Compromised Astrocyte Swelling/Volume Regulation in the Hippocampus of the Triple Transgenic Mouse Model of Alzheimer's Disease

. 2021 ; 13 () : 783120. [epub] 20220127

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35153718

In this study, we aimed to disclose the impact of amyloid-β toxicity and tau pathology on astrocyte swelling, their volume recovery and extracellular space (ECS) diffusion parameters, namely volume fraction (α) and tortuosity (λ), in a triple transgenic mouse model of Alzheimer's disease (3xTg-AD). Astrocyte volume changes, which reflect astrocyte ability to take up ions/neurotransmitters, were quantified during and after exposure to hypo-osmotic stress, or hyperkalemia in acute hippocampal slices, and were correlated with alterations in ECS diffusion parameters. Astrocyte volume and ECS diffusion parameters were monitored during physiological aging (controls) and during AD progression in 3-, 9-, 12- and 18-month-old mice. In the hippocampus of controls α gradually declined with age, while it remained unaffected in 3xTg-AD mice during the entire time course. Moreover, age-related increases in λ occurred much earlier in 3xTg-AD animals than in controls. In 3xTg-AD mice changes in α induced by hypo-osmotic stress or hyperkalemia were comparable to those observed in controls, however, AD progression affected α recovery following exposure to both. Compared to controls, a smaller astrocyte swelling was detected in 3xTg-AD mice only during hyperkalemia. Since we observed a large variance in astrocyte swelling/volume regulation, we divided them into high- (HRA) and low-responding astrocytes (LRA). In response to hyperkalemia, the incidence of LRA was higher in 3xTg-AD mice than in controls, which may also reflect compromised K+ and neurotransmitter uptake. Furthermore, we performed single-cell RT-qPCR to identify possible age-related alterations in astrocytic gene expression profiles. Already in 3-month-old 3xTg-AD mice, we detected a downregulation of genes affecting the ion/neurotransmitter uptake and cell volume regulation, namely genes of glutamate transporters, α2β2 subunit of Na+/K+-ATPase, connexin 30 or Kir4.1 channel. In conclusion, the aged hippocampus of 3xTg-AD mice displays an enlarged ECS volume fraction and an increased number of obstacles, which emerge earlier than in physiological aging. Both these changes may strongly affect intercellular communication and influence astrocyte ionic/neurotransmitter uptake, which becomes impaired during aging and this phenomenon is manifested earlier in 3xTg-AD mice. The increased incidence of astrocytes with limited ability to take up ions/neurotransmitters may further add to a cytotoxic environment.

Zobrazit více v PubMed

Abe K., Misawa M. (2003). Amyloid beta protein enhances the clearance of extracellular L-glutamate by cultured rat cortical astrocytes. Neurosci. Res. 45 25–31. 10.1016/s0168-0102(02)00190-6 PubMed DOI

Acosta C., Anderson H. D., Anderson C. M. (2017). Astrocyte dysfunction in Alzheimer disease. J. Neurosci. Res. 95 2430–2447. 10.1002/jnr.24075 PubMed DOI

Amiry-Moghaddam M., Xue R., Haug F. M., Neely J. D., Bhardwaj A., Agre P., et al. (2004). Alpha-syntrophin deletion removes the perivascular but not endothelial pool of aquaporin-4 at the blood-brain barrier and delays the development of brain edema in an experimental model of acute hyponatremia. FASEB J. 18 542–544. 10.1096/fj.03-0869fje PubMed DOI

Anderova M., Benesova J., Mikesova M., Dzamba D., Honsa P., Kriska J., et al. (2014). Altered astrocytic swelling in the cortex of alpha-syntrophin-negative GFAP/EGFP mice. PLoS One 9:e113444. 10.1371/journal.pone.0113444 PubMed DOI PMC

Anderova M., Vorisek I., Pivonkova H., Benesova J., Vargova L., Cicanic M., et al. (2011). Cell death/proliferation and alterations in glial morphology contribute to changes in diffusivity in the rat hippocampus after hypoxia-ischemia. J. Cereb. Blood Flow Metab. 31, 894–907. 10.1038/jcbfm.2010.168 PubMed DOI PMC

Assefa B. T., Gebre A. K., Altaye B. M. (2018). Reactive astrocytes as drug target in Alzheimer’s disease. Biomed. Res. Int. 2018:4160247. 10.1155/2018/4160247 PubMed DOI PMC

Baig S., Wilcock G. K., Love S. (2005). Loss of perineuronal net N-acetylgalactosamine in Alzheimer’s disease. Acta Neuropathol. 110 393–401. 10.1007/s00401-005-1060-2 PubMed DOI

Beckstrom H., Julsrud L., Haugeto O., Dewar D., Graham D. I., Lehre K. P., et al. (1999). Interindividual differences in the levels of the glutamate transporters Glast and Glt, but no clear correlation with Alzheimer’s disease. J. Neurosci. Res. 55 218–229. 10.1002/(SICI)1097-4547(19990115)55:2<218::AID-JNR9>3.0.CO;2-L PubMed DOI

Bekku Y., Vargova L., Goto Y., Vorisek I., Dmytrenko L., Narasaki M., et al. (2010). Bral1: its role in diffusion barrier formation and conduction velocity in the Cns. J. Neurosci. 30 3113–3123. 10.1523/JNEUROSCI.5598-09.2010 PubMed DOI PMC

Belov Kirdajova D., Kriska J., Tureckova J., Anderova M. (2020). Ischemia-Triggered glutamate excitotoxicity from the perspective of glial cells. Front. Cell Neurosci. 14:51. 10.3389/fncel.2020.00051 PubMed DOI PMC

Ben Haim L., Carrillo-De Sauvage M. A., Ceyzeriat K., Escartin C. (2015). Elusive roles for reactive astrocytes in neurodegenerative diseases. Front. Cell Neurosci. 9:278. 10.3389/fncel.2015.00278 PubMed DOI PMC

Benesova J., Hock M., Butenko O., Prajerova I., Anderova M., Chvatal A. (2009). Quantification of astrocyte volume changes during ischemia in situ reveals two populations of astrocytes in the cortex of GFAP/EGFP mice. J. Neurosci. Res. 87 96–111. 10.1002/jnr.21828 PubMed DOI

Benesova J., Rusnakova V., Honsa P., Pivonkova H., Dzamba D., Kubista M., et al. (2012). Distinct expression/function of potassium and chloride channels contributes to the diverse volume regulation in cortical astrocytes of GFAP/EGFP mice. PLoS One 7:e29725. 10.1371/journal.pone.0029725 PubMed DOI PMC

Bronzuoli M. R., Facchinetti R., Valenza M., Cassano T., Steardo L., Scuderi C. (2019). Astrocyte function is affected by aging and not alzheimer’s disease: a preliminary investigation in hippocampi of 3xTg-Ad Mice. Front. Pharmacol. 10:644. 10.3389/fphar.2019.00644 PubMed DOI PMC

Burbaeva G., Boksha I. S., Tereshkina E. B., Savushkina O. K., Starodubtseva L. I., Turishcheva M. S. (2005). Glutamate metabolizing enzymes in prefrontal cortex of Alzheimer’s disease patients. Neurochem. Res. 30 1443–1451. 10.1007/s11064-005-8654-x PubMed DOI

Chu H., Huang C., Gao Z., Dong J., Tang Y., Dong Q. (2017). Reduction of ischemic brain edema by combined use of paeoniflorin and astragaloside iv via down-regulating connexin 43. Phytother. Res. 31 1410–1418. 10.1002/ptr.5868 PubMed DOI

Chvatal A., Anderova M., Hock M., Prajerova I., Neprasova H., Chvatal V., et al. (2007a). Three-dimensional confocal morphometry reveals structural changes in astrocyte morphology in situ. J. Neurosci. Res. 85 260–271. 10.1002/jnr.21113 PubMed DOI

Chvatal A., Anderova M., Kirchhoff F. (2007b). Three-dimensional confocal morphometry - a new approach for studying dynamic changes in cell morphology in brain slices. J. Anat. 210 671–683. 10.1111/j.1469-7580.2007.00724.x PubMed DOI PMC

Cicanic M., Edamatsu M., Bekku Y., Vorisek I., Oohashi T., Vargova L. (2018). A deficiency of the link protein Bral2 affects the size of the extracellular space in the thalamus of aged mice. J. Neurosci. Res. 96 313–327. 10.1002/jnr.24136 PubMed DOI

De Santis S., Cosa-Linan A., Garcia-Hernandez R., Dmytrenko L., Vargova L., Vorisek I., et al. (2020). Chronic alcohol consumption alters extracellular space geometry and transmitter diffusion in the brain. Sci. Adv. 6:eaba0154. 10.1126/sciadv.aba0154 PubMed DOI PMC

De Strooper B., Karran E. (2016). The cellular phase of Alzheimer’s disease. Cell 164 603–615. PubMed

Deng Y. Y., Shen F. C., Xie D., Han Q. P., Fang M., Chen C. B., et al. (2016). Progress in drug treatment of cerebral edema. Mini Rev. Med. Chem. 16 917–925. 10.2174/1389557516666160304151233 PubMed DOI

Dibaj P., Kaiser M., Hirrlinger J., Kirchhoff F., Neusch C. (2007). Kir4.1 channels regulate swelling of astroglial processes in experimental spinal cord edema. J. Neurochem. 103 2620–2628. 10.1111/j.1471-4159.2007.04979.x PubMed DOI

Dmytrenko L., Cicanic M., Anderova M., Vorisek I., Ottersen O. P., Sykova E., et al. (2013). The impact of alpha-syntrophin deletion on the changes in tissue structure and extracellular diffusion associated with cell swelling under physiological and pathological conditions. PLoS One 8:e68044. 10.1371/journal.pone.0068044 PubMed DOI PMC

Frohlich C., Paarmann K., Steffen J., Stenzel J., Krohn M., Heinze H. J., et al. (2013). Genomic background-related activation of microglia and reduced beta-amyloidosis in a mouse model of Alzheimer’s disease. Eur. J. Microbiol. Immunol. 3 21–27. 10.1556/EuJMI.3.2013.1.3 PubMed DOI PMC

Genocchi B., Cunha A., Jain S., Hyttinen J., Lenk K., Ellingsrud A. J. (2020). Parametric exploration of cellular swelling in a computational model of cortical spreading depression. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2020 2491–2495. 10.1109/EMBC44109.2020.9175306 PubMed DOI

Goetzl E. J., Miller B. L. (2017). Multicellular hypothesis for the pathogenesis of Alzheimer’s disease. FASEB J. 31 1792–1795. 10.1096/fj.201601221R PubMed DOI

Habib N., Mccabe C., Medina S., Varshavsky M., Kitsberg D., Dvir-Szternfeld R., et al. (2020). Disease-associated astrocytes in Alzheimer’s disease and aging. Nat. Neurosci. 23 701–706. 10.1038/s41593-020-0624-8 PubMed DOI PMC

Haj-Yasein N. N., Jensen V., Ostby I., Omholt S. W., Voipio J., Kaila K., et al. (2012). Aquaporin-4 regulates extracellular space volume dynamics during high-frequency synaptic stimulation: a gene deletion study in mouse hippocampus. Glia 60 867–874. 10.1002/glia.22319 PubMed DOI

Hardy J., Selkoe D. J. (2002). The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297 353–356. 10.1126/science.1072994 PubMed DOI

Harrison I. F., Ismail O., Machhada A., Colgan N., Ohene Y., Nahavandi P., et al. (2020). Impaired glymphatic function and clearance of tau in an Alzheimer’s disease model. Brain 143 2576–2593. 10.1093/brain/awaa179 PubMed DOI PMC

Harry G. J. (2013). Microglia during development and aging. Pharmacol. Ther. 139 313–326. 10.1016/j.pharmthera.2013.04.013 PubMed DOI PMC

Hertelendy P., Varga D. P., Menyhart A., Bari F., Farkas E. (2019). Susceptibility of the cerebral cortex to spreading depolarization in neurological disease states: the impact of aging. Neurochem. Int. 127 125–136. 10.1016/j.neuint.2018.10.010 PubMed DOI

Hinson S. R., Roemer S. F., Lucchinetti C. F., Fryer J. P., Kryzer T. J., Chamberlain J. L., et al. (2008). Aquaporin-4-binding autoantibodies in patients with neuromyelitis optica impair glutamate transport by down-regulating Eaat2. J. Exp. Med. 205 2473–2481. 10.1084/jem.20081241 PubMed DOI PMC

Hirrlinger P. G., Wurm A., Hirrlinger J., Bringmann A., Reichenbach A. (2008). Osmotic swelling characteristics of glial cells in the murine hippocampus, cerebellum, and retina in situ. J. Neurochem. 105 1405–1417. 10.1111/j.1471-4159.2008.05243.x PubMed DOI

Holmes B. B., Devos S. L., Kfoury N., Li M., Jacks R., Yanamandra K., et al. (2013). Heparan sulfate proteoglycans mediate internalization and propagation of specific proteopathic seeds. Proc. Natl. Acad. Sci. U.S.A. 110 E3138–E3147. 10.1073/pnas.1301440110 PubMed DOI PMC

Hoshi A., Tsunoda A., Yamamoto T., Tada M., Kakita A., Ugawa Y. (2018). Altered expression of glutamate transporter-1 and water channel protein aquaporin-4 in human temporal cortex with Alzheimer’s disease. Neuropathol. Appl. Neurobiol. 44 628–638. 10.1111/nan.12475 PubMed DOI

Hoshi A., Yamamoto T., Shimizu K., Ugawa Y., Nishizawa M., Takahashi H., et al. (2012). Characteristics of aquaporin expression surrounding senile plaques and cerebral amyloid angiopathy in Alzheimer disease. J. Neuropathol. Exp. Neurol. 71 750–759. 10.1097/NEN.0b013e3182632566 PubMed DOI

Hrabetova S., Nicholson C. (2004). Contribution of dead-space microdomains to tortuosity of brain extracellular space. Neurochem. Int. 45 467–477. 10.1016/j.neuint.2003.11.011 PubMed DOI

Hrabetova S., Hrabe J., Nicholson C. (2003). Dead-space microdomains hinder extracellular diffusion in rat neocortex during ischemia. J. Neurosci. 23 8351–8359. 10.1523/JNEUROSCI.23-23-08351.2003 PubMed DOI PMC

Hynd M. R., Scott H. L., Dodd P. R. (2004). Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer’s disease. Neurochem. Int. 45 583–595. 10.1016/j.neuint.2004.03.007 PubMed DOI

Ikegaya Y., Matsuura S., Ueno S., Baba A., Yamada M. K., Nishiyama N., et al. (2002). Beta-amyloid enhances glial glutamate uptake activity and attenuates synaptic efficacy. J. Biol. Chem. 277 32180–32186. 10.1074/jbc.M203764200 PubMed DOI

Ingelsson M., Fukumoto H., Newell K. L., Growdon J. H., Hedley-Whyte E. T., Frosch M. P., et al. (2004). Early Abeta accumulation and progressive synaptic loss, gliosis, and tangle formation in Ad brain. Neurology 62 925–931. 10.1212/01.wnl.0000115115.98960.37 PubMed DOI

Itagaki S., Mcgeer P. L., Akiyama H., Zhu S., Selkoe D. (1989). Relationship of microglia and astrocytes to amyloid deposits of Alzheimer disease. J. Neuroimmunol. 24 173–182. 10.1016/0165-5728(89)90115-x PubMed DOI

Jabaudon D., Scanziani M., Gahwiler B. H., Gerber U. (2000). Acute decrease in net glutamate uptake during energy deprivation. Proc. Natl. Acad. Sci. U.S.A. 97 5610–5615. 10.1073/pnas.97.10.5610 PubMed DOI PMC

Jacob C. P., Koutsilieri E., Bartl J., Neuen-Jacob E., Arzberger T., Zander N., et al. (2007). Alterations in expression of glutamatergic transporters and receptors in sporadic Alzheimer’s disease. J. Alzheimers Dis. 11 97–116. 10.3233/jad-2007-11113 PubMed DOI

Kelly P. H., Bondolfi L., Hunziker D., Schlecht H. P., Carver K., Maguire E., et al. (2003). Progressive age-related impairment of cognitive behavior in App23 transgenic mice. Neurobiol. Aging 24 365–378. 10.1016/s0197-4580(02)00098-2 PubMed DOI

Klemens J., Ciurkiewicz M., Chludzinski E., Iseringhausen M., Klotz D., Pfankuche V. M., et al. (2019). Neurotoxic potential of reactive astrocytes in canine distemper demyelinating leukoencephalitis. Sci. Rep. 9:11689. 10.1038/s41598-019-48146-9 PubMed DOI PMC

Kolenicova D., Tureckova J., Pukajova B., Harantova L., Kriska J., Kirdajova D., et al. (2020). High potassium exposure reveals the altered ability of astrocytes to regulate their volume in the aged hippocampus of Gfap/Egfp mice. Neurobiol. Aging 86 162–181. 10.1016/j.neurobiolaging.2019.10.009 PubMed DOI

Kriska J., Hermanova Z., Knotek T., Tureckova J., Anderova M. (2021). On the common journey of neural cells through ischemic brain injury and Alzheimer’s disease. Int. J. Mol. Sci. 22:9689. 10.3390/ijms22189689 PubMed DOI PMC

Kulijewicz-Nawrot M., Sykova E., Chvatal A., Verkhratsky A., Rodriguez J. J. (2013). Astrocytes and glutamate homoeostasis in Alzheimer’s disease: a decrease in glutamine synthetase, but not in glutamate transporter-1, in the prefrontal cortex. ASN Neuro 5 273–282. 10.1042/AN20130017 PubMed DOI PMC

Kulijewicz-Nawrot M., Verkhratsky A., Chvatal A., Sykova E., Rodriguez J. J. (2012). Astrocytic cytoskeletal atrophy in the medial prefrontal cortex of a triple transgenic mouse model of Alzheimer’s disease. J. Anat. 221 252–262. 10.1111/j.1469-7580.2012.01536.x PubMed DOI PMC

Lan Y. L., Zhao J., Ma T., Li S. (2016). The potential roles of aquaporin 4 in Alzheimer’s disease. Mol. Neurobiol. 53 5300–5309. 10.1007/s12035-015-9446-1 PubMed DOI

Larsen B. R., Assentoft M., Cotrina M. L., Hua S. Z., Nedergaard M., Kaila K., et al. (2014). Contributions of the Na(+)/K(+)-Atpase, Nkcc1, and Kir4.1 to hippocampal K(+) clearance and volume responses. Glia 62 608–622. 10.1002/glia.22629 PubMed DOI PMC

Li G., Olson J. E. (2008). Purinergic activation of anion conductance and osmolyte efflux in cultured rat hippocampal neurons. Am. J. Physiol. Cell Physiol. 295 C1550–C1560. 10.1152/ajpcell.90605.2007 PubMed DOI PMC

Li G., Liu X., Liu Z., Su Z. (2015). Interactions of connexin 43 and aquaporin-4 in the formation of glioma-induced brain edema. Mol. Med. Rep. 11 1188–1194. 10.3892/mmr.2014.2867 PubMed DOI

Li X., Heinzel F. R., Boengler K., Schulz R., Heusch G. (2004). Role of connexin 43 in ischemic preconditioning does not involve intercellular communication through gap junctions. J. Mol. Cell Cardiol. 36 161–163. 10.1016/j.yjmcc.2003.10.019 PubMed DOI

Li Y. K., Wang F., Wang W., Luo Y., Wu P. F., Xiao J. L., et al. (2012). Aquaporin-4 deficiency impairs synaptic plasticity and associative fear memory in the lateral amygdala: involvement of downregulation of glutamate transporter-1 expression. Neuropsychopharmacology 37 1867–1878. 10.1038/npp.2012.34 PubMed DOI PMC

Liu Y., Beyer A., Aebersold R. (2016). On the dependency of cellular protein levels on MRNA abundance. Cell 165 535–550. 10.1016/j.cell.2016.03.014 PubMed DOI

Macaulay N., Zeuthen T. (2012). Glial K(+) clearance and cell swelling: key roles for cotransporters and pumps. Neurochem. Res. 37 2299–2309. 10.1007/s11064-012-0731-3 PubMed DOI

MacAulay N., Gether U., Klaeke D. A., Zeuthen T. (2002). Passive water and urea permeability of a human Na(+)-glutamate cotransporter expressed in Xenopus oocytes. J. Physiol. 542 817–828. 10.1113/jphysiol.2002.020586 PubMed DOI PMC

MacVicar B. A., Feighan D., Brown A., Ransom B. (2002). Intrinsic optical signals in the rat optic nerve: role for K(+) uptake via Nkcc1 and swelling of astrocytes. Glia 37 114–123. 10.1002/glia.10023 PubMed DOI

Manley G. T., Fujimura M., Ma T., Noshita N., Filiz F., Bollen A. W., et al. (2000). Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat. Med. 6 159–163. 10.1038/72256 PubMed DOI

Matos M., Augusto E., Oliveira C. R., Agostinho P. (2008). Amyloid-beta peptide decreases glutamate uptake in cultured astrocytes: involvement of oxidative stress and mitogen-activated protein kinase cascades. Neuroscience 156 898–910. 10.1016/j.neuroscience.2008.08.022 PubMed DOI

Minati L., Edginton T., Bruzzone M. G., Giaccone G. (2009). Current concepts in Alzheimer’s disease: a multidisciplinary review. Am. J. Alzheimers Dis. Dement. 24 95–121. 10.1177/1533317508328602 PubMed DOI PMC

Moftakhar P., Lynch M. D., Pomakian J. L., Vinters H. V. (2010). Aquaporin expression in the brains of patients with or without cerebral amyloid angiopathy. J. Neuropathol. Exp. Neurol. 69 1201–1209. 10.1097/NEN.0b013e3181fd252c PubMed DOI PMC

Morawski M., Bruckner G., Jager C., Seeger G., Matthews R. T., Arendt T. (2012). Involvement of perineuronal and perisynaptic extracellular matrix in Alzheimer’s disease neuropathology. Brain Pathol. 22 547–561. 10.1111/j.1750-3639.2011.00557.x PubMed DOI PMC

Morawski M., Filippov M., Tzinia A., Tsilibary E., Vargova L. (2014). ECM in brain aging and dementia. Prog. Brain Res. 214 207–227. 10.1016/B978-0-444-63486-3.00010-4 PubMed DOI

Murphy T. R., Davila D., Cuvelier N., Young L. R., Lauderdale K., Binder D. K., et al. (2017). Hippocampal and cortical pyramidal neurons swell in parallel with astrocytes during acute hypoosmolar stress. Front. Cell Neurosci. 11:275. 10.3389/fncel.2017.00275 PubMed DOI PMC

Nedergaard M., Goldman S. A. (2020). Glymphatic failure as a final common pathway to dementia. Science 370 50–56. 10.1126/science.abb8739 PubMed DOI PMC

Nicchia G. P., Srinivas M., Li W., Brosnan C. F., Frigeri A., Spray D. C. (2005). New possible roles for aquaporin-4 in astrocytes: cell cytoskeleton and functional relationship with connexin43. FASEB J. 19 1674–1676. 10.1096/fj.04-3281fje PubMed DOI

Nicholson C. (1993). Ion-selective microelectrodes and diffusion measurements as tools to explore the brain cell microenvironment. J. Neurosci. Methods 48 199–213. 10.1016/0165-0270(93)90092-6 PubMed DOI

Nicholson C., Phillips J. M. (1981). Ion diffusion modified by tortuosity and volume fraction in the extracellular microenvironment of the rat cerebellum. J. Physiol. 321 225–257. 10.1113/jphysiol.1981.sp013981 PubMed DOI PMC

Nielsen S., Nagelhus E. A., Amiry-Moghaddam M., Bourque C., Agre P., Ottersen O. P. (1997). Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J. Neurosci. 17 171–180. 10.1523/JNEUROSCI.17-01-00171.1997 PubMed DOI PMC

Nolte C., Matyash M., Pivneva T., Schipke C. G., Ohlemeyer C., Hanisch U. K., et al. (2001). GFAP promoter-controlled Egfp-expressing transgenic mice: a tool to visualize astrocytes and astrogliosis in living brain tissue. Glia 33 72–86. PubMed

Obara-Michlewska M., Pannicke T., Karl A., Bringmann A., Reichenbach A., Szeliga M., et al. (2011). Down-regulation of Kir4.1 in the cerebral cortex of rats with liver failure and in cultured astrocytes treated with glutamine: implications for astrocytic dysfunction in hepatic encephalopathy. J. Neurosci. Res. 89 2018–2027. 10.1002/jnr.22656 PubMed DOI

Oddo S., Caccamo A., Shepherd J. D., Murphy M. P., Golde T. E., Kayed R., et al. (2003). Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 39 409–421. 10.1016/s0896-6273(03)00434-3 PubMed DOI

Okada Y., Sato K., Numata T. (2009). Pathophysiology and puzzles of the volume-sensitive outwardly rectifying anion channel. J. Physiol. 587 2141–2149. 10.1113/jphysiol.2008.165076 PubMed DOI PMC

Olabarria M., Noristani H. N., Verkhratsky A., Rodriguez J. J. (2011). Age-dependent decrease in glutamine synthetase expression in the hippocampal astroglia of the triple transgenic Alzheimer’s disease mouse model: mechanism for deficient glutamatergic transmission? Mol. Neurodegener. 6:55. 10.1186/1750-1326-6-55 PubMed DOI PMC

Olson J. E., Li G. Z. (2000). Osmotic sensitivity of taurine release from hippocampal neuronal and glial cells. Adv. Exp. Med. Biol. 483 213–218. 10.1007/0-306-46838-7_23 PubMed DOI

Papadopoulos M. C., Verkman A. S. (2005). Aquaporin-4 gene disruption in mice reduces brain swelling and mortality in pneumococcal meningitis. J. Biol. Chem. 280 13906–13912. 10.1074/jbc.M413627200 PubMed DOI

Pasantes-Morales H., Vazquez-Juarez E. (2012). Transporters and channels in cytotoxic astrocyte swelling. Neurochem. Res. 37 2379–2387. 10.1007/s11064-012-0777-2 PubMed DOI

Peng W., Achariyar T. M., Li B., Liao Y., Mestre H., Hitomi E., et al. (2016). Suppression of glymphatic fluid transport in a mouse model of Alzheimer’s disease. Neurobiol. Dis. 93 215–225. 10.1016/j.nbd.2016.05.015 PubMed DOI PMC

Plog B. A., Nedergaard M. (2018). The glymphatic system in central nervous system health and disease: past, present, and future. Annu. Rev. Pathol. 13 379–394. 10.1146/annurev-pathol-051217-111018 PubMed DOI PMC

Prince M., Bryce R., Albanese E., Wimo A., Ribeiro W., Ferri C. P. (2013). The global prevalence of dementia: a systematic review and metaanalysis. Alzheimers Dement. 9:e2. PubMed

Qosa H., Abuznait A. H., Hill R. A., Kaddoumi A. (2012). Enhanced brain amyloid-beta clearance by rifampicin and caffeine as a possible protective mechanism against Alzheimer’s disease. J. Alzheimers Dis. 31 151–165. 10.3233/JAD-2012-120319 PubMed DOI PMC

Qosa H., Kaddoumi A. (2016). Effect of mouse strain as a background for Alzheimer’s disease models on the clearance of amyloid-beta. J. Syst. Integr. Neurosci. 2 135–140. 10.15761/JSIN.1000123 PubMed DOI PMC

Reeves B. C., Karimy J. K., Kundishora A. J., Mestre H., Cerci H. M., Matouk C., et al. (2020). Glymphatic system impairment in alzheimer’s disease and idiopathic normal pressure hydrocephalus. Trends Mol. Med. 26 285–295. 10.1016/j.molmed.2019.11.008 PubMed DOI PMC

Risher W. C., Andrew R. D., Kirov S. A. (2009). Real-time passive volume responses of astrocytes to acute osmotic and ischemic stress in cortical slices and in vivo revealed by two-photon microscopy. Glia 57 207–221. 10.1002/glia.20747 PubMed DOI PMC

Rodriguez-Arellano J. J., Parpura V., Zorec R., Verkhratsky A. (2016). Astrocytes in physiological aging and Alzheimer’s disease. Neuroscience 323 170–182. 10.1016/j.neuroscience.2015.01.007 PubMed DOI

Roitbak T., Sykova E. (1999). Diffusion barriers evoked in the rat cortex by reactive astrogliosis. Glia 28 40–48. 10.1002/(sici)1098-1136(199910)28:1<40::aid-glia5>3.0.co;2-6 PubMed DOI

Rusnakova V., Honsa P., Dzamba D., Stahlberg A., Kubista M., Anderova M. (2013). Heterogeneity of astrocytes: from development to injury - single cell gene expression. PLoS One 8:e69734. 10.1371/journal.pone.0069734 PubMed DOI PMC

Scimemi A., Meabon J. S., Woltjer R. L., Sullivan J. M., Diamond J. S., Cook D. G. (2013). Amyloid-beta1-42 slows clearance of synaptically released glutamate by mislocalizing astrocytic Glt-1. J. Neurosci. 33 5312–5318. 10.1523/JNEUROSCI.5274-12.2013 PubMed DOI PMC

Serrano-Pozo A., Muzikansky A., Gomez-Isla T., Growdon J. H., Betensky R. A., Frosch M. P., et al. (2013). Differential relationships of reactive astrocytes and microglia to fibrillar amyloid deposits in Alzheimer disease. J. Neuropathol. Exp. Neurol. 72 462–471. 10.1097/NEN.0b013e3182933788 PubMed DOI PMC

Sethi M. K., Zaia J. (2017). Extracellular matrix proteomics in schizophrenia and Alzheimer’s disease. Anal. Bioanal. Chem. 409 379–394. 10.1007/s00216-016-9900-6 PubMed DOI PMC

Smith M. A., Rottkamp C. A., Nunomura A., Raina A. K., Perry G. (2000). Oxidative stress in Alzheimer’s disease. Biochim. Biophys. Acta 1502 139–144. PubMed

Sonneveld S., Verhagen B. M. P., Tanenbaum M. E. (2020). Heterogeneity in MRNA Translation. Trends Cell Biol. 30 606–618. 10.1016/j.tcb.2020.04.008 PubMed DOI

Su G., Kintner D. B., Sun D. (2002). Contribution of Na(+)-K(+)- Cl(-) cotransporter to high-[K(+)](o)- induced swelling and EAA release in astrocytes. Am. J. Physiol. Cell Physiol. 282 C1136–C1146. 10.1152/ajpcell.00478.2001 PubMed DOI

Sykova E., Nicholson C. (2008). Diffusion in brain extracellular space. Physiol. Rev. 88 1277–1340. 10.1152/physrev.00027.2007 PubMed DOI PMC

Sykova E., Vorisek I., Antonova T., Mazel T., Meyer-Luehmann M., Jucker M., et al. (2005). Changes in extracellular space size and geometry in App23 transgenic mice: a model of Alzheimer’s disease. Proc. Natl. Acad. Sci. U.S.A. 102 479–484. 10.1073/pnas.0408235102 PubMed DOI PMC

Tarasoff-Conway J. M., Carare R. O., Osorio R. S., Glodzik L., Butler T., Fieremans E., et al. (2015). Clearance systems in the brain-implications for Alzheimer disease. Nat. Rev. Neurol. 11 457–470. 10.1038/nrneurol.2015.119 PubMed DOI PMC

Thorne R. G., Nicholson C. (2006). In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space. Proc. Natl. Acad. Sci. U.S.A. 103 5567–5572. 10.1073/pnas.0509425103 PubMed DOI PMC

Ting J. T., Daigle T. L., Chen Q., Feng G. (2014). Acute brain slice methods for adult and aging animals: application of targeted patch clamp analysis and optogenetics. Methods Mol. Biol. 1183 221–242. 10.1007/978-1-4939-1096-0_14 PubMed DOI PMC

Toft-Bertelsen T. L., Larsen B. R., Christensen S. K., Khandelia H., Waagepetersen H. S., Macaulay N. (2021). Clearance of activity-evoked K(+) transients and associated glia cell swelling occur independently of Aqp4: a study with an isoform-selective Aqp4 inhibitor. Glia 69 28–41. 10.1002/glia.23851 PubMed DOI

Vajda Z., Pedersen M., Fuchtbauer E. M., Wertz K., Stodkilde-Jorgensen H., Sulyok E., et al. (2002). Delayed onset of brain edema and mislocalization of aquaporin-4 in dystrophin-null transgenic mice. Proc. Natl. Acad. Sci. U.S.A. 99 13131–13136. 10.1073/pnas.192457099 PubMed DOI PMC

Valenza M., Facchinetti R., Steardo L., Scuderi C. (2019). Altered waste disposal system in aging and alzheimer’s disease: focus on astrocytic aquaporin-4. Front. Pharmacol. 10:1656. 10.3389/fphar.2019.01656 PubMed DOI PMC

Valny M., Honsa P., Waloschkova E., Matuskova H., Kriska J., Kirdajova D., et al. (2018). A single-cell analysis reveals multiple roles of oligodendroglial lineage cells during post-ischemic regeneration. Glia 66 1068–1081. 10.1002/glia.23301 PubMed DOI

Vegh M. J., Rausell A., Loos M., Heldring C. M., Jurkowski W., Van Nierop P., et al. (2014b). Hippocampal extracellular matrix levels and stochasticity in synaptic protein expression increase with age and are associated with age-dependent cognitive decline. Mol. Cell Proteomics 13 2975–2985. 10.1074/mcp.M113.032086 PubMed DOI PMC

Vegh M. J., Heldring C. M., Kamphuis W., Hijazi S., Timmerman A. J., Li K. W., et al. (2014a). Reducing hippocampal extracellular matrix reverses early memory deficits in a mouse model of Alzheimer’s disease. Acta Neuropathol. Commun. 2:76. 10.1186/s40478-014-0076-z PubMed DOI PMC

Voipio J., Pasternack M., Macleod K. (1994). Ion-sensitive microelectrodes. Microelectrode Techniques: The Plymouth Workshop Handbook, 2 Edn. Cambridge: The Company of Biologists Limited, 275–316.

Vorisek I., Sykova E. (1997). Ischemia-induced changes in the extracellular space diffusion parameters. K+, and pH in the developing rat cortex and corpus callosum. J. Cereb. Blood Flow Metab. 17 191–203. 10.1097/00004647-199702000-00009 PubMed DOI

Walch E., Murphy T. R., Cuvelier N., Aldoghmi M., Morozova C., Donohue J., et al. (2020). Astrocyte-selective volume increase in elevated extracellular potassium conditions is mediated by The Na(+)/K(+) atpase and occurs independently of aquaporin 4. ASN Neuro 12:1759091420967152. PubMed PMC

Walton H. S., Dodd P. R. (2007). Glutamate-glutamine cycling in Alzheimer’s disease. Neurochem. Int. 50 1052–1066. 10.1016/j.neuint.2006.10.007 PubMed DOI

Wilson C. S., Mongin A. A. (2018). Cell volume control in healthy brain and neuropathologies. Curr. Top. Membr. 81 385–455. 10.1016/bs.ctm.2018.07.006 PubMed DOI PMC

Wolak D. J., Thorne R. G. (2013). Diffusion of macromolecules in the brain: implications for drug delivery. Mol. Pharm. 10 1492–1504. 10.1021/mp300495e PubMed DOI PMC

Xekardaki A., Kovari E., Gold G., Papadimitropoulou A., Giacobini E., Herrmann F., et al. (2015). Neuropathological changes in aging brain. Adv. Exp. Med. Biol. 821 11–17. 10.1007/978-3-319-08939-3_6 PubMed DOI

Yang J., Li M. X., Luo Y., Chen T., Liu J., Fang P., et al. (2013). Chronic ceftriaxone treatment rescues hippocampal memory deficit in Aqp4 knockout mice via activation of Glt-1. Neuropharmacology 75 213–222. 10.1016/j.neuropharm.2013.08.009 PubMed DOI

Yang J., Lunde L. K., Nuntagij P., Oguchi T., Camassa L. M., Nilsson L. N., et al. (2011). Loss of astrocyte polarization in the tg-ArcSwe mouse model of Alzheimer’s disease. J. Alzheimers Dis. 27 711–722. 10.3233/JAD-2011-110725 PubMed DOI

Ye Z. C., Oberheim N., Kettenmann H., Ransom B. R. (2009). Pharmacological “cross-inhibition” of connexin hemichannels and swelling activated anion channels. Glia 57 258–269. 10.1002/glia.20754 PubMed DOI PMC

Zamecnik J., Vargova L., Homola A., Kodet R., Sykova E. (2004). Extracellular matrix glycoproteins and diffusion barriers in human astrocytic tumours. Neuropathol. Appl. Neurobiol. 30 338–350. 10.1046/j.0305-1846.2003.00541.x PubMed DOI

Zeng X. N., Sun X. L., Gao L., Fan Y., Ding J. H., Hu G. (2007). Aquaporin-4 deficiency down-regulates glutamate uptake and Glt-1 expression in astrocytes. Mol. Cell Neurosci. 34 34–39. 10.1016/j.mcn.2006.09.008 PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

ALS-like pathology diminishes swelling of spinal astrocytes in the SOD1 animal model

. 2024 ; 18 () : 1472374. [epub] 20241010

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace