Alzheimer's Disease: Mechanism and Approach to Cell Therapy
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
26556341
PubMed Central
PMC4661820
DOI
10.3390/ijms161125961
PII: ijms161125961
Knihovny.cz E-zdroje
- Klíčová slova
- Alzheimer’s disease, Tau, amyloid-β, mesenchymal stem cells, neural stem cells,
- MeSH
- Alzheimerova nemoc etiologie metabolismus patologie terapie MeSH
- amyloidní beta-protein imunologie metabolismus MeSH
- amyloidní plaky metabolismus patologie MeSH
- buněčná a tkáňová terapie * metody MeSH
- energetický metabolismus MeSH
- imunoterapie metody MeSH
- kmenové buňky cytologie metabolismus MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- mutace MeSH
- neuroglie metabolismus MeSH
- proteiny tau imunologie metabolismus MeSH
- stárnutí genetika imunologie metabolismus MeSH
- transplantace kmenových buněk metody MeSH
- věk při počátku nemoci MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- amyloidní beta-protein MeSH
- proteiny tau MeSH
Alzheimer's disease (AD) is the most common form of dementia. The risk of AD increases with age. Although two of the main pathological features of AD, amyloid plaques and neurofibrillary tangles, were already recognized by Alois Alzheimer at the beginning of the 20th century, the pathogenesis of the disease remains unsettled. Therapeutic approaches targeting plaques or tangles have not yet resulted in satisfactory improvements in AD treatment. This may, in part, be due to early-onset and late-onset AD pathogenesis being underpinned by different mechanisms. Most animal models of AD are generated from gene mutations involved in early onset familial AD, accounting for only 1% of all cases, which may consequently complicate our understanding of AD mechanisms. In this article, the authors discuss the pathogenesis of AD according to the two main neuropathologies, including senescence-related mechanisms and possible treatments using stem cells, namely mesenchymal and neural stem cells.
Zobrazit více v PubMed
O’Brien C. Auguste D. and Alzheimer’s disease. Science. 1996;273:28. doi: 10.1126/science.273.5271.28. PubMed DOI
Gouras G.K., Almeida C.G., Takahashi R.H. Intraneuronal Aβ accumulation and origin of plaques in Alzheimer’s disease. Neurobiol. Aging. 2005;26:1235–1244. doi: 10.1016/j.neurobiolaging.2005.05.022. PubMed DOI
Goedert M. Oskar Fischer and the study of dementia. Brain. 2009;132:1102–1111. doi: 10.1093/brain/awn256. PubMed DOI PMC
Maurer K., Volk S., Gerbaldo H. Augaste D and Alzheimer’s disease. Lancet. 1997;349:1546–1549. doi: 10.1016/S0140-6736(96)10203-8. PubMed DOI
Graeber M.B., Kosel S., Egensperger R., Banati R.B., Muller U., Bise K., Hoff P., Moller H.J., Fujisawa K., Mehraein P. Rediscovery of the case described by Alois Alzheimer in 1911: Historical, histological and molecular genetic analysis. Neurogenetics. 1997;1:73–80. doi: 10.1007/s100480050011. PubMed DOI
Graeber M.B., Kosel S., Grasbon-Frodl E., Moller H.J., Mehraein P. Histopathology and APOE genotype of the first Alzheimer disease patient, Auguste D. Neurogenetics. 1998;1:223–228. doi: 10.1007/s100480050033. PubMed DOI
Muller U., Winter P., Graeber M.B. A presenilin 1 mutation in the first case of Alzheimer’s disease. Lancet Neurol. 2013;12:129–130. doi: 10.1016/S1474-4422(12)70307-1. PubMed DOI
Rupp C., Beyreuther K., Maurer K., Kins S. A presenilin 1 mutation in the first case of Alzheimer’s disease: Revised. Alzheimers Dement. 2014;10:869–872. doi: 10.1016/j.jalz.2014.06.005. PubMed DOI
Anand R., Gill K.D., Mahdi A.A. Therapeutics of Alzheimer’s disease: Past, present and future. Neuropharmacology. 2014;76:27–50. doi: 10.1016/j.neuropharm.2013.07.004. PubMed DOI
Imtiaz B., Tolppanen A.M., Kivipelto M., Soininen H. Future direction in Alzheimer’s disease from risk factors to prevention. Biochem. Pharmacol. 2014;88:661–670. doi: 10.1016/j.bcp.2014.01.003. PubMed DOI
Cacquevel M., Aeschbach L., Houacine J., Fraering P.C. Alzheimer’s disease-linked mutations in presenilin-1 result in a drastic loss of activity in purified γ-secretase complexes. PLoS ONE. 2012;7:e35133. doi: 10.1371/journal.pone.0035133. PubMed DOI PMC
Bateman R.J., Aisen P.S., de Strooper B., Fox N.C., Lemere C.A., Ringman J.M., Salloway S., Sperling R.A., Windisch M., Xiong C. Autosonal-dominant Alzheimer’s disease: A review and proposal for the prevention of Alzheimer’s disease. Alzheimers Res. Ther. 2011;3:1. doi: 10.1186/alzrt59. PubMed DOI PMC
Citron M., Westaway D., Xia W., Carlson G., Diehl T., Levesque G., Johnson-Wood K., Lee M., Seubert P., Davis A., et al. Mutant presenilins of Alzheimer’s disease increase production of 42-residue amyloid β-protein in both transfected cells and transgenic mice. Nat. Med. 1997;3:67–72. doi: 10.1038/nm0197-67. PubMed DOI
Selkoe D.J. Alzheimer’s disease: Genes, proteins, and therapy. Physiol. Rev. 2001;81:741–766. doi: 10.1101/cshperspect.a004457. PubMed DOI
Selfridge J.E., Lezi E., Lu J., Swerdlow R.H. Role of mitochondrial homeostasis and dynamics in Alzheimer’s disease. Neurobiol. Dis. 2013;51:3–12. doi: 10.1016/j.nbd.2011.12.057. PubMed DOI PMC
Mahley R.W., Nathan B.P., Pitas R.E. Apolipoprotein E. Structure, function, and possible roles in Alzheimer’s disease. Ann. N. Y. Acad. Sci. 1996;777:139–145. doi: 10.1111/j.1749-6632.1996.tb34412.x. PubMed DOI
Mahley R.W., Rall S.C., Jr. Apolipoprotein E: Far more than a lipid transport protein. Annu. Rev. Genom. Hum. Genet. 2000;1:507–537. doi: 10.1146/annurev.genom.1.1.507. PubMed DOI
Beffert U., Stolt P.C., Herz J. Functions of lipoprotein receptors in neurons. J. Lipid Res. 2004;45:403–409. doi: 10.1194/jlr.R300017-JLR200. PubMed DOI
Cedazo-Minguez A. Apolipoprotein E and Alzheimer’s disease: Molecular mechanisms and therapeutic opportunities. J. Cell. Mol. Med. 2007;11:1227–1238. doi: 10.1111/j.1582-4934.2007.00130.x. PubMed DOI PMC
Roses A.D. Apolipoprotein E alleles as risk factors in Alzheimer’s disease. Annu. Rev. Med. 1996;47:387–400. doi: 10.1146/annurev.med.47.1.387. PubMed DOI
Bertram L., Tanzi R.E. The genetics of Alzheimer’s disease. Prog. Mol. Biol. Transl. Sci. 2012;107:79–100. PubMed
Slooter A.J., Cruts M., Kalmijn S., Hofman A., Breteler M.M., van Broeckhoven C., van Duijn C.M. Risk estimates of dementia by apolipoprotein E genotypes from a population-based incidence study: The Rotterdam study. Arch. Neurol. 1988;55:964–968. doi: 10.1001/archneur.55.7.964. PubMed DOI
Hollingworth P., Harold D., Sims R., Gerrish A., Lambert J.C., Carrasquillo M.M., Abraham R., Hamshere M.L., Pahwa J.S., Moskvina V., et al. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat. Genet. 2011;43:429–435. doi: 10.1038/ng.803. PubMed DOI PMC
Naj A.C., Jun G., Beecham G.W., Wang L.S., Vardarajan B.N., Buros J., Gallins P.J., Buxbaum J.D., Jarvik G.P., Crane P.K., et al. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat. Genet. 2011;43:436–441. doi: 10.1038/ng.801. PubMed DOI PMC
Lambert J.C., Ibrahim-Verbaas C.A., Harold D., Naj A.C., Sims R., Bellenguez C., Jun G., Destefano A.L., Bis J.C., Beecham G.W., et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat. Genet. 2013;45:1452–1458. doi: 10.1038/ng.2802. PubMed DOI PMC
Gandhi S., Wood N.W. Genome-wide association studies: The key to unlocking neurodegeneration? Nat. Neurosci. 2010;13:789–794. doi: 10.1038/nn.2584. PubMed DOI
Harold D., Abraham R., Haooingworth P., Sims R., Gerrish A., Hamshere M.L., Pahwa J.S., Moskvina V., Dowzell K., Williams A., et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat. Genet. 2009;41:1088–1093. doi: 10.1038/ng.440. PubMed DOI PMC
Lambert J.C., Heath S., Even G., Campion D., Sleegers K., Hiltunen M., Combarros O., Zelenika D., Bullido M.J., Teavernier B., et al. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat. Genet. 2009;41:1094–1099. doi: 10.1038/ng.439. PubMed DOI
Chapuis J., Hansmannel F., Gistelinck M., Mounier A., van Cauwenberghe C., Kolen K.V., Geller F., Sottejeau Y., Harold D., Dourlen P., et al. Increased expression of BIN1 mediates Alzheimer genetic risk by modulating Tau pathology. Mol. Psychiatry. 2013;18:1225–1234. doi: 10.1038/mp.2013.1. PubMed DOI PMC
Antúnez C., Boada M., González-Pérez A., Gayán J., Ramírez-Lorca R., Marín J., Hernández I., Moreno-Rey C., Morón F.J., López-Arrieta J., et al. The membrane-spanning 4-domains, subfamily A (MS4A) gene cluster contains a common variant associated with Alzheimer’s disease. Genome Med. 2011;3:33. doi: 10.1186/gm249. PubMed DOI PMC
Bradshaw E.M., Chibnik L.B., Keenan B.T., Ottoboni L., Raj T., Tang A., Rosenkrantz L.L., Imboywa S., Lee M., von Korff A., et al. CD33 Alzheimer’s disease locus: Altered monocyte function and amyloid biology. Nat. Neurosci. 2013;16:848–850. doi: 10.1038/nn.3435. PubMed DOI PMC
Griciuc A., Serrano-Pozo A., Parrado A.R., Lesinski A.N., Asselin C.N., Mullin K., Hooli B., Choi S.H., Hyman B.T., Tanzi R.E. Alzheimer’s disease risk gene CD33 inhibits microglial uptake of amyloid β. Neuron. 2013;78:631–643. doi: 10.1016/j.neuron.2013.04.014. PubMed DOI PMC
Karch C.M., Jeng A.T., Nowotny P., Cady J., Cruchaga C., Goate A.M. Expression of novel Alzheimer’s disease risk genes in control and Alzheimer’s disease brains. PLoS ONE. 2012;7:e50976. doi: 10.1371/journal.pone.0050976. PubMed DOI PMC
Guerreiro R., Wojtas A., Bras J., Carrsquillo M., Rogaeva E., Majounie E., Cruchaga C., Sassi C., Kauwe J.S., Younkin S., et al. TREM2 variants in Alzheimer’s disease. N. Engl. J. Med. 2013;368:117–127. doi: 10.1056/NEJMoa1211851. PubMed DOI PMC
Jonsson T., Stefansson H., Steinberg S., Jonsdottir I., Jonsson P.V., Snaedal J., Bjornsson S., Huttenlocher J., Levey A.I., Lah J.J., et al. Variant of TREM2 associated with the risk of Alzheimer’s disease. N. Engl. J. Med. 2013;368:107–116. doi: 10.1056/NEJMoa1211103. PubMed DOI PMC
Rogaeva E., Meng Y., Lee J.H., Gu Y., Kawarai T., Zou F., Katayama T., Baldwin C.T., Cheng R., Hasegawa H., et al. The neuronal sortilin-related SORL1 is genetically associated with Alzheimer disease. Nat. Genet. 2007;39:168–177. doi: 10.1038/ng1943. PubMed DOI PMC
Miyashita A., Koike A., Jun G., Wang L.S., Takahashi S., Matsubara E., Kawarabayashi T., Shoji M., Tomita N., Arai H., et al. SORL1 is genetically associated with late-onset Alzheimer’s disease in Japanese, Koreans and Caucasians. PLoS ONE. 2013;8:e58618. doi: 10.1371/journal.pone.0058618. PubMed DOI PMC
Jones L., Holmans P.A., Hamshere M.L., Harold D., Moskvina V., Ivanov D., Pocklington A., Abraham R., Hollingworth P., Sims R., et al. Genetic evidence implicates the immune system and cholesterol metabolism in the aetiology of Alzheimer’s disease. PLoS ONE. 2010;5:e13950. doi: 10.1371/journal.pone.0013950. PubMed DOI PMC
De Strooper B. Proteases and proteolysis in Alzheimer disease: A multifactorial view on the disease process. Physiol. Rev. 2010;90:465–494. doi: 10.1152/physrev.00023.2009. PubMed DOI
Santos C.R.A., Cardoso I., Goncalves I. Key enzymes and proteins in amyloid-β production and clearance. In: de la Monte S., editor. Alzheimer’s Disease Pathogenesis—Core Concepts, Shifting Paradigms and Therapeutic Targets. InTech; Shanghai, China: 2011. pp. 53–86.
Nikolaev A., McLaughlin T., O’Leary D.D., Tessier-Lavigne M. APP binds DR6 to trigger axon pruning and neuron death via distinct caspases. Nature. 2009;457:981–989. doi: 10.1038/nature07767. PubMed DOI PMC
Hardy J., Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol. Sci. 1991;12:383–388. doi: 10.1016/0165-6147(91)90609-V. PubMed DOI
Selkoe D.J. The molecular pathology of Alzheimer’s disease. Neuron. 1991;6:487–498. doi: 10.1016/0896-6273(91)90052-2. PubMed DOI
Hardy J.A. Higgins, G.A. Alzheimer’s disease: The amyloid cascade hypothesis. Science. 1992;256:184–185. doi: 10.1126/science.1566067. PubMed DOI
Hardy J., Selkoe D.J. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science. 2002;297:353–356. doi: 10.1126/science.1072994. PubMed DOI
Giannakopoulos P., Herrmann F.R., Bussiere T., Bouras C., Kovari E., Perl D.P., Mossison J.H., Gold G., Hof P.R. Tangle and neuron numbers, but not amyloid load, predict cognitive status in Alzheimer’s disease. Neurology. 2003;60:1495–1500. doi: 10.1212/01.WNL.0000063311.58879.01. PubMed DOI
Naslund J., Haroutunian V., Mohs R., Davis K.L., Davies P., Greengard P., Buxbaum J.D. Correlation between elevated levels of amyloid β-peptide in the brain and cognitive decline. JAMA. 2000;283:1571–1577. doi: 10.1001/jama.283.12.1571. PubMed DOI
McLean C.A., Cherny R.A., Fraser F.W., Fuller S.J., Smith M.J., Beyreuther K., Bush A.I., Master C.L. Soluble pool of Aβ amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann. Neurol. 1999;46:860–866. doi: 10.1002/1531-8249(199912)46:6<860::AID-ANA8>3.0.CO;2-M. PubMed DOI
Walsh D.M., Klyubin I., Fadeeva J.V., Cullen W.K., Anwyl R., Wolfe M.S., Rowan M.J., Selkoe D.J. Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature. 2002;416:535–539. doi: 10.1038/416535a. PubMed DOI
Cleary J.P., Walsh D.M., Hofmeister J.J., Schankar G.M., Kukskowski M.A., Selkoe D.J., Ashe K.H. Natural oligomers of the amyloid-β protein specifically disrupt cognitive function. Nat. Neurosci. 2005;8:79–84. doi: 10.1038/nn1372. PubMed DOI
Bitan G., Fradinger E.A., Spring S.M., Teplow D.B. Neurotoxic protein oligomers—What you see is not always what you get. Amyloid. 2005;12:88–95. doi: 10.1080/13506120500106958. PubMed DOI
Zhao W.Q., de Felice F.G., Fernandez S., Chen H., Lambert M.P., Quon M.J., Krafft G.A., Klein W.L. Amyloid β oligomers induce impairment of neuronal insulin receptors. FASEB J. 2008;22:246–560. doi: 10.1096/fj.06-7703com. PubMed DOI
Zhao W.Q. Alkon, D.L. Role of insulin and insulin receptor in learning and memory. Mol. Cell. Endocrinol. 2001;177:125–134. doi: 10.1016/S0303-7207(01)00455-5. PubMed DOI
Barry A.E., Klyubin I., McDonald J.M., Mably A.J., Farrell M.A., Scott M., Walsh D.M., Rowan M.J. Alzheimer’s disease brain-derived amyloid-β-mediated inhibition of LTP in vivo is prevented by immunotargeting cellular prion protein. J. Neurosci. 2011;31:7259–7263. doi: 10.1523/JNEUROSCI.6500-10.2011. PubMed DOI PMC
Um J.W., Nygaard H.B., Heiss J.K., Kostylev M.A., Stagi M., Vortmeyer A., Wisniewski T., Gunther E.C., Strittmatter S.M. Alzheimer amyloid-β oligomer bound to postsynaptic prion protein activates Fyn to impair neurons. Nat. Neurosci. 2012;15:1227–1235. doi: 10.1038/nn.3178. PubMed DOI PMC
Jin M., Shepardson N., Yang T., Chen G., Walsh D., Selkoe D.J. Soluble amyloid β-protein dimers isolated from Alzheimer cortex directly induce Tau hyperphosphorylation and neuritic degeneration. Proc. Natl. Acad. Sci. USA. 2011;108:5819–5824. doi: 10.1073/pnas.1017033108. PubMed DOI PMC
Kayed R., Lasagna-Reeves C.A. Molecular mechanisms of amyloid oligomers toxicity. J. Alzheimers Dis. 2013;33:S67–S78. PubMed
Pei J.J., Hugon J. mTOR-dependent signalling in Alzheimer’s disease. J. Cell. Mol. Med. 2008;12:2525–2532. doi: 10.1111/j.1582-4934.2008.00509.x. PubMed DOI PMC
Foster J.K., Verdile G., Bates K.A., Martins R.N. Immunization in Alzheimer’s disease: Naive hope or realistic clinical potential? Mol. Psychiatry. 2009;14:239–251. doi: 10.1038/mp.2008.115. PubMed DOI
