Amyloid precursor protein induces reactive astrogliosis
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu preprinty, časopisecké články
Grantová podpora
I01 BX003671
BLRD VA - United States
IK6 BX006318
BLRD VA - United States
P30 AG062429
NIA NIH HHS - United States
PubMed
38187544
PubMed Central
PMC10769227
DOI
10.1101/2023.12.18.571817
PII: 2023.12.18.571817
Knihovny.cz E-zdroje
- Klíčová slova
- amyloid precursor protein, astrocytes, interferon pathway, lipopolysaccharide, reactive astrogliosis, traumatic brain injury,
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
We present in vitro and in vivo evidence demonstrating that Amyloid Precursor Protein (APP) acts as an essential instigator of reactive astrogliosis. Cell-specific overexpression of APP in cultured astrocytes led to remodelling of the intermediate filament network, enhancement of cytokine production and activation of cellular programs centred around the interferon (IFN) pathway, all signs of reactive astrogliosis. Conversely, APP deletion in cultured astrocytes abrogated remodelling of the intermediate filament network and blunted expression of IFN stimulated gene (ISG) products in response to lipopolysaccharide (LPS). Following traumatic brain injury (TBI), mouse reactive astrocytes also exhibited an association between APP and IFN, while APP deletion curbed the increase in glial fibrillary acidic protein (GFAP) observed canonically in astrocytes in response to TBI. Thus, APP represents a molecular inducer and regulator of reactive astrogliosis.
Achucarro Centre for Neuroscience IIKERBASQUE Basque Foundation for Science Bilbao Spain
Celica Biomedical Technology Park Ljubljana Slovenia
Central European Institute of Technology Masaryk University Brno Czech Republic
Department of Anesthesia University of California San Diego San Diego USA
Department of Neurosciences University of California San Diego La Jolla CA USA
Faculty of Biology Medicine and Health University of Manchester Manchester UK
National Centre for Biomedical Research Faculty of Science Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Semyanov A, Verkhratsky A. Astrocytic processes: from tripartite synapses to the active milieu. Trends Neurosci. 2021;44 (10):781–792. doi: 10.1016/j.tins.2021.07.006. PubMed DOI
Araque A, Parpura V, Sanzgiri RP, Haydon PG. Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci. 1999;22 (5):208–215. doi: 10.1016/s0166-2236(98)01349-6. PubMed DOI
Augusto-Oliveira M. Astroglia-specific contributions to the regulation of synapses, cognition and behaviour. Neurosci Biobehav Rev. 2020;118:331–357. doi: 10.1016/j.neubiorev.2020.07.039. PubMed DOI
Durkee CA, Covelo A, Lines J, Kofuji P, Aguilar J, Araque A. G(i/o) protein-coupled receptors inhibit neurons but activate astrocytes and stimulate gliotransmission. Glia. 2019;67 (6):1076–1093. doi: 10.1002/glia.23589. PubMed DOI PMC
Südhof TC. Towards an Understanding of Synapse Formation. Neuron. 2018;100 (2):276–293. doi: 10.1016/j.neuron.2018.09.040. PubMed DOI PMC
Andersen JaASaAV. Astrocyte energy and neurotransmitter metabolism in Alzheimer’s disease: Integration of the glutamate/GABA-glutamine cycle. 2022;217. doi: 10.1016/j.pneurobio.2022.102331. PubMed DOI
Barros LF. How expensive is the astrocyte? J Cereb Blood Flow Metab. 2022;42 (5):738–745. doi: 10.1177/0271678x221077343. PubMed DOI PMC
Ghosh A, Cheung YY, Mansfield BC, Chou JY. Brain contains a functional glucose-6-phosphatase complex capable of endogenous glucose production. J Biol Chem. 2005;280 (12):11114–11119. doi: 10.1074/jbc.M410894200. PubMed DOI
Subbarao KV, Hertz L. Effect of adrenergic agonists on glycogenolysis in primary cultures of astrocytes. Brain Res. 1990;536 (1–2):220–226. doi: 10.1016/0006-8993(90)90028-a. PubMed DOI
Alvarez JI, Katayama T, Prat A. Glial influence on the blood brain barrier. Glia. 2013;61 (12):1939–1958. doi: 10.1002/glia.22575. PubMed DOI PMC
Beck DW, Vinters HV, Hart MN, Cancilla PA. Glial cells influence polarity of the blood-brain barrier. J Neuropathol Exp Neurol. 1984;43 (3):219–224. doi: 10.1097/00005072-198405000-00001. PubMed DOI
Verkhratsky A, Pivoriūnas A. Astroglia support, regulate and reinforce brain barriers. Neurobiol Dis. 2023;179:106054. doi: 10.1016/j.nbd.2023.106054. PubMed DOI
Vise WM, Liss L, Yashon D, Hunt WE. Astrocytic processes: A route between vessels and neurons followingblood-brain barrier injurt. J Neuropathol Exp Neurol. 1975;34 (4):324–334. doi: 10.1097/00005072-197507000-00002. PubMed DOI
Escartin C, Galea E, Lakatos A, et al. Reactive astrocyte nomenclature, definitions, and future directions. Nat Neurosci. 2021;24 (3):312–325. doi: 10.1038/s41593-020-00783-4. PubMed DOI PMC
Verkhratsky A, Butt A, Li B, et al. Astrocytes in human central nervous system diseases: a frontier for new therapies. Signal Transduct Target Ther. 2023;8 (1):396. doi: 10.1038/s41392-023-01628-9. PubMed DOI PMC
Hol EM, Pekny M. Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system. Curr Opin Cell Biol. 2015;32:121–130. doi: 10.1016/j.ceb.2015.02.004. PubMed DOI
Rodríguez JJ, Yeh CY, Terzieva S, Olabarria M, Kulijewicz-Nawrot M, Verkhratsky A. Complex and region-specific changes in astroglial markers in the aging brain. Neurobiol Aging. 2014;35 (1):15–23. doi: 10.1016/j.neurobiolaging.2013.07.002. PubMed DOI
Pirnat S, Božić M, Dolanc D, et al. Astrocyte arborization enhances Ca(2+) but not cAMP signaling plasticity. Glia. 2021;69 (12):2899–2916. doi: 10.1002/glia.24076. PubMed DOI PMC
Leng K, Rose IVL, Kim H, et al. CRISPRi screens in human iPSC-derived astrocytes elucidate regulators of distinct inflammatory reactive states. Nat Neurosci. 2022;25 (11):1528–1542. doi: 10.1038/s41593-022-01180-9. PubMed DOI PMC
Liao MC, Muratore CR, Gierahn TM, et al. Single-Cell Detection of Secreted Abeta and sAPPalpha from Human IPSC-Derived Neurons and Astrocytes. J Neurosci. 2016;36 (5):1730–1746. doi: 10.1523/JNEUROSCI.2735-15.2016. PubMed DOI PMC
Mathys H, Davila-Velderrain J, Peng Z, et al. Author Correction: Single-cell transcriptomic analysis of Alzheimer’s disease. Nature. 2019;571 (7763):E1. doi: 10.1038/s41586-019-1329-6. PubMed DOI PMC
Todd BP, Chimenti MS, Luo Z, Ferguson PJ, Bassuk AG, Newell EA. Traumatic brain injury results in unique microglial and astrocyte transcriptomes enriched for type I interferon response. J Neuroinflammation. 2021;18 (1):151. doi: 10.1186/s12974-021-02197-w. PubMed DOI PMC
Zamanian JL, Xu L, Foo LC, et al. Genomic analysis of reactive astrogliosis. J Neurosci. 2012;32 (18):6391–6410. doi: 10.1523/JNEUROSCI.6221-11.2012. PubMed DOI PMC
Matejuk A, Ransohoff RM. Crosstalk Between Astrocytes and Microglia: An Overview. Front Immunol. 2020;11:1416. doi: 10.3389/fimmu.2020.01416. PubMed DOI PMC
Thelin EP, Hall CE, Tyzack GE, et al. Delineating Astrocytic Cytokine Responses in a Human Stem Cell Model of Neural Trauma. J Neurotrauma. 2020;37 (1):93–105. doi: 10.1089/neu.2019.6480. PubMed DOI PMC
Božić M, Verkhratsky A, Zorec R, Stenovec M. Exocytosis of large-diameter lysosomes mediates interferon γ-induced relocation of MHC class II molecules toward the surface of astrocytes. Cell Mol Life Sci. 2020;77 (16):3245–3264. doi: 10.1007/s00018-019-03350-8. PubMed DOI PMC
LeBlanc AC, Chen HY, Autilio-Gambetti L, Gambetti P. Differential APP gene expression in rat cerebral cortex, meninges, and primary astroglial, microglial and neuronal cultures. FEBS Lett. 1991;292 (1–2):171–178. doi: 10.1016/0014-5793(91)80861-v. PubMed DOI
Martins RN, Taddei K, Kendall C, Evin G, Bates KA, Harvey AR. Altered expression of apolipoprotein E, amyloid precursor protein and presenilin-1 is associated with chronic reactive gliosis in rat cortical tissue. Neuroscience. 2001;106 (3):557–569. doi: 10.1016/s0306-4522(01)00289-5. PubMed DOI
Müller UC, Deller T, Korte M. Not just amyloid: physiological functions of the amyloid precursor protein family. Nat Rev Neurosci. 2017;18 (5):281–298. doi: 10.1038/nrn.2017.29. PubMed DOI
Müller UC, Zheng H. Physiological functions of APP family proteins. Cold Spring Harb Perspect Med. 2012;2 (2):a006288. doi: 10.1101/cshperspect.a006288. PubMed DOI PMC
Rohan de Silva HA, Jen A, Wickenden C, Jen LS, Wilkinson SL, Patel AJ. Cell-specific expression of beta-amyloid precursor protein isoform mRNAs and proteins in neurons and astrocytes. Brain Res Mol Brain Res. 1997;47 (1–2):147–156. doi: 10.1016/s0169-328x(97)00045-4. PubMed DOI
Brugg B, Dubreuil YL, Huber G, Wollman EE, Delhaye-Bouchaud N, Mariani J. Inflammatory processes induce beta-amyloid precursor protein changes in mouse brain. Proc Natl Acad Sci U S A. 1995;92 (7):3032–3035. doi: 10.1073/pnas.92.7.3032. PubMed DOI PMC
Hauss-Wegrzyniak. Chronic neuroinflammation in rats reproduces components of the neurobiology of Alzheimer’s disease. Brain Research. 1998;780 (2):294–303. doi: 10.1016/s0006-8993(97)01215-8. PubMed DOI
Lee JW, Lee YK, Yuk DY, et al. Neuro-inflammation induced by lipopolysaccharide causes cognitive impairment through enhancement of beta-amyloid generation. J Neuroinflammation. 2008;5:37. doi: 10.1186/1742-2094-5-37. PubMed DOI PMC
Kalehua AN, Taub DD, Baskar PV, et al. Aged mice exhibit greater mortality concomitant to increased brain and plasma TNF-alpha levels following intracerebroventricular injection of lipopolysaccharide. Gerontology. 2000;46 (3):115–128. doi: 10.1159/000022146. PubMed DOI
Zhao J, O’Connor T, Vassar R. The contribution of activated astrocytes to Aβ production: implications for Alzheimer’s disease pathogenesis. J Neuroinflammation. 2011;8:150. doi: 10.1186/1742-2094-8-150. PubMed DOI PMC
Blasko I, Veerhuis R, Stampfer-Kountchev M, Saurwein-Teissl M, Eikelenboom P, Grubeck-Loebenstein B. Costimulatory effects of interferon-gamma and interleukin-1beta or tumor necrosis factor alpha on the synthesis of Abeta1-40 and Abeta1-42 by human astrocytes. Neurobiol Dis. 2000;7 (6 Pt B):682–689. doi: 10.1006/nbdi.2000.0321. PubMed DOI
Gray CW, Patel AJ. Induction of beta-amyloid precursor protein isoform mRNAs by bFGF in astrocytes. Neuroreport. 1993;4 (6):811–814. doi: 10.1097/00001756-199306000-00054. PubMed DOI
Gray CW, Patel AJ. Regulation of beta-amyloid precursor protein isoform mRNAs by transforming growth factor-beta 1 and interleukin-1 beta in astrocytes. Brain Res Mol Brain Res. 1993;19 (3):251–256. doi: 10.1016/0169-328x(93)90037-p. PubMed DOI
Sheng JG, Bora SH, Xu G, Borchelt DR, Price DL, Koliatsos VE. Lipopolysaccharide-induced-neuroinflammation increases intracellular accumulation of amyloid precursor protein and amyloid beta peptide in APPswe transgenic mice. Neurobiol Dis. 2003;14 (1):133–145. doi: 10.1016/s0969-9961(03)00069-x. PubMed DOI
Burton T, Liang B, Dibrov A, Amara F. Transforming growth factor-beta-induced transcription of the Alzheimer beta-amyloid precursor protein gene involves interaction between the CTCF-complex and Smads. Biochem Biophys Res Commun. 2002;295 (3):713–723. doi: 10.1016/s0006-291x(02)00725-8. PubMed DOI
Palacios G, Mengod G, Tortosa A, Ferrer I, Palacios JM. Increased beta-amyloid precursor protein expression in astrocytes in the gerbil hippocampus following ischaemia: association with proliferation of astrocytes. Eur J Neurosci. 1995;7 (3):501–510. doi: 10.1111/j.1460-9568.1995.tb00346.x. PubMed DOI
Otsuka N, Tomonaga M, Ikeda K. Rapid appearance of beta-amyloid precursor protein immunoreactivity in damaged axons and reactive glial cells in rat brain following needle stab injury. Brain Res. 1991;568 (1–2):335–338. doi: 10.1016/0006-8993(91)91422-w. PubMed DOI
Siman R, Card JP, Nelson RB, Davis LG. Expression of beta-amyloid precursor protein in reactive astrocytes following neuronal damage. Neuron. 1989;3 (3):275–285. doi: 10.1016/0896-6273(89)90252-3. PubMed DOI
Shepherd CE, Bowes S, Parkinson D, Cambray-Deakin M, Pearson RC. Expression of amyloid precursor protein in human astrocytes in vitro: isoform-specific increases following heat shock. Neuroscience. 2000;99 (2):317–325. doi: 10.1016/s0306-4522(00)00197-4. PubMed DOI
Clarner T, Buschmann JP, Beyer C, Kipp M. Glial amyloid precursor protein expression is restricted to astrocytes in an experimental toxic model of multiple sclerosis. J Mol Neurosci. 2011;43 (3):268–274. doi: 10.1007/s12031-010-9419-9. PubMed DOI
Töpper R, Gehrmann J, Banati R, et al. Rapid appearance of beta-amyloid precursor protein immunoreactivity in glial cells following excitotoxic brain injury. Acta Neuropathol. 1995;89 (1):23–28. doi: 10.1007/bf00294255. PubMed DOI
Komatsu A, Iida I, Nasu Y, et al. Ammonia induces amyloidogenesis in astrocytes by promoting amyloid precursor protein translocation into the endoplasmic reticulum. J Biol Chem. 2022;298 (5):101933. doi: 10.1016/j.jbc.2022.101933. PubMed DOI PMC
Delarasse C, Auger R, Gonnord P, Fontaine B, Kanellopoulos JM. The purinergic receptor P2X7 triggers alpha-secretase-dependent processing of the amyloid precursor protein. J Biol Chem. 2011;286 (4):2596–2606. doi: 10.1074/jbc.M110.200618. PubMed DOI PMC
Lee RK, Araki W, Wurtman RJ. Stimulation of amyloid precursor protein synthesis by adrenergic receptors coupled to cAMP formation. Proc Natl Acad Sci U S A. 1997;94 (10):5422–5426. doi: 10.1073/pnas.94.10.5422. PubMed DOI PMC
Fontana A, Weber E, Grob PJ, Lim R, Miller JF. Dual effect of glia maturation factor on astrocytes. Differentiation and release of interleukin-1 like factors. J Neuroimmunol. 1983;5 (3):261–269. doi: 10.1016/0165-5728(83)90046-2. PubMed DOI
Frei K, Bodmer S, Schwerdel C, Fontana A. Astrocyte-derived interleukin 3 as a growth factor for microglia cells and peritoneal macrophages. J Immunol. 1986;137 (11):3521–3527. PubMed
Griffin WS, Stanley LC, Ling C, et al. Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc Natl Acad Sci U S A. 1989;86 (19):7611–7615. doi: 10.1073/pnas.86.19.7611. PubMed DOI PMC
Liang Y, Raven F, Ward JF, et al. Upregulation of Alzheimer’s Disease Amyloid-β Protein Precursor in Astrocytes Both in vitro and in vivo. J Alzheimers Dis. 2020;76 (3):1071–1082. doi: 10.3233/jad-200128. PubMed DOI PMC
Motwani M, Pesiridis S, Fitzgerald KA. DNA sensing by the cGAS-STING pathway in health and disease. Nat Rev Genet. 2019;20 (11):657–674. doi: 10.1038/s41576-019-0151-1. PubMed DOI
Eckman CB, Mehta ND, Crook R, et al. A new pathogenic mutation in the APP gene (I716V) increases the relative proportion of A beta 42(43). Hum Mol Genet. 1997;6 (12):2087–2089. doi: 10.1093/hmg/6.12.2087. PubMed DOI
Kamino K, Orr HT, Payami H, et al. Linkage and mutational analysis of familial Alzheimer disease kindreds for the APP gene region. Am J Hum Genet. 1992;51 (5):998–1014. PubMed PMC
Kumar-Singh S, De Jonghe C, Cruts M, et al. Nonfibrillar diffuse amyloid deposition due to a gamma(42)-secretase site mutation points to an essential role for Ntruncated A beta(42) in Alzheimer’s disease. Hum Mol Genet. 2000;9 (18):2589–2598. doi: 10.1093/hmg/9.18.2589. PubMed DOI
Mullan M, Crawford F, Axelman K, et al. A pathogenic mutation for probable Alzheimer’s disease in the APP gene at the N-terminus of beta-amyloid. Nat Genet. 1992;1 (5):345–347. doi: 10.1038/ng0892-345. PubMed DOI
Peacock ML, Warren JT Jr., Roses AD, Fink JK. Novel polymorphism in the A4 region of the amyloid precursor protein gene in a patient without Alzheimer’s disease. Neurology. 1993;43 (6):1254–1256. doi: 10.1212/wnl.43.6.1254. PubMed DOI
Niesman IR, Schilling JM, Shapiro LA, et al. Traumatic brain injury enhances neuroinflammation and lesion volume in caveolin deficient mice. J Neuroinflammation. 2014;11:39. doi: 10.1186/1742-2094-11-39. PubMed DOI PMC
Myer DJ, Gurkoff GG, Lee SM, Hovda DA, Sofroniew MV. Essential protective roles of reactive astrocytes in traumatic brain injury. Brain. 2006;129 (Pt 10):2761–2772. doi: 10.1093/brain/awl165. PubMed DOI
Rogers JT, Leiter LM, McPhee J, et al. Translation of the alzheimer amyloid precursor protein mRNA is up-regulated by interleukin-1 through 5’-untranslated region sequences. J Biol Chem. 1999;274 (10):6421–6431. doi: 10.1074/jbc.274.10.6421. PubMed DOI
Cieri MB, Villarreal A, Gomez-Cuautle DD, Mailing I, Ramos AJ. Progression of reactive gliosis and astroglial phenotypic changes following stab wound-induced traumatic brain injury in mice. J Neurochem. 2023;167 (2):183–203. doi: 10.1111/jnc.15941. PubMed DOI
Lau LT, Yu AC. Astrocytes produce and release interleukin-1, interleukin-6, tumor necrosis factor alpha and interferon-gamma following traumatic and metabolic injury. J Neurotrauma. 2001;18 (3):351–359. doi: 10.1089/08977150151071035. PubMed DOI
Liu Y, Hong W, Gong P, et al. Specific knockout of Sox2 in astrocytes reduces reactive astrocyte formation and promotes recovery after early postnatal traumatic brain injury in mouse cortex. Glia. 2023;71 (3):602–615. doi: 10.1002/glia.24298. PubMed DOI
Wangler LM, Bray CE, Packer JM, et al. Amplified Gliosis and Interferon-Associated Inflammation in the Aging Brain following Diffuse Traumatic Brain Injury. J Neurosci. 2022;42 (48):9082–9096. doi: 10.1523/jneurosci.1377-22.2022. PubMed DOI PMC
Preman P, Alfonso-Triguero M, Alberdi E, Verkhratsky A, Arranz AM. Astrocytes in Alzheimer’s Disease: Pathological Significance and Molecular Pathways. Cells. 2021;10 (3). doi: 10.3390/cells10030540. PubMed DOI PMC
Preman P, Tcw J, Calafate S, et al. Human iPSC-derived astrocytes transplanted into the mouse brain undergo morphological changes in response to amyloid-β plaques. Mol Neurodegener. 2021;16 (1):68. doi: 10.1186/s13024-021-00487-8. PubMed DOI PMC
Sanalkumar R, Vidyanand S, Lalitha Indulekha C, James J. Neuronal vs. glial fate of embryonic stem cell-derived neural progenitors (ES-NPs) is determined by FGF2/EGF during proliferation. J Mol Neurosci. 2010;42 (1):17–27. doi: 10.1007/s12031-010-9335-z. PubMed DOI
Abu Hamdeh S, Shevchenko G, Mi J, Musunuri S, Bergquist J, Marklund N. Proteomic differences between focal and diffuse traumatic brain injury in human brain tissue. Sci Rep. 2018;8 (1):6807. doi: 10.1038/s41598-018-25060-0. PubMed DOI PMC
Dozio V, Sanchez JC. Profiling the proteomic inflammatory state of human astrocytes using DIA mass spectrometry. J Neuroinflammation. 2018;15 (1):331. doi: 10.1186/s12974-018-1371-6. PubMed DOI PMC
Busciglio J, Gabuzda DH, Matsudaira P, Yankner BA. Generation of beta-amyloid in the secretory pathway in neuronal and nonneuronal cells. Proc Natl Acad Sci U S A. 1993;90 (5):2092–2096. doi: 10.1073/pnas.90.5.2092. PubMed DOI PMC
Forman MS, Cook DG, Leight S, Doms RW, Lee VM. Differential effects of the swedish mutant amyloid precursor protein on beta-amyloid accumulation and secretion in neurons and nonneuronal cells. J Biol Chem. 1997;272 (51):32247–32253. doi: 10.1074/jbc.272.51.32247. PubMed DOI
Haass C, Hung AY, Selkoe DJ. Processing of beta-amyloid precursor protein in microglia and astrocytes favors an internal localization over constitutive secretion. J Neurosci. 1991;11 (12):3783–3793. doi: 10.1523/jneurosci.11-12-03783.1991. PubMed DOI PMC
LeBlanc AC, Xue R, Gambetti P. Amyloid precursor protein metabolism in primary cell cultures of neurons, astrocytes, and microglia. J Neurochem. 1996;66 (6):2300–2310. doi: 10.1046/j.1471-4159.1996.66062300.x. PubMed DOI
Peppercorn K, Kleffmann T, Hughes SM, Tate WP. Secreted Amyloid Precursor Protein Alpha (sAPPα) Regulates the Cellular Proteome and Secretome of Mouse Primary Astrocytes. Int J Mol Sci. 2023;24 (8). doi: 10.3390/ijms24087165. PubMed DOI PMC
Mönning U, König G, Banati RB, et al. Alzheimer beta A4-amyloid protein precursor in immunocompetent cells. J Biol Chem. 1992;267 (33):23950–23956. PubMed
Solà C, García-Ladona FJ, Mengod G, Probst A, Frey P, Palacios JM. Increased levels of the Kunitz protease inhibitor-containing beta APP mRNAs in rat brain following neurotoxic damage. Brain Res Mol Brain Res. 1993;17 (1–2):41–52. doi: 10.1016/0169-328x(93)90071-v. PubMed DOI
Young MJ, Lee RK, Jhaveri S, Wurtman RJ. Intracellular and cell-surface distribution of amyloid precursor protein in cortical astrocytes. Brain Res Bull. 1999;50 (1):27–32. doi: 10.1016/s0361-9230(99)00084-2. PubMed DOI
Neve RL, Finch EA, Dawes LR. Expression of the Alzheimer amyloid precursor gene transcripts in the human brain. Neuron. 1988;1 (8):669–677. doi: 10.1016/0896-6273(88)90166-3. PubMed DOI
Tanaka S, Nakamura S, Ueda K, et al. Three types of amyloid protein precursor mRNA in human brain: their differential expression in Alzheimer’s disease. Biochem Biophys Res Commun. 1988;157 (2):472–479. doi: 10.1016/s0006-291x(88)80273-0. PubMed DOI
Hu J, Akama KT, Krafft GA, Chromy BA, Van Eldik LJ. Amyloid-beta peptide activates cultured astrocytes: morphological alterations, cytokine induction and nitric oxide release. Brain Res. 1998;785 (2):195–206. doi: 10.1016/s0006-8993(97)01318-8. PubMed DOI
Johnstone M, Gearing AJ, Miller KM. A central role for astrocytes in the inflammatory response to beta-amyloid; chemokines, cytokines and reactive oxygen species are produced. J Neuroimmunol. 1999;93 (1–2):182–193. doi: 10.1016/s0165-5728(98)00226-4. PubMed DOI
LaRocca TJ, Cavalier AN, Roberts CM, et al. Amyloid beta acts synergistically as a proinflammatory cytokine. Neurobiol Dis. 2021;159:105493. doi: 10.1016/j.nbd.2021.105493. PubMed DOI PMC
Leng F, Hinz R, Gentleman S, et al. Neuroinflammation is independently associated with brain network dysfunction in Alzheimer’s disease. Mol Psychiatry. 2023;28 (3):1303–1311. doi: 10.1038/s41380-022-01878-z. PubMed DOI PMC
Kulijewicz-Nawrot M, Verkhratsky A, Chvátal A, Syková E, Rodríguez JJ. Astrocytic cytoskeletal atrophy in the medial prefrontal cortex of a triple transgenic mouse model of Alzheimer’s disease. J Anat. 2012;221 (3):252–262. doi: 10.1111/j.1469-7580.2012.01536.x. PubMed DOI PMC
Yeh CY, Vadhwana B, Verkhratsky A, Rodríguez JJ. Early astrocytic atrophy in the entorhinal cortex of a triple transgenic animal model of Alzheimer’s disease. ASN Neuro. 2011;3 (5):271–279. doi: 10.1042/an20110025. PubMed DOI PMC
de Rivero Vaccari JP, Brand FJ 3rd, Sedaghat C, Mash DC, Dietrich WD, Keane RW. RIG-1 receptor expression in the pathology of Alzheimer’s disease. J Neuroinflammation. 2014;11:67. doi: 10.1186/1742-2094-11-67. PubMed DOI PMC
Hur JY, Frost GR, Wu X, et al. The innate immunity protein IFITM3 modulates γ-secretase in Alzheimer’s disease. Nature. 2020;586 (7831):735–740. doi: 10.1038/s41586-020-2681-2. PubMed DOI PMC
Hunter S, Brayne C. Relationships between the amyloid precursor protein and its various proteolytic fragments and neuronal systems. Alzheimers Res Ther. 2012;4 (2):10. doi: 10.1186/alzrt108. PubMed DOI PMC
Webers A, Heneka MT, Gleeson PA. The role of innate immune responses and neuroinflammation in amyloid accumulation and progression of Alzheimer’s disease. Immunol Cell Biol. 2020;98 (1):28–41. doi: 10.1111/imcb.12301. PubMed DOI
Barish ME, Mansdorf NB, Raissdana SS. Gamma-interferon promotes differentiation of cultured cortical and hippocampal neurons. Dev Biol. 1991;144 (2):412–423. doi: 10.1016/0012-1606(91)90433-4. PubMed DOI
Bourgeade MF, Rousset S, Paulin D, Chany C. Reorganization of the cytoskeleton by interferon in MSV-transformed cells. J Interferon Res. 1981;1 (2):323–332. doi: 10.1089/jir.1981.1.323. PubMed DOI
Hashioka S, McGeer EG, Miyaoka T, Wake R, Horiguchi J, McGeer PL. Interferon-γ-induced neurotoxicity of human astrocytes. CNS Neurol Disord Drug Targets. 2015;14 (2):251–256. doi: 10.2174/1871527314666150217122305. PubMed DOI
Hovi T, Lehto VP, Virtanen I. Interferon affects the formation of adhesion plaques in human monocyte cultures. Exp Cell Res. 1985;159 (2):305–312. doi: 10.1016/s0014-4827(85)80004-5. PubMed DOI
Plioplys AV. Expression of the 210 kDa neurofilament subunit in cultured central nervous system from normal and trisomy 16 mice: regulation by interferon. J Neurol Sci. 1988;85 (2):209–222. doi: 10.1016/0022-510x(88)90157-8. PubMed DOI
Ulker N, Zhang X, Samuel CE. Mechanism of interferon action. I. Characterization of a 54-kDa protein induced by gamma interferon with properties similar to a cytoskeletal component. J Biol Chem. 1987;262 (35):16798–16803. PubMed
Eckfeld C, Schoeps B, Häußler D, et al. TIMP-1 is a novel ligand of Amyloid Precursor Protein and triggers a proinflammatory phenotype in human monocytes. J Cell Biol. 2023;222 (2). doi: 10.1083/jcb.202206095. PubMed DOI PMC
Sondag CM, Combs CK. Amyloid precursor protein mediates proinflammatory activation of monocytic lineage cells. J Biol Chem. 2004;279 (14):14456–14463. doi: 10.1074/jbc.M313747200. PubMed DOI
Sondag CM, Combs CK. Amyloid precursor protein cross-linking stimulates beta amyloid production and pro-inflammatory cytokine release in monocytic lineage cells. J Neurochem. 2006;97 (2):449–461. doi: 10.1111/j.1471-4159.2006.03759.x. PubMed DOI
Sondag CM, Combs CK. Adhesion of monocytes to type I collagen stimulates an APP-dependent proinflammatory signaling response and release of Abeta1-40. J Neuroinflammation. 2010;7:22. doi: 10.1186/1742-2094-7-22. PubMed DOI PMC
Carrano A, Das P. Altered Innate Immune and Glial Cell Responses to Inflammatory Stimuli in Amyloid Precursor Protein Knockout Mice. PLoS One. 2015;10 (10):e0140210. doi: 10.1371/journal.pone.0140210. PubMed DOI PMC
Sanford SAI, Miller LVC, Vaysburd M, et al. The type-I interferon response potentiates seeded tau aggregation and exacerbates tau pathology. Alzheimers Dement. 2023. doi: 10.1002/alz.13493. PubMed DOI PMC
Boghdadi AG, Teo L, Bourne JA. The Neuroprotective Role of Reactive Astrocytes after Central Nervous System Injury. J Neurotrauma. 2020;37 (5):681–691. doi: 10.1089/neu.2019.6938. PubMed DOI
O’Shea TM, Ao Y, Wang S, et al. Border-forming wound repair astrocytes. bioRxiv. 2023:2023.2008.2025.554857. doi: 10.1101/2023.08.25.554857. DOI
Dar NJ, Glazner GW. Deciphering the neuroprotective and neurogenic potential of soluble amyloid precursor protein alpha (sAPPα). Cell Mol Life Sci. 2020;77 (12):2315–2330. doi: 10.1007/s00018-019-03404-x. PubMed DOI PMC
Arai N. The role of swollen astrocytes in human brain lesions after edema--an immunohistochemical study using formalin-fixed paraffin-embedded sections. Neurosci Lett. 1992;138 (1):56–58. doi: 10.1016/0304-3940(92)90471-i. PubMed DOI
Brenner M, Johnson AB, Boespflug-Tanguy O, Rodriguez D, Goldman JE, Messing A. Mutations in GFAP, encoding glial fibrillary acidic protein, are associated with Alexander disease. Nat Genet. 2001;27 (1):117–120. doi: 10.1038/83679. PubMed DOI
De Groot CJ, Montagne L, Barten AD, Sminia P, Van Der Valk P. Expression of transforming growth factor (TGF)-beta1, -beta2, and -beta3 isoforms and TGF-beta type I and type II receptors in multiple sclerosis lesions and human adult astrocyte cultures. J Neuropathol Exp Neurol. 1999;58 (2):174–187. doi: 10.1097/00005072-199902000-00007. PubMed DOI
Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9 (7):671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC