Three-dimensional confocal morphometry - a new approach for studying dynamic changes in cell morphology in brain slices
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
17488344
PubMed Central
PMC2375758
DOI
10.1111/j.1469-7580.2007.00724.x
PII: JOA724
Knihovny.cz E-zdroje
- MeSH
- astrocyty patologie ultrastruktura MeSH
- geneticky modifikovaná zvířata MeSH
- gliový fibrilární kyselý protein analýza MeSH
- konfokální mikroskopie metody MeSH
- lidé MeSH
- modely u zvířat MeSH
- mozek patologie ultrastruktura MeSH
- myši MeSH
- nemoci mozku patologie MeSH
- zelené fluorescenční proteiny MeSH
- zobrazování trojrozměrné * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- gliový fibrilární kyselý protein MeSH
- zelené fluorescenční proteiny MeSH
Pathological states in the central nervous system lead to dramatic changes in the activity of neuroactive substances in the extracellular space, to changes in ionic homeostasis and often to cell swelling. To quantify changes in cell morphology over a certain period of time, we employed a new technique, three-dimensional confocal morphometry. In our experiments, performed on enhanced green fluorescent protein/glial fibrillary acidic protein astrocytes in brain slices in situ and thus preserving the extracellular microenvironment, confocal morphometry revealed that the application of hypotonic solution evoked two types of volume change. In one population of astrocytes, hypotonic stress evoked small cell volume changes followed by a regulatory volume decrease, while in the second population volume changes were significantly larger without subsequent volume regulation. Three-dimensional cell reconstruction revealed that even though the total astrocyte volume increased during hypotonic stress, the morphological changes in various cell compartments and processes were more complex than have been previously shown, including swelling, shrinking and structural rearrangement. Our data show that astrocytes in brain slices in situ during hypotonic stress display complex behaviour. One population of astrocytes is highly capable of cell volume regulation, while the second population is characterized by prominent cell swelling, accompanied by plastic changes in morphology. It is possible to speculate that these two astrocyte populations play different roles during physiological and pathological states.
Zobrazit více v PubMed
Aitken PG, Borgdorff AJ, Juta AJ, Kiehart DP, Somjen GG, Wadman WJ. Volume changes induced by osmotic stress in freshly isolated rat hippocampal neurons. Pflugers Arch. 1998;436:991–998. PubMed
Allansson L, Khatibi S, Gustavsson T, Blomstrand F, Olsson T, Hansson E. Single-cell volume estimation by three-dimensional wide-field microscopy applied to astroglial primary cultures. J Neurosci Meth. 1999;93:1–11. PubMed
Anděrová M, Antonova T, Petřík D, Neprašová H, Chvátal A, Syková E. Voltage-dependent potassium currents in hypertrophied rat astrocytes after a cortical stab wound. Glia. 2004;48:311–326. PubMed
Andrew RD, Lobinowich ME, Osehobo EP. Evidence against volume regulation by cortical brain cells during acute osmotic stress. Exp Neurol. 1997;143:300–312. PubMed
Ballanyi K, Grafe P, Serve G, Schlue WR. Electrophysiological measurements of volume changes in leech neuropile glial cells. Glia. 1990;3:151–158. PubMed
Blatter LA. Cell volume measurements by fluorescence confocal microscopy: theoretical and practical aspects. Meth Enzymol. 1999;307:274–295. PubMed
Boudreault F, Grygorczyk R. Evaluation of rapid volume changes of substrate-adherent cells by conventional microscopy 3D imaging. J Microsc. 2004;215:302–312. PubMed
Bushong EA, Martone ME, Jones YZ, Ellisman MH. Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci. 2002;22:183–192. PubMed PMC
Cashion AB, Smith MJ, Wise PM. The morphometry of astrocytes in the rostral preoptic area exhibits a diurnal rhythm on proestrus: relationship to the luteinizing hormone surge and effects of age. Endocrinology. 2003;144:274–280. PubMed
Chen KC, Nicholson C. Changes in brain cell shape create residual extracellular space volume and explain tortuosity behavior during osmotic challenge. Proc Natl Acad Sci USA. 2000;97:8306–8311. PubMed PMC
Chvátal A, Anděrová M, Hock M, et al. Three-dimensional confocal morphometry reveals structural changes in astrocyte morphology in situ. J Neurosci Res. 2007;85:260–271. PubMed
Cox G. Equipment for mass storage and processing of data. Meth Enzymol. 1999;307:29–55. PubMed
Crowe WE, Altamirano J, Huerto L, Alvarez-Leefmans FJ. Volume changes in single N1E-115 neuroblastoma cells measured with a fluorescent probe. Neuroscience. 1995;69:283–296. PubMed
Davis CE, Rychak JJ, Hosticka B, et al. A novel method for measuring dynamic changes in cell volume. J Appl Physiol. 2004;96:1886–1893. PubMed
Del Bigio MR, Fedoroff S, Qualtiere LF. Morphology of astroglia in colony cultures following transient exposure to potassium ion, hypoosmolarity and vasopressin. J Neurocytol. 1992;21:7–18. PubMed
Duerstock BS, Bajaj CL, Borgens RB. A comparative study of the quantitative accuracy of three-dimensional reconstructions of spinal cord from serial histological sections. J Microsc. 2003;210:138–148. PubMed
Eriksson PS, Nilsson M, Wagberg M, Ronnback L, Hansson E. Volume regulation of single astroglial cells in primary culture. Neurosci Lett. 1992;143:195–199. PubMed
Grass D, Pawlowski PG, Hirrlinger J, et al. Diversity of functional astroglial properties in the respiratory network. J Neurosci. 2004;24:1358–1365. PubMed PMC
Grosche J, Matyash V, Moller T, Verkhratsky A, Reichenbach A, Kettenmann H. Microdomains for neuron–glia interaction: parallel fiber signaling to Bergmann glial cells. Nat Neurosci. 1999;2:139–143. PubMed
Grosche J, Kettenmann H, Reichenbach A. Bergmann glial cells form distinct morphological structures to interact with cerebellar neurons. J Neurosci Res. 2002;68:138–149. PubMed
Hama K, Arii T, Katayama E, Marton M, Ellisman MH. Tri-dimensional morphometric analysis of astrocytic processes with high voltage electron microscopy of thick Golgi preparations. J Neurocytol. 2004;33:277–285. PubMed
Hanani M, Ermilov LG, Schmalz PF, Louzon V, Miller SM, Szurszewski JH. The three-dimensional structure of myenteric neurons in the guinea-pig ileum. J Auton Nerv Syst. 1998;71:1–9. PubMed
Hansson E, Ronnback L. Glial neuronal signaling in the central nervous system. FASEB J. 2003;17:341–348. PubMed
Hatten ME, Mason CA. Mechanisms of glial-guided neuronal migration in vitro and in vivo. Experientia. 1990;46:907–916. PubMed
Hirrlinger J, Hulsmann S, Kirchhoff F. Astroglial processes show spontaneous motility at active synaptic terminals in situ. Eur J Neurosci. 2004;20:2235–2239. PubMed
Hrabětová S, Nicholson C. Contribution of dead-space microdomains to tortuosity of brain extracellular space. Neurochem Int. 2004;45:467–477. PubMed
Huttmann K, Sadgrove M, Wallraff A, et al. Seizures preferentially stimulate proliferation of radial glia-like astrocytes in the adult dentate gyrus: functional and immunocytochemical analysis. Eur J Neurosci. 2003;18:2769–2778. PubMed
Jabs R, Pivneva T, Huttmann K, et al. Synaptic transmission onto hippocampal glial cells with hGFAP promoter activity. J Cell Sci. 2005;118:3791–3803. PubMed
Kempski O, von Rosen S, Weigt H, Staub F, Peters J, Baethmann A. Glial ion transport and volume control. Ann NY Acad Sci. 1991;633:306–317. PubMed
Kimelberg HK, Goderie SK, Higman S, Pang S, Cole R, Parsons DF. Volume changes of astrocytes in vitro as a model for pathological astrocytic swelling. In: Levi G, editor. Differentiation and Function of Glial Cells. New York: John Wiley & Sons, Inc; 1990. pp. 335–348.
Kimelberg HK, O’Connor ER, Kettenmann H. Effects of swelling on glial cell function. Adv Comp Environ Physiol. 1993;14:157–186.
Kimelberg HK. Cell volume in the CNS: regulation and implications for nervous system function and pathology. Neuroscientist. 2000;6:14–25.
Kimelberg HK. Water homeostasis in the brain: basic concepts. Neuroscience. 2004;129:851–860. PubMed
Kimelberg HK. Astrocytic swelling in cerebral ischemia as a possible cause of injury and target for therapy. Glia. 2005;50:389–397. PubMed
Korchev YE, Gorelik J, Laboratory MJ, et al. Cell volume measurement using scanning ion conductance microscopy. Biophys J. 2000;78:451–457. PubMed PMC
Kosaka T, Hama K. Three-dimensional structure of astrocytes in the rat dentate gyrus. J Comp Neurol. 1986;249:242–260. PubMed
Kubinová L, Janáček J, Guilak F, Opatrný Z. Comparison of several digital and stereological methods for estimating surface area and volume of cells studied by confocal microscopy. Cytometry. 1999;36:85–95. PubMed
Kume-Kick J, Mazel T, Voříšek I, Hrabětová S, Tao L, Nicholson C. Independence of extracellular tortuosity and volume fraction during osmotic challenge in rat neocortex. J Physiol. 2002;542:515–527. PubMed PMC
Mandarim-de-Lacerda CA. Stereological tools in biomedical research. An Acad Bras Cienc. 2003;75:469–486. PubMed
Matthias K, Kirchhoff F, Seifert G, et al. Segregated expression of AMPA-type glutamate receptors and glutamate transporters defines distinct astrocyte populations in the mouse hippocampus. J Neurosci. 2003;23:1750–1758. PubMed PMC
Miller G. Neuroscience. The dark side of glia. Science. 2005;308:778–781. PubMed
Moran J, Sabanero M, Meza I, Pasantes-Morales H. Changes of actin cytoskeleton during swelling and regulatory volume decrease in cultured astrocytes. Am J Physiol. 1996;271:C1901–C1907. PubMed
Neprašová H, Anděrová M, Petřík D, et al. High extracellular K+ evokes changes in voltage-dependent K+ and Na+ currents and volume regulation in astrocytes. Eur J Physiol. 2007;453:839–849. PubMed
Nicholson C, Syková E. Extracellular space structure revealed by diffusion analysis. Trends Neurosci. 1998;21:207–215. PubMed
Nicholson C. Diffusion and related transport mechanisms in brain tissue. Rep Prog Phys. 2001;64:815–884.
Nolte C, Matyash M, Pivneva T, et al. GFAP promoter-controlled EGFP-expressing transgenic mice: a tool to visualize astrocytes and astrogliosis in living brain tissue. Glia. 2001;33:72–86. PubMed
Ogata K, Kosaka T. Structural and quantitative analysis of astrocytes in the mouse hippocampus. Neuroscience. 2002;113:221–233. PubMed
Piet R, Vargová L, Syková E, Poulain DA, Oliet SH. Physiological contribution of the astrocytic environment of neurons to intersynaptic crosstalk. Proc Natl Acad Sci USA. 2004;101:2151–2155. PubMed PMC
Plesnila N, Muller E, Guretzki S, Ringel F, Staub F, Baethmann A. Effect of hypothermia on the volume of rat glial cells. J Physiol. 2000;523:155–162. PubMed PMC
Prakash YS, Smithson KG, Sieck GC. Application of the Cavalieri principle in volume estimation using laser confocal microscopy. Neuroimage. 1994;1:325–333. PubMed
Roitbak T, Syková E. Diffusion barriers evoked in the rat cortex by reactive astrogliosis. Glia. 1999;28:40–48. PubMed
Safavi-Abbasi S, Wolff JR, Missler M. Rapid morphological changes in astrocytes are accompanied by redistribution but not by quantitative changes of cytoskeletal proteins. Glia. 2001;36:102–115. PubMed
Shain W, Bausback D, Fiero A, Madelian V, Turner JN. Regulation of receptor-mediated shape change in astroglial cells. Glia. 1992;5:223–238. PubMed
Syková E. Extracellular K+ accumulation in the central nervous system. Prog Biophys Mol Biol. 1983;42:135–189. PubMed
Syková E, Vargová L, Prokopová S, imonová Z. Glial swelling and astrogliosis produce diffusion barriers in the rat spinal cord. Glia. 1999;25:56–70. PubMed
Syková E, Chvátal A. Glial cells and volume transmission in the CNS. Neurochem Int. 2000;36:397–409. PubMed
Syková E. Glia and volume transmission during physiological and pathological states. J Neural Transm. 2005;112:137–147. PubMed
Tomita M, Fukuuchi Y, Terakawa S. Differential behavior of glial and neuronal cells exposed to hypotonic solution. Acta Neurochir (Suppl) (Wien) 1994;60:31–33. PubMed
Ullian EM, Sapperstein SK, Christopherson KS, Barres BA. Control of synapse number by glia. Science. 2001;291:657–661. PubMed
Umesh Adiga PS, Chaudhuri BB. Some efficient methods to correct confocal images for easy interpretation. Micron. 2001;32:363–370. PubMed
Vargová L, Jendelová P, Chvátal A, Syková E. Glutamate, NMDA, and AMPA induced changes in extracellular space volume and tortuosity in the rat spinal cord. J Cereb Blood Flow Metab. 2001;21:1077–1089. PubMed
Vargová L, Homola A, Zámečník J, Tichý M, Beneš V, Syková E. Diffusion parameters of the extracellular space in human gliomas. Glia. 2003;42:77–88. PubMed
Vernadakis A. Glia–neuron intercommunications and synaptic plasticity. Prog Neurobiol. 1996;49:185–214. PubMed
Volterra A, Meldolesi J. Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci. 2005;6:626–640. PubMed
Wallraff A, Odermatt B, Willecke K, Steinhauser C. Distinct types of astroglial cells in the hippocampus differ in gap junction coupling. Glia. 2004;48:36–43. PubMed
Altered astrocytic swelling in the cortex of α-syntrophin-negative GFAP/EGFP mice