Farlow M., Arnold S.E., van Dyck C.H., Aisen P.S., Snider B.J., Porsteinsson A.P., Friedrich S., Dean R.A., Gonzales C., Sethuraman G., et al. Safety and biomarker effects of solanezumab in patients with Alzheimer’s disease. Alzheimers Dement. 2012;8:261–271. doi: 10.1016/j.jalz.2011.09.224. PubMed DOI
Goure W.F., Krafft G.A., Jerecic J., Hefti F. Targeting the proper amyloid-β neuronal toxins: A path forward for Alzheimer’s disease immunotherapeutics. Alzheimers Res. Ther. 2014;6:42. doi: 10.1186/alzrt272. PubMed DOI PMC
Doody R.S., Thomas R.G., Farlow M., Iwatsubo T., Vellas B., Joffe S., Kieburtz K., Raman R., Sun X., Aisen P.S., et al. Alzheimer’s Disease Cooperative Study Steering Committee, Solanezumab Study Group. Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. N. Engl. J. Med. 2014;370:311–321. doi: 10.1056/NEJMoa1312889. PubMed DOI
Siemers E.R., Sundell K.L., Carlson C., Case M., Sethuraman G., Liu-Seifert H., Dowsett S.A., Pontecorvo M.J., Dean R.A., Demattos R. Phase 3 solanezumab trials: Secondary outcomes in mild Alzheimer’s disease patients. Alzheimers Dement. 2015 doi: 10.1016/j.jalz.2015.06.1893. PubMed DOI
Wisniewski T., Goni F. Immunotherapy for Alzheimer’s disease. Biochem. Pharmacol. 2014;88:499–507. doi: 10.1016/j.bcp.2013.12.020. PubMed DOI PMC
Carrillo M.C., Brashear H.R., Logovinsky V., Ryan J.M., Feldman H.H., Siemers E.R., Abushakra S., Hartley D.M., Petersen R.C., Khachaturian A.S., et al. Can we prevent Alzheimer’s disease? Secondary “prevention” trials in Alzheimer’s disease. Alzheimers Dement. 2013;9:123–131. doi: 10.1016/j.jalz.2012.12.004. PubMed DOI
Lindwall G., Cole R.D. Phosphorylation affects the ability of Tau protein to promote microtubule assembly. J. Biol. Chem. 1984;259:5301–5305. PubMed
Caceres A., Kosik K.S. Inhibition of neurite polarity by Tau antisense oligonucleotides in primary cerebellar neurons. Nature. 1990;343:461–463. doi: 10.1038/343461a0. PubMed DOI
Lee V.M., Goedert M., Trojanowski J.Q. Neurodegenerative tauopathies. Annu. Rev. Neurosci. 2001;24:1121–1159. doi: 10.1146/annurev.neuro.24.1.1121. PubMed DOI
Hong M., Zhukareva V., Vogelsberg-Ragaglia V., Wszolek Z., Reed L., Miller B.I., Geschwind D.H., Bird T.D., McKeel D., Goate A., et al. Mutation-specific functional impairments in distinct Tau isoforms of hereditary FTDP-17. Science. 1998;282:1914–1917. doi: 10.1126/science.282.5395.1914. PubMed DOI
Garcia M.L., Cleveland D.W. Going new places using an old MAP: Tau, microtubules and human neurodegenerative disease. Curr. Opin. Cell Biol. 2001;13:41–48. doi: 10.1016/S0955-0674(00)00172-1. PubMed DOI
Gomez-Isla T., Hollister R., West H., Mui S., Growdon J.H., Petersen R.C., Parisi J.E., Hyman B.T. Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease. Ann. Neurol. 1997;41:17–24. doi: 10.1002/ana.410410106. PubMed DOI
Lasagna-Reeves C.A., Castillo-Carranza D.L., Sengupta U., Guerrero-Munoz M.J., Kiritoshi T., Neugebauer V., Jackson G.R., Kayed R. Alzheimer brain-derived Tau oligomers propagate pathology from endogenous Tau. Sci. Rep. 2012;2:700. doi: 10.1038/srep00700. PubMed DOI PMC
Berger Z., Roder H., Hanna A., Carlson A., Rangachari V., Yue M., Wszolek Z., Ashe K., Knight J., Dickson D., et al. Accumulation of pathological Tau species and memory loss in a conditional model of tauopathy. J. Neurosci. 2007;27:3650–3662. doi: 10.1523/JNEUROSCI.0587-07.2007. PubMed DOI PMC
Ballatore C., Lee V.M., Trojanowski J.Q. Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat. Rev. Neurosci. 2007;8:663–672. doi: 10.1038/nrn2194. PubMed DOI
Yoshiyama Y., Higuchi M., Zhang B., Huang S.M., Iwata N., Saido T.C., Maeda J., Suhara T., Trojanowski J.Q., Lee V.M. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron. 2007;53:337–351. doi: 10.1016/j.neuron.2007.01.010. PubMed DOI
Sergeant N., Delacourte A., Buee L. Tau protein as a differential biomarker of tauopathies. Biochim. Biophys. Acta. 2005;1739:179–197. doi: 10.1016/j.bbadis.2004.06.020. PubMed DOI
Wilhelmsen K.C., Lynch T., Pavlou E., Higgins M., Nygaard T.G. Localization of disinhibition–dementia–parkinsonism–amyotrophy complex to 17q2-22. Am. J. Hum. Genet. 1994;55:1159–1165. PubMed PMC
Goedert M. Tau gene mutations and their effects. Mov. Disord. 2005;12:45–52. doi: 10.1002/mds.20539. PubMed DOI
Small S.A., Duff K. Linking Aβ and Tau in late-onset Alzheimer’s disease: A dual pathway hypothesis. Neuron. 2008;60:534–542. doi: 10.1016/j.neuron.2008.11.007. PubMed DOI PMC
Castellani R.J., Perry G. The complexities of the pathology—pathogenesis relationship in Alzheimer disease. Biochem. Pharmacol. 2014;88:671–676. doi: 10.1016/j.bcp.2014.01.009. PubMed DOI
Holmes C., Boche D., Wilkinson D., Yadegarfar G., Hopkins V., Bayer A., Jones R.W., Bullock R., Love S., Neal J.W., et al. Long-term effects of Aβ42 immunisation in Alzheimer’s disease: Follow-up of a randomised, placebo-controlled phase I trial. Lancet. 2008;372:216–223. doi: 10.1016/S0140-6736(08)61075-2. PubMed DOI
Rosenmann H., Grigoriadis N., Karussis D., Boimel M., Touloumi O., Ovadia H., Abramsky O. Tauopathy-like abnormalities and neurologic deficits in mice immunized with neuronal Tau protein. Arch. Neurol. 2006;63:1459–1467. doi: 10.1001/archneur.63.10.1459. PubMed DOI
Boutajangout A., Ingadottir J., Davies P., Sigurdsson E.M. Passive immunization targeting pathological phospho-Tau protein in a mouse model reduces functional decline and clears Tau aggregates from the brain. J. Neurochem. 2011;118:658–667. doi: 10.1111/j.1471-4159.2011.07337.x. PubMed DOI PMC
Chai X., Wu S., Murray T.K., Kinley R., Cella C.V., Sims H., Buckner N., Hanmer J., Davies P., O’Neill M.J., et al. Passive immunization with anti-Tau antibodies in two transgenic models: Reduction of Tau pathology and delay of disease progression. J. Biol. Chem. 2011;286:34457–34467. doi: 10.1074/jbc.M111.229633. PubMed DOI PMC
Morley J.E., Farr S.A. The role of amyloid-β in the regulation of memory. Biochem. Pharmacol. 2014;88:479–485. doi: 10.1016/j.bcp.2013.12.018. PubMed DOI
Muller U.C., Zheng H. Physiological functions of APP family proteins. Cold Spring Harb. Perspect. Med. 2012;2 doi: 10.1101/cshperspect.a006288. PubMed DOI PMC
Ke Y.D., Suchowerska A.K., van der Hoven J., de Silva D.M., Wu C.W., van Eersel J., Ittner A., Ittner L.M. Lessons from Tau-deficient mice. Int. J. Alzheimers Dis. 2012;2012 doi: 10.1155/2012/873270. PubMed DOI PMC
Taylor R.C., Dillin A. Aging as an event of proteostasis collapse. Cold Spring Harb. Perspect. Biol. 2011;3 doi: 10.1101/cshperspect.a004440. PubMed DOI PMC
Schroder M., Kaufman R.J. The mammalian unfolded protein response. Annu. Rev. Biochem. 2005;74:739–789. doi: 10.1146/annurev.biochem.73.011303.074134. PubMed DOI
Urra H., Dufey E., Lisbona F., Rojas-Rivera D., Hetz C. When ER stress reaches a dead end. Biochim. Biophys. Acta. 2013;1833:3507–3517. doi: 10.1016/j.bbamcr.2013.07.024. PubMed DOI
Salminen A., Kauppinen A., Suuronen T., Kaarniranta K., Ojala J. ER stress in Alzheimer’s disease: A novel neuronal trigger for inflammation and Alzheimer’s pathology. J. Neuroinflamm. 2009;6:41. doi: 10.1186/1742-2094-6-41. PubMed DOI PMC
Li G., Mongillo M., Chin K.T., Harding H., Ron D., Marks A.R., Tabas I. Role of ERO1-α-mediated stimulation of inositol 1,4,5-tirphoate receptor activity in endoplasmic reticulum stress-induced apoptosis. J. Cell Biol. 2009;186:783–792. doi: 10.1083/jcb.200904060. PubMed DOI PMC
Urano F., Wang X., Bertolotti A., Zhang Y., Chung P., Harding H.P., Ron D. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science. 2000;287:664–666. doi: 10.1126/science.287.5453.664. PubMed DOI
Sekine Y., Takeda K., Ichijo H. The ASK1-MAP kinase signaling in ER stress and neurodegenerative diseases. Curr. Mol. Med. 2006;6:87–97. doi: 10.2174/156652406775574541. PubMed DOI
Kelleher I., Garwood C., Hanger D.P., Anderton B.H., Noble W. Kinase activities increase during the development of tauopathy in htau mice. J. Neurochem. 2007;103:2256–2267. doi: 10.1111/j.1471-4159.2007.04930.x. PubMed DOI
Ploia C., Antoniou X., Sclip A., Grande V., Cardinetti D., Colombo A., Canu N., Benussi L., Ghidoni R., Forloni G., et al. JNK plays a key role in Tau hyperphosphorylation in Alzheimer’s disease models. J. Alzheimers Dis. 2011;26:315–329. PubMed
Cuanalo-Contreras K., Mukherjee A., Soto C. Role of protein misfolding and proteostasis deficiency in protein misfolding diseases and aging. Int. J. Cell Biol. 2013;2013 doi: 10.1155/2013/638083. PubMed DOI PMC
Vallabhapurapu S., Karin M. Regulation and function of NF-kappaB transcription factors in the immune system. Annu. Rev. Immunol. 2009;27:693–733. doi: 10.1146/annurev.immunol.021908.132641. PubMed DOI
Rossner S., Sastre M., Bourne K., Lichtenthaler S.F. Transcriptional and translational regulation of BACE1 expression—Implications for Alzheimer’s disease. Prog. Neurobiol. 2006;79:95–111. doi: 10.1016/j.pneurobio.2006.06.001. PubMed DOI
Resende R., Moreira P.I., Proenca T., Deshpande A., Busciglio J., Pereira C., Oliveira C.R. Brain oxidative stress in a triple-transgenic mouse model of Alzheimer disease. Free Radic. Biol. Med. 2008;44:2051–2057. doi: 10.1016/j.freeradbiomed.2008.03.012. PubMed DOI
Morawe T., Hiebel C., Kern A., Behl C. Protein homeostasis, aging and Alzheimer’s disease. Mol. Neurobiol. 2012;46:41–54. doi: 10.1007/s12035-012-8246-0. PubMed DOI PMC
Huang Y., Mucke L. Alzheimer mechanisms and therapeutic strategies. Cell. 2012;148:1204–1222. doi: 10.1016/j.cell.2012.02.040. PubMed DOI PMC
Kakimura J., Kitamura Y., Takata K., Umeki M., Suzuki S., Shibagaki K., Taniguchi T., Nomura Y., Gebicke-Haerter P.J., Smith M.A., et al. Microglial activation and amyloid-β clearance induced by exogenous heat-shock proteins. FASEB J. 2002;16:601–603. doi: 10.1096/fj.01-0530fje. PubMed DOI
Koren J., III, Jinwal U.K., Lee D.C., Jones J.R., Shults C.L., Johnson A.G., Anderson L.J., Dickey C.A. Chaperone signalling complexes in Alzheimer’s disease. J. Cell. Mol. Med. 2009;13:619–630. doi: 10.1111/j.1582-4934.2008.00557.x. PubMed DOI PMC
Wilhelmus M.M., de Waal R.M., Verbeek M.M. Heat shock proteins and amateur chaperones in amyloid-β accumulation and clearance in Alzheimer’s disease. Mol. Neurobiol. 2007;35:203–216. doi: 10.1007/s12035-007-0029-7. PubMed DOI PMC
Jinwal U.K., O’Leary J.C., III, Borysov S.I., Jones J.R., Li Q., Koren J., III, Abisambra J.F., Vestal G.D., Lawson L.Y., Johnson A.G., et al. Hsc70 rapidly engages Tau after microtubule destabilization. J. Biol. Chem. 2010;285:16798–16805. doi: 10.1074/jbc.M110.113753. PubMed DOI PMC
Sahara N., Murayama M., Mizoroki T., Urushitani M., Imai Y., Takahashi R., Murata S., Tanaka K., Takashima A. In vivo evidence of CHIP up-regulation attenuating Tau aggregation. J. Neurochem. 2005;94:1254–1263. doi: 10.1111/j.1471-4159.2005.03272.x. PubMed DOI
Dickey C.A., Koren J., Zhang Y.J., Xu Y.F., Jinwal U.K., Birnbaum M.J., Monks B., Sun M., Cheng J.Q., Patterson C., et al. Akt and CHIP coregulate Tau degradation through coordinated interactions. Proc. Natl. Acad. Sci. USA. 2008;105:3622–3627. doi: 10.1073/pnas.0709180105. PubMed DOI PMC
Martin M., Dotti C.G., Ledesma M.D. Brain cholesterol in normal and pathological aging. Biochim. Biophys. Acta. 2010;1801:934–944. doi: 10.1016/j.bbalip.2010.03.011. PubMed DOI
Wang H., Eckel R.H. What are lipoproteins doing in the brain? Trends Endocrinol. Metab. 2014;25:8–14. doi: 10.1016/j.tem.2013.10.003. PubMed DOI PMC
Wood W.G., Schroeder F., Igbavboa U., Avdulov N.A., Chochina S.V. Brain membrane cholesterol domains, aging and amyloid β-peptides. Neurobiol. Aging. 2002;23:685–694. doi: 10.1016/S0197-4580(02)00018-0. PubMed DOI
Ariga T., Wakade C., Yu R.K. The pathological roles of ganglioside metabolism in Alzheimer’s disease: Effects of gangliosides on neurogenesis. Int. J. Alzheimers Dis. 2011;2011:193618. doi: 10.4061/2011/193618. PubMed DOI PMC
Kakio A., Nishimoto S.I., Yanagisawa K., Kazutsumi Y., Matsuzaki K. Cholesterol-dependent formation on GM1 ganglioside-bound amyloid β-protein, an endogenous seed for Alzheimer amyloid. J. Biol. Chem. 2001;276:24985–24990. doi: 10.1074/jbc.M100252200. PubMed DOI
Fantini J., Yahi N., Garmy N. Cholesterol accelerates the binding of Alzheimer’s β-amyloid peptide to ganglioside GM1 through a universal hydrogen-bond-dependent sterol tuning of glycolipid conformation. Front. Physiol. 2013;4:120. doi: 10.3389/fphys.2013.00120. PubMed DOI PMC
Yuyama K., Yanagisawa K. Sphingomyelin accumulation provides a favorable milieu for GM1 ganglioside-induced assembly of amyloid β-protein. Neurosci. Lett. 2010;481:168–172. doi: 10.1016/j.neulet.2010.06.080. PubMed DOI
Allen J.A., Halverson-Tamboli R.A., Rasenick M.M. Lipid raft microdomains and neurotransmitter signalling. Nat. Rev. Neurosci. 2007;8:128–140. doi: 10.1038/nrn2059. PubMed DOI
Hanzal-Bayer M.F., Hancock J.F. Lipid rats and membrane traffic. FEBS Lett. 2007;581:2098–2104. doi: 10.1016/j.febslet.2007.03.019. PubMed DOI
Cordy J.M., Hooper N.M., Turner A.J. The involvement of lipid rafts in Alzheimer’s disease. Mol. Membr. Biol. 2006;23:111–122. doi: 10.1080/09687860500496417. PubMed DOI
Kojro E., Gimpl G., Lammich S., Marz W., Fahrenholz F. Low cholesterol stimulates the nonamyloidogenic pathway by its effect on the α-secretase ADAM 10. Proc. Natl. Acad. Sci. USA. 2001;98:5815–5820. doi: 10.1073/pnas.081612998. PubMed DOI PMC
Ehehalt R., Keller P., Haass C., Thiele C., Simons K. Amyloidogenic processing of the Alzheimer β-amyloid precursor protein depends on lipid rafts. J. Cell Biol. 2003;160:113–123. doi: 10.1083/jcb.200207113. PubMed DOI PMC
Hicks D.A., Nalivaeva N.N., Turner A.J. Lipid rafts and Alzheimer’s disease: Protein–lipid interactions and perturbation of signaling. Front. Physiol. 2012;3:189. doi: 10.3389/fphys.2012.00189. PubMed DOI PMC
Grimm M.O., Kuchenbecker J., Rothhaar T.L., Grosgen S., Hundsdorfer B., Burg V.K., Friess P., Muller U., Grimm H.S., Riemenschneider M., et al. Plasmalogen synthesis is regulated via alkyl-dihydorxyacetonephosphate-synthase by amyloid precursor protein processing and is affected in Alzheimer’s disease. J. Neurochem. 2011;116:916–925. doi: 10.1111/j.1471-4159.2010.07070.x. PubMed DOI
Rothhaar T.L., Grosgen S., Haupenthal V.J., Burg V.K., Hundsdorfer B., Mett J., Riemenschneider M., Grimm H.S., Hartmann T., Grimm M.O. Plasmalogens inhibit APP processing by directly affecting γ-secretase activity in Alzheimer’s disease. Sci. World J. 2012;2012 doi: 10.1100/2012/141240. PubMed DOI PMC
Ghosal K., Vogt D.L., Liang M., Shen Y., Lamb B.T., Pimplikar S.W. Alzheimer’s disease-like pathological features in transgenic mice expressing the APP intracellular domain. Proc. Natl. Acad. Sci. USA. 2009;106:18367–18372. PubMed PMC
Fabelo N., Marin V., Marin R., Moreno D., Ferrer I., Diaz M. Altered lipid composition in cortical lipid rafts occurs at early stages of sporadic Alzheimer’s disease and facilitates APP/BACE1 interactions. Neurobiol. Aging. 2014;35:1801–1812. doi: 10.1016/j.neurobiolaging.2014.02.005. PubMed DOI
Geekiyanage H., Upadhye A., Chan C. Inhibition of serine palmitoyltransferase reduces Aβ and Tau hyperphosphorylation in a murine model: A safe therapeutic strategy for Alzheimer’s disease. Neurobiol. Aging. 2013;34:2037–2051. PubMed PMC
Riemann D., Hansen G.H., Niels-Christiansen L.L., Thorsen E., Immerdal L., Santos A.N., Kehlen A., Langner J., Danielsen E.M. Caveolae/lipid rafts in fibroblast-like synoviocytes: Ectopeptidase-rich membrane microdomains. Biochem. J. 2001;354:47–55. doi: 10.1042/bj3540047. PubMed DOI PMC
Kawarabayashi T., Shoji M., Younkin L.H., Wen-Lang L., Dickson D.W., Murakami T., Matsubara E., Abe K., Ashe K.H., Younkin S.G. Dimeric amyloid β protein rapidly accumulates in lipid rafts followed by apolipoprotein E and phosphorylated Tau accumulation in the Tg2576 mouse model of Alzheimer’s disease. J. Neurosci. 2004;24:3801–3809. doi: 10.1523/JNEUROSCI.5543-03.2004. PubMed DOI PMC
Bulloj A., Leal M.C., Surace E.I., Zhang X., Xu H., Ledesma M.D., Castano E.M., Morelli L. Detergent resistant membrane-associated IDE in brain tissue and cultured cells: Relevance to Aβ and insulin degradation. Mol. Neurodegener. 2008;3:22. doi: 10.1186/1750-1326-3-22. PubMed DOI PMC
Parkin E.T., Watt N.T., Hussain I., Eckman E.A., Eckman C.B., Manson J.C., Baybutt H.N., Turner A.J., Hooper N.M. Cellular prion protein regulates β-secretase cleavage of the Alzheimer’s amyloid precursor protein. Proc. Natl. Acad. Sci. USA. 2007;104:11062–11067. doi: 10.1073/pnas.0609621104. PubMed DOI PMC
Prybylowski K., Chang K., Sans N., Kan L., Vicini S., Wenthold R.J. The synaptic localization of NR2B-containing NMDA receptors is controlled by interactions with PDZ proteins and AP-2. Neuron. 2005;47:845–857. doi: 10.1016/j.neuron.2005.08.016. PubMed DOI PMC
Um J.W., Strittmatter S.M. Amyloid-β induced signaling by cellular prion protein and Fyn kinase in Alzheimer disease. Prion. 2013;7:37–41. doi: 10.4161/pri.22212. PubMed DOI PMC
De Calignon A., Polydoro M., Suarez-Calvet M., William C., Adamowicz D.H., Kopeikina K.J., Pitstick R., Sahara N., Ashe K.H., Carlson G.A., et al. Propagation of Tau pathology in a model of early Alzheimer’s disease. Neuron. 2012;73:685–697. doi: 10.1016/j.neuron.2011.11.033. PubMed DOI PMC
Ronicke R., Mikhaylova M., Ronicke S., Meinhardt J., Schroder U.H., Fandrich M., Reiser G., Kreutz M.R., Reymann K.G. Early neuronal dysfunction by amyloid β oligomers depends on activation of NR2B-cnotaining NMDA receptors. Neurobiol. Aging. 2011;32:2219–2228. doi: 10.1016/j.neurobiolaging.2010.01.011. PubMed DOI
Williamson R., Usardi A., Hanger D.P., Anderton B.H. Membrane-bound β-amyloid oligomers are recruited into lipid rafts by a fyn-dependent mechanism. FASEB J. 2008;22:1552–1559. doi: 10.1096/fj.07-9766com. PubMed DOI
Gimbel D.A., Nygaard H.B., Coffey E.E., Gunther E.C., Lauren J., Gimbel Z.A., Strittmatter S.M. Memory impairment in transgenic Alzheimer mice requires cellular prion protein. J. Neurosci. 2010;30:6367–6374. doi: 10.1523/JNEUROSCI.0395-10.2010. PubMed DOI PMC
Balducci C., Beeg M., Stravalaci M., Bastone A., Sclip A., Biasini E., Tapella L., Colombo L., Manzoni C., Borsello T., et al. Synthetic amyloid-β oligomers impair long-term memory independently of cellular prion protein. Proc. Natl. Acad. Sci. USA. 2010;107:2295–2300. doi: 10.1073/pnas.0911829107. PubMed DOI PMC
Calella A.M., Farinelli M., Nuvolone M., Mirante O., Moos R., Falsig J., Mansuy I.M., Aguzzi A. Prion protein and Aβ-related synaptic toxicity impairment. EMBO Mol. Med. 2010;2:306–314. doi: 10.1002/emmm.201000082. PubMed DOI PMC
Kudo W., Lee H.P., Zou W.Q., Wang X., Perry G., Zhu X., Smith M.A., Petersen R.B., Lee H.G. Cellular prion protein is essential for oligomeric amyloid-β-induced neuronal cell death. Hum. Mol. Genet. 2012;21:1138–1144. doi: 10.1093/hmg/ddr542. PubMed DOI PMC
Nicoll A.J., Panico S., Freir D.B., Wright D., Terry C., Risse E., Herron C.E., O’Malley T., Wadsworth J.D., Farrow M.A., et al. Amyloid-β nanotubes are associated with prion protein-dependent synaptotoxicity. Nat. Commun. 2013;4:2416. doi: 10.1038/ncomms3416. PubMed DOI PMC
Hernandez P., Lee G., Sjoberg M., Maccioni R.B. Tau phosphorylation by Cdk5 and Fyn in response to amyloid peptide Abera (25–35): Involvement of lipid rafts. J. Alzheimers Dis. 2009;16:149–156. PubMed
Sui Z., Kovacs A.D., Maggirwar S.B. Recruitment of active glycogen synthase kinase-3 into neuronal lipid rafts. Biochem. Biophys. Res. Commun. 2006;345:1643–1648. doi: 10.1016/j.bbrc.2006.05.087. PubMed DOI
Nikolic M., Dudek H., Kwon Y.T., Ramos Y.F., Tsai L.H. The Cdk5/p35 kinase is essential for neurite outgrowth during neuronal differentiation. Genes Dev. 1996;10:816–825. doi: 10.1101/gad.10.7.816. PubMed DOI
Kimura T., Ishiguro K., Hisanaga S. Physiological and pathological phosphorylation of Tau by Cdk5. Front. Mol. Neurosci. 2014;7:65. doi: 10.3389/fnmol.2014.00065. PubMed DOI PMC
Shukla V., Skuntz S., Pant H.C. Deregulated Cdk5 activity is involved in inducing Alzheimer’s disease. Arch. Med. Res. 2012;43:655–662. doi: 10.1016/j.arcmed.2012.10.015. PubMed DOI PMC
Mazanetz M.P., Fischer P.M. Untangling Tau hyperphosphorylation in drug design for neurodegenerative diseases. Nat. Rev. Drug Discov. 2007;6:464–479. doi: 10.1038/nrd2111. PubMed DOI
Lee G., Thangavel R., Sharma V.M., Litersky J.M., Bhaskar K., Fang S.M., Do L.H., Andreadis A., van Hoesen G., Ksiezak-Reding H. Phosphorylation of Tau by fyn: Implications of Alzheimer’s disease. J. Neurosci. 2004;24:2304–2312. doi: 10.1523/JNEUROSCI.4162-03.2004. PubMed DOI PMC
Bhaskar K., Yen S.H., Lee G. Disease-related modifications in Tau affect the interaction between Fyn and Tau. J. Biol. Chem. 2005;280:35119–35125. doi: 10.1074/jbc.M505895200. PubMed DOI
Ittner L.M., Ke Y.D., Delerue F., Bi M., Gladbach A., van Eersel J., Wolfing H., Chieng B.C., Christie M.J., Napier I.A., et al. Dendritic function of Tau mediates amyloid-β toxicity in Alzheimer’s disease mouse models. Cell. 2010;142:387–397. doi: 10.1016/j.cell.2010.06.036. PubMed DOI
Usardi A., Pooler A.M., Seereeram A.M., Reynolds C.H., Derkinderen P., Anderton B., Hanger D.P., Noble W., Williamson R. Tyrosine phosphorylation of Tau regulates its interactions with Fyn SH2 domains, but not SH3 domains, altering the cellular localization of tau. FEBS J. 2011;278:2927–2937. doi: 10.1111/j.1742-4658.2011.08218.x. PubMed DOI
Liu F., Shi J., Tranimukai H., Gu J., Gu J., Grundke-Iqbal I., Iqbal K., Gong C.X. Reduced O-GlcNAcylation links lower brain glucose metabolism and Tau pathology in Alzheimer’s disease. Brain. 2009;132:1820–1832. doi: 10.1093/brain/awp099. PubMed DOI PMC
Velliquette R.A., O’Connor T., Vassar R. Energy inhibition elevates β-secretase levels and activity and is potentially amyloidogenic in APP transgenic mice: Possible early events in Alzheimer’s disease pathogenesis. J. Neurosci. 2005;25:10874–10883. doi: 10.1523/JNEUROSCI.2350-05.2005. PubMed DOI PMC
O’Connor T., Sadleir K.R., Maus E., Velliquette R.A., Zhao J., Cole S.L., Eimer W.A., Hitt B., Bembinster L.A., Lammich S., et al. Phosphorylation of the translation initiation factor eIF2α increases BACE1 levels and promotes amyloidogenesis. Neuron. 2008;60:988–1009. doi: 10.1016/j.neuron.2008.10.047. PubMed DOI PMC
Ankarcrona M., Mangialasche F., Winblad B. Rethinking Alzheimer’s disease therapy: Are mitochondria the key? J. Alzheimers Dis. 2010;20:S579–S590. PubMed
Jacobsen K.T., Iverfeldt K. O-GlcNAcylation increases non-amyloidogenic processing of the amyloid-β precursor protein (APP) Biochem. Biophys. Res. Commun. 2011;404:882–886. doi: 10.1016/j.bbrc.2010.12.080. PubMed DOI
Liu K., Paterson A.J., Zhang F., McAndrew J., Fukuchi K., Wyss J.M., Peng L., Hu Y., Kudlow J.E. Accumulation of protein O-GlcNAc modification inhibits proteasomes in the brain and coincides with neuronal apoptosis in brain areas with high O-GlcNAc metabolism. J. Neurochem. 2004;89:1044–1055. doi: 10.1111/j.1471-4159.2004.02389.x. PubMed DOI
Brister M.A., Pandey A.K., Bielska A.A., Zondlo N.J. OGlcNAcylation and phosphorylation have opposing structural effects in Tau: Phosphothreonine induces particular conformational order. J. Am. Chem. Soc. 2014;136:3803–3816. doi: 10.1021/ja407156m. PubMed DOI PMC
Iqbal K., Alonso Adel C., Chen S., Chohan M.O., El-Akkad E., Gong C.X., Khatoon S., Li B., Liu F., Rahman A., et al. Tau pathology in Alzheimer disease and other tauopathies. Biochim. Biophys. Acta. 2005;1739:198–210. doi: 10.1016/j.bbadis.2004.09.008. PubMed DOI
Liu F., Iqbal K., Grundke-Igbal I., Hart G.W., Gong C.X. O-GlcNAcylation regulates phosphorylation of Tau: A mechanism involved in Alzheimer’s disease. Proc. Natl. Acad. Sci. USA. 2004;101:10804–10809. doi: 10.1073/pnas.0400348101. PubMed DOI PMC
Tallent M.K., Varghis N., Skorobogatko Y., Hernandez-Cuebas L., Whelan K., Vocadlo D.J., Vosseller K. In vivo modulation of O-GlcNAc levels regulates hippocampal synaptic plasticity through interplay with phosphorylation. J. Biol. Chem. 2009;284:174–181. doi: 10.1074/jbc.M807431200. PubMed DOI
Gella A., Durany N. Oxidative stress in Alzheimer disease. Cell Adh. Migr. 2009;3:88–93. doi: 10.4161/cam.3.1.7402. PubMed DOI PMC
Pocernich C.B., Butterfield D.A. Elevation of glutathione as a therapeutic strategy in Alzheimer disease. Biochim. Biophys. Acta. 2012;1822:625–630. PubMed PMC
Liu R., Choi J. Age-associated decline in γ-glutamylcysteine synthetase gene expression in rats. Free Radic. Biol. Med. 2000;28:566–574. doi: 10.1016/S0891-5849(99)00269-5. PubMed DOI
Saharan S., Mandal P.K. The emerging role of glutathione in Alzheimer’s disease. J. Alzheimers Dis. 2014;40:519–529. PubMed
Lee M., Cho T., Jantaratnotai N., Wang Y.T., McGeer E., McGeer P.L. Depletion of GSH in glial cells induces neurotoxicity: Relevance to aging and degenerative neurological diseases. FASEB J. 2010;24:2533–2545. doi: 10.1096/fj.09-149997. PubMed DOI
Shen C., Chen Y., Liu H., Zhang K., Zhang T., Lin A., Jing N. Hydrogen peroxide promotes Aβ production through JNK-dependent activation of γ-secretase. J. Biol. Chem. 2008;283:17721–17730. doi: 10.1074/jbc.M800013200. PubMed DOI PMC
Anantharaman M., Tangpong J., Keller J.N., Murphy M.P., Markesbery W.R., Kiningham K.K., St., Clair D.K. β-amyloid mediated nitration of manganese superoxide dismutase: Implication for oxidative stress in a APPNLH/NLH X PS-1P264L/P264L double knock-in mouse model of Alzheimer’s disease. Am. J. Pathol. 2006;168:1608–1617. doi: 10.2353/ajpath.2006.051223. PubMed DOI PMC
Lovell M.A., Robertson J.D., Teesdale W.J., Campbell J.L., Markesbery W.R. Copper, iron and zinc in Alzheimer’s disease senile plaques. J. Neurol. Sci. 1998;158:47–52. doi: 10.1016/S0022-510X(98)00092-6. PubMed DOI
Atwood C.S., Scarpa R.C., Huang X., Moir R.D., Jones W.D., Fairlie D.P., Tanzi R.E., Bush A.I. Characterization of copper interactions with Alzheimer amyloid β peptides: Identification of an attomolar-affinity copper binding site on amyloid β1-42. J. Neurochem. 2000;75:1219–1233. doi: 10.1046/j.1471-4159.2000.0751219.x. PubMed DOI
Huang X., Cuajungco M.P., Atwood C.S., Hartshorn M.A., Tyndall J.D., Hanson G.R., Stokes K.C., Leopold M., Multhaup G., Goldstein L.E., et al. Cu(II) potentiation of Alzheimer Aβ neurotoxicity. Correlation with cell-free hydrogen peroxide production and metal reduction. J. Biol. Chem. 1999;274:37111–37116. doi: 10.1074/jbc.274.52.37111. PubMed DOI
Al-Hilaly Y.K., Williams T.L., Stewart-Parker M., Ford L., Skaria E., Cole M., Bucher W.G., Morris K.L., Sada A.A., Thorpe J.R., et al. A central role for dityrosine crosslinking of amyloid-β in Alzheimer’s disease. Acta Neuropathol. Commun. 2013;1:83. doi: 10.1186/2051-5960-1-83. PubMed DOI PMC
Hensley K., Maidt M.L., Yu Z., Sang H., Markesbery W.R., Floyd R.A. Electrochemical analysis of protein nitrotyrosine and dityrosine in the Alzheimer brain indicates region-specific accumulation. J. Neurosci. 1998;18:8126–8132. PubMed PMC
Cuajungco M.P., Goldstein L.E., Nunomura A., Smith M.A., Lim J.T., Atwood C.S., Huang X., Farrag Y.W., Perry G., Bush A.I. Evidence that the β-amyloid plaques of Alzheimer’s disease represent the redox-silencing and entombment of Aβ by zinc. J. Biol. Chem. 2000;275:19439–19442. doi: 10.1074/jbc.C000165200. PubMed DOI
Craddock T.J., Tuszynski J.A., Chopra D., Casey N., Goldstein L.E., Hameroff S.R., Tanzi R.E. The zinc dyshoemostasis hypothesis of Alzheimer’s disease. PLoS ONE. 2012;7:e33552. doi: 10.1371/journal.pone.0033552. PubMed DOI PMC
Yan S.D., Chen X., Fu J., Chen M., Zhu H., Roher A., Slattery T., Zhao L., Nagashima M., Morser J., et al. RAGE and amyloid-β peptide neurotoxicity in Alzheimer’s disease. Nature. 1996;382:685–691. doi: 10.1038/382685a0. PubMed DOI
Bierhaus A., Humpert P.M., Morcos M., Wendt T., Chavakis T., Arnold B., Stern D.M., Nawroth P.P. Understanding RAGE, the receptor for advanced glycation end products. J. Mol. Med. 2005;83:876–886. doi: 10.1007/s00109-005-0688-7. PubMed DOI
Srikanth V., Maczurek A., Phan T., Steele M., Westcott B., Juskiw D., Munch G. Advanced glycation endproducts and their receptor RAGE in Alzheimer’s disease. Neurobiol. Aging. 2011;32:763–777. doi: 10.1016/j.neurobiolaging.2009.04.016. PubMed DOI
Valente T., Gella A., Fernandez-Busquets X., Unzeta M., Durany N. Immunohistochemical analysis of human brain suggests pathological synergism of Alzheimer’s disease and diabetes mellitus. Neurobiol. Dis. 2010;37:67–76. doi: 10.1016/j.nbd.2009.09.008. PubMed DOI
Cho H.J., Son S.M., Jin S.M., Hong H.S., Shin D.H., Kim S.J., Huh K., Mook-Jung I. RAGE regulates BACE1 and Aβ generation via NFAT1 activation in Alzheimer’s disease animal model. FASEB J. 2009;23:2639–2649. doi: 10.1096/fj.08-126383. PubMed DOI
Yan S.D., Bierhaus A., Nawroth P.P., Stern D.M. RAGE and Alzheimer’s disease: A progression factor for amyloid-β-induced cellular perturbation? J. Alzheimers Dis. 2009;16:833–843. PubMed PMC
Martel C.L., Mackic J.B., McComb J.G., Ghiso J., Zlokovic B.V. Blood–brain barrier uptake of the 40 and 42 amino acid sequences of circulating Alzheimer’s amyloid β in guinea pigs. Neurosci. Lett. 1996;206:157–160. doi: 10.1016/S0304-3940(96)12462-9. PubMed DOI
Deane R., du Yan S., Submamaryan R.K., LaRue B., Jovanovic S., Hogg E., Welch D., Manness L., Lin C., Yu J., et al. RAGE mediates amyloid-β peptide transport across the blood-brain barrier and accumlation in brain. Nat. Med. 2003;9:907–913. doi: 10.1038/nm890. PubMed DOI
Manolopoulos K.N., Klotz L.O., Korsten P., Bornstein S.R., Barthel A. Linking Alzheimer’s disease to insulin resistance: The FoxO response to oxidative stress. Mol. Psychiatry. 2010;15:1046–1052. doi: 10.1038/mp.2010.17. PubMed DOI
Hardas S.S., Sultana R., Clark A.M., Beckett T.L., Szweda L.I., Murphy M.P., Butterfield D.A. Oxidative modification of lipoic acid by HNE in Alzheimer disease brain. Redox Biol. 2013;1:80–85. doi: 10.1016/j.redox.2013.01.002. PubMed DOI PMC
Siegel S.J., Bieschke J., Powers E.T., Kelly J.W. The oxidative stress metabolite 4-hydroxynonenal promotes Alzheimer protofibril formation. Biochemistry. 2007;46:1503–1510. doi: 10.1021/bi061853s. PubMed DOI PMC
Markesbery W.R., Lovell M.A. Four-hydroxynonenal, a product of lipid peroxidation, is increased in the brain in Alzheimer’s disease. Neurobiol. Aging. 1998;19:33–36. doi: 10.1016/S0197-4580(98)00009-8. PubMed DOI
Schulingkamp R.J., Pagano T.C., Hung D., Raffa R.B. Insulin receptors and insulin action in the brain: Review and clinical implications. Neurosci. Biobehav. Rev. 2000;24:855–872. doi: 10.1016/S0149-7634(00)00040-3. PubMed DOI
Dore S., Kar S., Quirion R. Insulin-like growth factor I protects and rescues hippocampal neurons against β-amyloid- and human amylin-induced toxicity. Proc. Natl. Acad. Sci. USA. 1997;94:4772–4777. doi: 10.1073/pnas.94.9.4772. PubMed DOI PMC
Fernandez A.M., Torres-Aleman I. The many faces of insulin-like peptide signalling in the brain. Nat. Rev. Neurosci. 2012;13:225–239. doi: 10.1038/nrn3209. PubMed DOI
Wozniak M., Rydzewski B., Baker S.P., Raizada M.K. The cellular and physiological actions of insulin in the central nervous system. Neurochem. Int. 1993;22:1–10. doi: 10.1016/0197-0186(93)90062-A. PubMed DOI
Sesti G., Federici M., Hribal M.L., Lauro D., Sbraccia P., Lauro R. Defects of the isnulin receptor substrate (IRS) system in human metabolic disorders. FASEB J. 2001;15:2099–2111. doi: 10.1096/fj.01-0009rev. PubMed DOI
White M.F. Insulin signaling in health and disease. Science. 2003;302:1710–1711. doi: 10.1126/science.1092952. PubMed DOI
Schubert M., Brazil D.P., Burks D.J., Kushner J.A., Ye J., Flint C.L., Farhang-Fallah J., Dikkes P., Warot X.M., Rio C., et al. Insulin receptor substrate-2 deficiency impairs brain growth and promotes Tau phosphorylation. J. Neurosci. 2003;23:7084–7092. PubMed PMC
Schubert M., Gautam D., Surjo D., Ueki K., Baudler S., Schubert D., Kondo T., Alber J., Galldiks N., Kustermann E., et al. Role for neuronal insulin resistance in neurodegenerative diseases. Proc. Natl. Acad. Sci. USA. 2004;101:3100–3105. doi: 10.1073/pnas.0308724101. PubMed DOI PMC
Cheng C.M., Tseng V., Wang J., Wang D., Matyakhina L., Bondy C.A. Tau is hyperphosphorylated in the insulin-like growth factor-I null brain. Endocrinology. 2005;146:5086–5091. doi: 10.1210/en.2005-0063. PubMed DOI
Killick R., Scales G., Leroy K., Causevic M., Hooper C., Irvine E.E., Choudhury A.I., Drinkwater L., Kerr F., Al-Qassab H., et al. Deletion of Irs2 reduces amyloid deposition and rescues behavioural deficits in APP transgenic mice. Biochem. Biophys. Res. Commun. 2009;386:257–262. doi: 10.1016/j.bbrc.2009.06.032. PubMed DOI PMC
Moloney A.M., Griffin R.J., Timmons S., O’Connor R., Ravid R., O’Neil C. Defects in IGF-1 receptor, insulin receptor and IRS-1/2 in Alzheimer’s disease indicate possible resistance to IGF-1 and insulin signalling. Neurobiol. Aging. 2010;31:224–243. doi: 10.1016/j.neurobiolaging.2008.04.002. PubMed DOI
Cross D.A., Alessi D.R., Cohen P., Andjelkovich M., Hemmings B.A. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature. 1995;378:785–789. doi: 10.1038/378785a0. PubMed DOI
Alessi D.R., Cohen P. Mechanism of activation and function of protein kinase B. Curr. Opin. Genet. Dev. 1998;8:55–62. doi: 10.1016/S0959-437X(98)80062-2. PubMed DOI
Frolich L., Blum-Degen D., Bernstein H.G., Engelsberger B.S., Humrich J., Laufer S., Muschner D., Thalheimer A., Turk A., Hoyer S., et al. Brain insulin and insulin receptors in aging and sporadic Alzheimer’s disease. J. Neural Transm. 1998;105:423–438. doi: 10.1007/s007020050068. PubMed DOI
Hotamisligil G.S., Peraldi P., Budavari A., Ellis R., White M.F., Spiegelman B.M. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-α- and obesity-induced insulin resistance. Science. 1996;271:665–668. doi: 10.1126/science.271.5249.665. PubMed DOI
Aguirre V., Werner E.D., Giraud J., Lee Y.H., Shoelson S.E., White M.F. Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action. J. Biol. Chem. 2002;277:1531–1537. doi: 10.1074/jbc.M101521200. PubMed DOI
Paz K., Hemi R., LeRoith D., Karasik A., Elhanany E., Kanety H., Zick Y. A molecular basis for insulin resistance. Elevated serine/threonine phosphorylation of IRS-1 and IRS-2 inhibits their binding to the juxtamembrane region of the insulin and impairs their ability to undergo insulin-induced tyrosine phosphorylation. J. Biol. Chem. 1997;272:29911–29918. doi: 10.1074/jbc.272.47.29911. PubMed DOI
De Felice F.G., Lourenco M.V., Ferreira S.T. How does brain insulin resistance develop in Alzheimer’s disease? Alzheimers Dement. 2014;10:S26–S32. doi: 10.1016/j.jalz.2013.12.004. PubMed DOI
Butterfield D.A., di Domenico F., Barone E. Elevated risk of type 2 diabetes for development of Alzheimer disease: A key role for oxidative stress in brain. Biochim. Biophys. Acta. 2014;1842:1693–1706. doi: 10.1016/j.bbadis.2014.06.010. PubMed DOI PMC
Dou J.T., Chen M., Dufour F., Alkon D.L., Zhao W.Q. Insulin receptor signaling in long-term memory consolidation following spatial learning. Learn. Mem. 2005;12:646–655. doi: 10.1101/lm.88005. PubMed DOI PMC
Cole G.M., Frautschy S.A. The role of insulin and neurotrophic factor signaling in brain aging and Alzheimer’s disease. Exp. Gerontol. 2007;42:10–21. doi: 10.1016/j.exger.2006.08.009. PubMed DOI
Zhao W.Q., Lacor P.N., Chen H., Lambert M.P., Quon M.J., Krafft G.A., Klein W.L. Insulin receptor dysfunction impairs cellular clearance of neurotoxic oligomeric Aβ. J. Biol. Chem. 2009;284:18742–18753. doi: 10.1074/jbc.M109.011015. PubMed DOI PMC
Vekrellis K., Ye Z., Qiu W.Q., Walsh D., Hartley D., Chesneau V., Rosner M.R., Selkoe D.J. Neurons regulate extracellular levels of amyloid β-protein via proteolysis by insulin-degrading enzyme. J. Neurosci. 2000;20:1657–1665. PubMed PMC
Zhao L., Teter B., Morihara T., Lim G.P., Ambegaokar S.S., Ubeda O.J., Frautschy S.A., Cole G.M. Insulin-degrading enzyme as a downstream target of insulin receptor signaling cascade: Implications for Alzheimer’s disease intervention. J. Neurosci. 2004;24:11120–11126. doi: 10.1523/JNEUROSCI.2860-04.2004. PubMed DOI PMC
Reger M.A., Watson G.S., Green P.S., Baker L.D., Cholerton B., Fishel M.A., Plymate S.R., Cherrier M.M., Schellenberg G.D., Frey W.H., II, et al. Intranasal insulin administration dose-dependently modulates verbal memory and plasma amyloid-β in memory-impaired older adults. J. Alzheimers Dis. 2008;13:323–331. PubMed PMC
Cook D.G., Leverenz J.B., McMillan P.J., Kulstad J.J., Ericksen S., Roth R.A., Schellenberg G.D., Jin L.W., Kovacina K.S., Craft S. Reduced hippocampal insulin-degrading enzyme in late-onset Alzheimer’s disease is associated with the apolipoprotein E-epsiron4 allele. Am. J. Pathol. 2003;162:313–319. doi: 10.1016/S0002-9440(10)63822-9. PubMed DOI PMC
Pelvig D.P., Pakkenberg H., Stark A.K., Pakkenberg B. Neocortical glial cell numbers in human brains. Neurobiol. Aging. 2008;29:1754–1762. doi: 10.1016/j.neurobiolaging.2007.04.013. PubMed DOI
Derecki N.C., Katzmarski N., Kipnis J., Meyer-Luehmann M. Microglia as a critical player in both developmental and late-life CNS pathogenesis. Acta Neuropathol. 2014;128:333–345. doi: 10.1007/s00401-014-1321-z. PubMed DOI PMC
Ekdahl C.T., Claasen J.H., Bonde S., Kokaia Z., Lindvall O. Inflammation is detrimental for neurogenesis in adult brain. Proc. Natl. Acad. Sci. USA. 2003;100:13632–13637. doi: 10.1073/pnas.2234031100. PubMed DOI PMC
Monje M.L., Toda H., Palmer T.D. Inflammatory blockade restores adult hippocampal neurogenesis. Science. 2003;302:1760–1765. doi: 10.1126/science.1088417. PubMed DOI
Ziv Y., Ron N., Butovsky O., Landa G., Greenberg N., Cohen H., Kipnis J., Schwartz M. Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat. Neurosci. 2006;9:268–275. doi: 10.1038/nn1629. PubMed DOI
Li Y., Liu L., Barger S.W., Griffin W.S. Interleukin-1 mediates pathological effects of microglia on Tau phosphorylation and on synaptophysin synthesis in cortical neurons through a p38-MAPK pathway. J. Neurosci. 2003;23:1605–1611. PubMed PMC
Harrison J.K., Jiang Y., Chen S., Xia Y., Maciejewski D., McNamara R.K., Streit W.J., Salafranca M.N., Adhikari S., Thompson D.A., et al. Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. Proc. Natl. Acad. Sci. USA. 1998;95:10896–10901. doi: 10.1073/pnas.95.18.10896. PubMed DOI PMC
Hatori H., Nagai A., Heisel R., Ryu J.K., Kim S.U. Fractalkine and fractalkine receptors in human neurons and glial cells. J. Neurosci. Res. 2002;69:418–426. doi: 10.1002/jnr.10304. PubMed DOI
Re D.B., Przedborski S. Fractalkine: Moving from chemotaxis to neuroprotection. Nat. Neurosci. 2006;9:859–861. PubMed
Lyons A., Lynch A.M., Downer E.J., Hanley R., O’Sullivan J.B., Smith A., Lynch M.A. Fractalkine-induced activation of the phosphatidylinositol-3 kinase pathway attenuates microglial activation in vivo and in vitro. J. Neurochem. 2009;110:1547–1556. doi: 10.1111/j.1471-4159.2009.06253.x. PubMed DOI
Deiva K., Geeraerts T., Salim H., Leclerc P., Hery C., Hugel B., Freyssinet J.M., Tardieu M. Fractalkine reduces N-methyl-d-aspartate-induced calcium flux and apoptosis in human neurons through extracellular signal-regulated kinase activation. Eur. J. Neurosci. 2004;20:3222–3232. doi: 10.1111/j.1460-9568.2004.03800.x. PubMed DOI
Limatola C., Lauro C., Catalano M., Ciotti M.T., Bertollini C., di Angelantonio S., Ragozzino D., Eusebi F. Chemokine CX3CL1 protects rat hippocampal neurons against glutamate-mediated excitotoxicity. J. Neuroimmunol. 2005;166:19–28. doi: 10.1016/j.jneuroim.2005.03.023. PubMed DOI
Kim T.S., Lim H.K., Lee J.Y., Kim D.J., Park S., Lee C., Lee C.U. Changes in the levels of plasma soluble fractalkine in patients with mild cognitive impairment and Alzheimer’s disease. Neurosci. Lett. 2008;436:196–200. doi: 10.1016/j.neulet.2008.03.019. PubMed DOI
Cho S.H., Sun B., Zhou Y., Kauppinen T.M., Halabisky B., Wes P., Ransohoff R.M., Gan L. CX3CR1 protein signaling modulates microglial activation and protects against plaque-independent cognitive deficits in a mouse model of Alzheimer disease. J. Biol. Chem. 2011;286:32713–32722. doi: 10.1074/jbc.M111.254268. PubMed DOI PMC
Lyons A., Downer E.J., Crotty S., Nolan Y.M., Mills K.H., Lynch M.A. CD200 ligand receptor interaction modulates microglial activation in vivo and in vitro: A role for IL-4. J. Neurosci. 2007;27:8309–8313. doi: 10.1523/JNEUROSCI.1781-07.2007. PubMed DOI PMC
Hernangomez M., Carrillo-Salinas F.J., Mecha M., Correa F., Mestre L., Loria F., Feliu A., Docagne F., Guaza C. Brain innate immunity in the regulation of neuroinflammation: Therapeutic strategies by modulating CD200-CD200R interaction involve the cannabinoid system. Curr. Pharm. Des. 2014;20:4707–4722. doi: 10.2174/1381612820666140130202911. PubMed DOI PMC
Cox F.F., Carney D., Miller A.M., Lynch M.A. CD200 fusion protein decreases microglial activation in the hippocampus of aged rats. Brain Behav. Immun. 2012;26:789–796. doi: 10.1016/j.bbi.2011.10.004. PubMed DOI
Frank M.G., Barrientos R.M., Biedenkapp J.C., Rudy J.W., Watkins L.R., Maier S.F. mRNA up-regulation of MHC II and pivotal pro-inflammatory genes in normal brain aging. Neurobiol. Aging. 2006;27:717–722. doi: 10.1016/j.neurobiolaging.2005.03.013. PubMed DOI
Walker D.G., Dalsing-Hernandez J.E., Campbell N.A., Lue L.F. Decreased expression of CD200 and CD200 receptor in Alzheimer’s disease: A potential mechanism leading to chronic inflammation. Exp. Neurol. 2009;215:5–19. doi: 10.1016/j.expneurol.2008.09.003. PubMed DOI PMC
Costello D.A., Lyons A., Denieffe S., Browne T.C., Cox F.F., Lynch M.A. Long term potentiation is impaired in membrane glycoprotein CD200-deficient mice: A role for Toll-like receptor activation. J. Biol. Chem. 2011;286:34722–34732. doi: 10.1074/jbc.M111.280826. PubMed DOI PMC
Okun E., Mattson M.P., Arumugam T.V. Involvement of Fc receptors in disorders of the central nervous system. Neuromol. Med. 2010;12:164–178. doi: 10.1007/s12017-009-8099-5. PubMed DOI PMC
Guilliams M., Bruhns P., Saeys Y., Hammad H., Lambrecht B.N. The function of Fcγ receptors in dendritic cells and macrophages. Nat. Rev. Immunol. 2014;14:94–108. doi: 10.1038/nri3582. PubMed DOI
Gaikwad S., Larionov S., Wang Y., Dannenberg H., Matozaki T., Monsonego A., Thal D.R., Neumann H. Signal regulatory protein-β1: A microglial modulator of phagocytosis in Alzheimer’s disease. Am. J. Pathol. 2009;175:2528–2539. doi: 10.2353/ajpath.2009.090147. PubMed DOI PMC
Doens D., Fernandez P.L. Microglia receptors and their implications in the response to amyloid β for Alzheimer’s disease pathogenesis. J. Neuroinflamm. 2014;11:48. doi: 10.1186/1742-2094-11-48. PubMed DOI PMC
Qiu W.Q., Ye Z., Kholodenko D., Seubert P., Selkoe D.J. Degradation of amyloid β-protein by a metalloprotease secreted by microglia and other neural and non-neural cells. J. Biol. Chem. 1997;272:6641–6646. doi: 10.1074/jbc.272.10.6641. PubMed DOI
Qiu W.Q., Walsh D.M., Ye Z., Vekrellis K., Zhang J., Podlisny M.B., Rosner M.R., Safavi A., Hersh L.B., Selkoe D.J. Insulin-degrading enzyme regulates extracellular levels of amyloid β-protein by degradation. J. Biol. Chem. 1998;273:32730–32738. doi: 10.1074/jbc.273.49.32730. PubMed DOI
Carson J.A., Turner A.J. β-amyloid catabolism: Roles for neprilysin (NEP) and other metallopeptidases? J. Neurochem. 2002;81:1–8. doi: 10.1046/j.1471-4159.2002.00855.x. PubMed DOI
Sakamoto M., Miyamoto K., Wu Z., Nakanishi H. Possible involvement of cathepsin B released by microglia in methylmercury-induced cerebellar pathological changes in the adult rat. Neurosci. Lett. 2008;442:292–296. doi: 10.1016/j.neulet.2008.07.019. PubMed DOI
Mosher K.I., Wyss-Coray T. Microglial dysfunction in brain aging and Alzheimer’s disease. Biochem. Pharmacol. 2014;88:594–604. doi: 10.1016/j.bcp.2014.01.008. PubMed DOI PMC
Lucin K.M., O’Brien C.E., Bieri G., Czirr E., Mosher K.I., Abbey R.J., Mastroeni D.F., Rogers J., Spencer B., Masliah E., et al. Microglial beclin 1 regulates retromer trafficking and phagocytosis and is impaired in Alzheimer’s disease. Neuron. 2013;79:873–886. doi: 10.1016/j.neuron.2013.06.046. PubMed DOI PMC
Lamkanfi M., Vande Walle L., Kanneganti T.D. Deregulated inflammasome signaling in disease. Immunol. Rev. 2011;243:163–173. doi: 10.1111/j.1600-065X.2011.01042.x. PubMed DOI PMC
Koenigsknecht-Talboo J., Landreth G.E. Microglial phagocytosis induced by fibrillar β-amyloid and IgGs are differentially regulated by proinflammatory cytokines. J. Neurosci. 2005;25:8240–8249. doi: 10.1523/JNEUROSCI.1808-05.2005. PubMed DOI PMC
Heneka M.T., Kummer M.P., Stutz A., Delekate A., Schwartz S., Vieira-Saecker A., Griep A., Axt D., Remus A., Tzeng T., et al. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature. 2013;493:674–678. doi: 10.1038/nature11729. PubMed DOI PMC
Nagelhus E.A., Amiry-Moghaddam M., Bergersen L.H., Bjaalie J.G., Eriksson J., Gundersen V., Leergaard T.B., Morth J.P., Storm-Mathisen J., Trop R., et al. The glia doctorine: Addressing the role of glial cells in healthy brain ageing. Mech. Ageing Dev. 2013;134:449–459. doi: 10.1016/j.mad.2013.10.001. PubMed DOI
Choi S.S., Lee H.J., Lim I., Satoh J., Kim S.U. Human astrocytes: Secretome profiles of cytokines and chemokines. PLoS ONE. 2014;9:e92325. doi: 10.1371/journal.pone.0092325. PubMed DOI PMC
Sykova E. Glial diffusion barriers during aging and pathological states. Prog. Brain Res. 2001;132:339–363. PubMed
Vargova L., Sykova E. Astrocytes and extracellular matrix in extrasynaptic volume transmission. Philos. Trans. R. Soc. Lond. B. 2014;369 doi: 10.1098/rstb.2013.0608. PubMed DOI PMC
Swanson R.A., Ying W., Kauppinen T.M. Astrocyte influences on ischemic neuronal death. Curr. Mol. Med. 2004;4:193–205. doi: 10.2174/1566524043479185. PubMed DOI
Pekny M., Wilhelmsson U., Bogestal Y.R., Pekna M. The role of astrocytes and complement system in neural plasticity. