Astrocytic cytoskeletal atrophy in the medial prefrontal cortex of a triple transgenic mouse model of Alzheimer's disease
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
22738374
PubMed Central
PMC3458630
DOI
10.1111/j.1469-7580.2012.01536.x
Knihovny.cz E-zdroje
- MeSH
- Alzheimerova nemoc patologie MeSH
- amyloidní beta-protein metabolismus MeSH
- astrocyty cytologie metabolismus patologie MeSH
- atrofie patologie MeSH
- cytoskelet patologie MeSH
- imunohistochemie MeSH
- modely nemocí na zvířatech MeSH
- myši transgenní MeSH
- myši MeSH
- prefrontální mozková kůra cytologie metabolismus patologie MeSH
- progrese nemoci MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- amyloidní beta-protein MeSH
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the loss of cognitive functions, reflecting pathological damage to the medial prefrontal cortex (mPFC) as well as to the hippocampus and the entorhinal cortex. Astrocytes maintain the internal homeostasis of the CNS and are fundamentally involved in neuropathological processes, including AD. Here, we analysed the astrocytic cytoskeletal changes within the mPFC of a triple transgenic mouse model of AD (3 × Tg-AD) by measuring the surface area and volume of glial fibrillary acidic protein (GFAP)-positive profiles in relation to the build-up and presence of amyloid-β (Aβ), and compared the results with those found in non-transgenic control animals at different ages. 3 × Tg-AD animals showed clear astroglial cytoskeletal atrophy, which appeared at an early age (3 months; 33% and 47% decrease in GFAP-positive surface area and volume, respectively) and remained throughout the disease progression at 9, 12 and 18 months old (29% and 36%; 37% and 35%; 43% and 37%, respectively). This atrophy was independent of Aβ accumulation, as only a few GFAP-positive cells were localized around Aβ aggregates, which suggests no direct relationship with Aβ toxicity. Thus, our results indicate that the progressive reduction in astrocytic branching and domain in the mPFC can account for the integrative dysfunction leading to the cognitive deficits and memory disturbances observed in AD.
Zobrazit více v PubMed
Allaman I, Belanger M, Magistretti PJ. Astrocyte-neuron metabolic relationships: for better and for worse. Trends Neurosci. 2011;34:76–87. PubMed
Alzheimer A. Über eine eigenartige Erkrankung der Hirnrinde. Allg Z Psychiat Phych-Gericht Med. 1907;64:146–148.
Alzheimer A. Beiträge zur Kenntnis der pathologischen Neuroglia und ihrer Beziehungen zu den Abbauvorgängen im Nervengewebe. In: Nissl F, Alzheimer A, editors. Histologische und histopathologische Arbeiten über die Grosshirnrinde mit besonderer Berücksichtigung der pathologischen Anatomie der Geisteskrankheiten. , Jena: Gustav Fischer; 1910. pp. 401–562.
Bokor H, Csaki A, Kocsis K, et al. Cellular architecture of the nucleus reuniens thalami and its putative aspartatergic/glutamatergic projection to the hippocampus and medial septum in the rat. Eur J Neurosci. 2002;16:1227–1239. PubMed
Buckner RL, Kelley WM, Petersen SE. Frontal cortex contributes to human memory formation. Nat Neurosci. 1999;2:311–314. PubMed
Buckner RL, Koutstaal W, Schacter DL, et al. Functional MRI evidence for a role of frontal and inferior temporal cortex in amodal components of priming. Brain. 2000;123(Pt 3):620–640. PubMed
Burgmans S, van Boxtel MP, Smeets F, et al. Prefrontal cortex atrophy predicts dementia over a six-year period. Neurobiol Aging. 2009;30:1413–1419. PubMed
Carr DB, Sesack SR. Hippocampal afferents to the rat prefrontal cortex: synaptic targets and relation to dopamine terminals. J Comp Neurol. 1996;369:1–15. PubMed
Chvatal A, Anderova M, Kirchhoff F. Three-dimensional confocal morphometry – a new approach for studying dynamic changes in cell morphology in brain slices. J Anat. 2007;210:671–683. PubMed PMC
Cousens G, Otto TA. Induction and transient suppression of long-term potentiation in the peri- and postrhinal cortices following theta-related stimulation of hippocampal field CA1. Brain Res. 1998;780:95–101. PubMed
Cummings JL. Alzheimer's disease. N Engl J Med. 2004;351:56–67. PubMed
Delatour B, Witter MP. Projections from the parahippocampal region to the prefrontal cortex in the rat: evidence of multiple pathways. Eur J Neurosci. 2002;15:1400–1407. PubMed
Di Prisco GV, Vertes RP. Excitatory actions of the ventral midline thalamus (rhomboid/reuniens) on the medial prefrontal cortex in the rat. Synapse. 2006;60:45–55. PubMed
Dumitriu D, Hao J, Hara Y, et al. Selective changes in thin spine density and morphology in monkey prefrontal cortex correlate with aging-related cognitive impairment. J Neurosci. 2010;30:7507–7515. PubMed PMC
Eng LF, Ghirnikar RS, Lee YL. Glial fibrillary acidic protein: GFAP-thirty-one years (1969-2000) Neurochem Res. 2000;25:1439–1451. PubMed
Funahashi S. Prefrontal cortex and working memory processes. Neuroscience. 2006;139:251–261. PubMed
Fuster JM. The Prefrontal Cortex. Oxford, UK: Academic Press; 2008.
Giaume C, Kirchhoff F, Matute C, et al. Glia: the fulcrum of brain diseases. Cell Death Differ. 2007;14:1324–1335. PubMed
Goldapple K, Segal Z, Garson C, et al. Modulation of cortical-limbic pathways in major depression: treatment-specific effects of cognitive behavior therapy. Arch Gen Psychiatry. 2004;61:34–41. PubMed
Goldman-Rakic PS. Development of cortical circuitry and cognitive function. Child Dev. 1987;58:601–622. PubMed
Goldman-Rakic PS, Selemon LD, Schwartz ML. Dual pathways connecting the dorsolateral prefrontal cortex with the hippocampal formation and parahippocampal cortex in the rhesus monkey. Neuroscience. 1984;12:719–743. PubMed
Halliday GM, Cullen KM, Kril JJ, et al. Glial fibrillary acidic protein (GFAP) immunohistochemistry in human cortex: a quantitative study using different antisera. Neurosci Lett. 1996;209:29–32. PubMed
Harciarek M, Jodzio K. Neuropsychological differences between frontotemporal dementia and Alzheimer's disease: a review. Neuropsychol Rev. 2005;15:131–145. PubMed
Heidbreder CA, Groenewegen HJ. The medial prefrontal cortex in the rat: evidence for a dorso-ventral distinction based upon functional and anatomical characteristics. Neurosci Biobehav Rev. 2003;27:555–579. PubMed
Heneka MT, Rodriguez JJ, Verkhratsky A. Neuroglia in neurodegeneration. Brain Res Rev. 2010;63:189–211. PubMed
Henneberger C, Papouin T, Oliet SH, et al. Long-term potentiation depends on release of D-serine from astrocytes. Nature. 2010;463:232–236. PubMed PMC
Hoover WB, Vertes RP. Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat. Brain Struct Funct. 2007;212:149–179. PubMed
Hurley KM, Herbert H, Moga MM, et al. Efferent projections of the infralimbic cortex of the rat. J Comp Neurol. 1991;308:249–276. PubMed
Jay TM, Witter MP. Distribution of hippocampal CA1 and subicular efferents in the prefrontal cortex of the rat studied by means of anterograde transport of Phaseolus vulgaris-leucoagglutinin. J Comp Neurol. 1991;313:574–586. PubMed
Jay TM, Glowinski J, Thierry AM. Selectivity of the hippocampal projection to the prelimbic area of the prefrontal cortex in the rat. Brain Res. 1989;505:337–340. PubMed
Jay TM, Burette F, Laroche S. Plasticity of the hippocampal-prefrontal cortex synapses. J Physiol Paris. 1996;90:361–366. PubMed
Jay TM, Rocher C, Hotte M, et al. Plasticity at hippocampal to prefrontal cortex synapses is impaired by loss of dopamine and stress: importance for psychiatric diseases. Neurotox Res. 2004;6:233–244. PubMed
Kemper TL. Neuroanatomical and neuropathological changes during aging and in dementia. In: Albert ML, Knoepfel EJE, editors. Clinical Neurology of Aging. , New York: Oxford University Press; 1994. pp. 3–67.
Knopman DS, Selnes OA. Neuropsychology of dementia. In: Heilman KM, Valenstein E, editors. Clinical Neuropsychology. , New York: Oxford University Press; 2003. pp. 574–616.
Lamar M, Resnick SM. Aging and prefrontal functions: dissociating orbitofrontal and dorsolateral abilities. Neurobiol Aging. 2004;25:553–558. PubMed
Liu X, Erikson C, Brun A. Cortical synaptic changes and gliosis in normal aging, Alzheimer's disease and frontal lobe degeneration. Dementia. 1996;7:128–134. PubMed
Martin JA, Craft DK, Su JH, et al. Astrocytes degenerate in frontotemporal dementia: possible relation to hypoperfusion. Neurobiol Aging. 2001;22:195–207. PubMed
Mendez MF, Cummings JL. Dementia – a Clinical Approach. Philadelphia, PA: Butterworth-Heinemann (Elsevier); 2003.
Miguel-Hidalgo JJ, Baucom C, Dilley G, et al. Glial fibrillary acidic protein immunoreactivity in the prefrontal cortex distinguishes younger from older adults in major depressive disorder. Biol Psychiatry. 2000;48:861–873. PubMed
Nedergaard M, Verkhratsky A. Artifact versus reality – How astrocytes contribute to synaptic events? Glia. 2012;60:1013–1023. PubMed PMC
Oddo S, Caccamo A, Kitazawa M, et al. Amyloid deposition precedes tangle formation in a triple transgenic model of Alzheimer's disease. Neurobiol Aging. 2003a;24:1063–1070. PubMed
Oddo S, Caccamo A, Shepherd JD, et al. Triple-transgenic model of Alzheimer's disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron. 2003b;39:409–421. PubMed
Olabarria M, Noristani HN, Verkhratsky A, et al. Concomitant astroglial atrophy and astrogliosis in a triple transgenic animal model of Alzheimer's disease. Glia. 2010;58:831–838. PubMed
Ongur D, Price JL. The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex. 2000;10:206–219. PubMed
Otani S. Prefrontal cortex function, quasi-physiological stimuli, and synaptic plasticity. J Physiol Paris. 2003;97:423–430. PubMed
Pascual O, Casper KB, Kubera C, et al. Astrocytic purinergic signaling coordinates synaptic networks. Science. 2005;310:113–116. PubMed
Paxinos G, Franklin K. The Mouse Brain in Stereotaxic Coordinates. San Diego, CA: Academic Press; 2004.
Pfrieger FW. Roles of glial cells in synapse development. Cell Mol Life Sci. 2009;66:2037–2047. PubMed PMC
Rajkowska G, Miguel-Hidalgo JJ, Makkos Z, et al. Layer-specific reductions in GFAP-reactive astroglia in the dorsolateral prefrontal cortex in schizophrenia. Schizophr Res. 2002;57:127–138. PubMed
Raz N, Gunning FM, Head D, et al. Selective aging of the human cerebral cortex observed in vivo: differential vulnerability of the prefrontal gray matter. Cereb Cortex. 1997;7:268–282. PubMed
Rodriguez JJ, Jones VC, Tabuchi M, et al. Impaired adult neurogenesis in the dentate gyrus of a triple transgenic mouse model of Alzheimer's disease. PLoS One. 2008;3:e2935. PubMed PMC
Rodriguez JJ, Jones VC, Verkhratsky A. Impaired cell proliferation in the subventricular zone in an Alzheimer's disease model. NeuroReport. 2009;20:907–912. PubMed
Salat DH, Kaye JA, Janowsky JS. Prefrontal gray and white matter volumes in healthy aging and Alzheimer disease. Arch Neurol. 1999;56:338–344. PubMed
Salat DH, Kaye JA, Janowsky JS. Selective preservation and degeneration within the prefrontal cortex in aging and Alzheimer disease. Arch Neurol. 2001;58:1403–1408. PubMed
Selemon LD, Rajkowska G, Goldman-Rakic PS. Abnormally high neuronal density in the schizophrenic cortex. A morphometric analysis of prefrontal area 9 and occipital area 17. Arch Gen Psychiatry. 1995;52:805–818. discussion 819–820. PubMed
Selemon LD, Rajkowska G, Goldman-Rakic PS. Elevated neuronal density in prefrontal area 46 in brains from schizophrenic patients: application of a three-dimensional, stereologic counting method. J Comp Neurol. 1998;392:402–412. PubMed
Selkoe DJ. Alzheimer's disease: genes, proteins, and therapy. Physiol Rev. 2001;81:741–766. PubMed
Szeszko PR, Goldberg E, Gunduz-Bruce H, et al. Smaller anterior hippocampal formation volume in antipsychotic-naive patients with first-episode schizophrenia. Am J Psychiatry. 2003;160:2190–2197. PubMed
Uylings HBM, West MJ, Coleman PD. Neuronal and cellular changes in the aging brain. In: Clark CM, Trojanowski JQ, et al., editors. Neurodegenerative Dementias. , New York: McGraw-Hill; 2000. pp. 61–76.
Verkhratsky A, Parpura V. Recent advances in (patho)physiology of astroglia. Acta Pharmacol Sin. 2010;31:1044–1054. PubMed PMC
Verkhratsky A, Olabarria M, Noristani HN, et al. Astrocytes in Alzheimer's disease. Neurotherapeutics. 2010;7:399–412. PubMed PMC
Verkhratsky A, Parpura V, Rodriguez JJ. Where the thoughts dwell: the physiology of neuronal-glial “diffuse neural net”. Brain Res Rev. 2011;66:133–151. PubMed
Vertes RP. Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse. 2004;51:32–58. PubMed
Vertes RP. Interactions among the medial prefrontal cortex, hippocampus and midline thalamus in emotional and cognitive processing in the rat. Neuroscience. 2006;142:1–20. PubMed
Vertes RP, Hoover WB, Szigeti-Buck K, et al. Nucleus reuniens of the midline thalamus: link between the medial prefrontal cortex and the hippocampus. Brain Res Bull. 2007;71:601–609. PubMed PMC
West RL. An application of prefrontal cortex function theory to cognitive aging. Psychol Bull. 1996;120:272–292. PubMed
West R. In defense of the frontal lobe hypothesis of cognitive aging. J Int Neuropsychol Soc. 2000;6:727–729. discussion 730. PubMed
Wickelgren WA. Chunking and consolidation: a theoretical synthesis of semantic networks, configuring in conditioning, S–R versus congenitive learning, normal forgetting, the amnesic syndrome, and the hippocampal arousal system. Psychol Rev. 1979;86:44–60. PubMed
Wouterlood FG, Saldana E, Witter MP. Projection from the nucleus reuniens thalami to the hippocampal region: light and electron microscopic tracing study in the rat with the anterograde tracer Phaseolus vulgaris-leucoagglutinin. J Comp Neurol. 1990;296:179–203. PubMed
Yeh CY, Vadhwana B, Verkhratsky A, et al. Early astrocytic atrophy in the entorhinal cortex of a triple transgenic animal model of Alzheimer's disease. ASN Neuro. 2011;3:271–279. PubMed PMC
Amyloid precursor protein induces reactive astrogliosis
Alzheimer's Disease: Mechanism and Approach to Cell Therapy
Astroglia in neurological diseases