 PubMed

J Neurophysiol. 1998 Apr;79(4):2222-6 PubMed

Glia. 1999 Sep;27(3):213-25 PubMed

J Cereb Blood Flow Metab. 1997 Feb;17 (2):191-203 PubMed

Neuroscience. 1997 Dec;81(3):847-60 PubMed

J Neural Transm (Vienna). 2005 Jan;112(1):137-47 PubMed

Glia. 2005 Jun;50(4):427-34 PubMed

Physiol Rev. 2001 Jul;81(3):1065-96 PubMed

Brain Res. 2000 Jul 28;872(1-2):194-8 PubMed

J Neurosci. 2003 Mar 1;23(5):1750-8 PubMed

Glia. 1999 Jan;25(1):56-70 PubMed

J Neurosci Res. 2004 Dec 1;78(5):668-82 PubMed

Brain Res. 2000 May 12;864(2):220-9 PubMed

Glia. 2004 Dec;48(4):311-26 PubMed

Glia. 1994 Jun;11(2):156-72 PubMed

Neurosci Biobehav Rev. 1997 Mar;21(2):135-42 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...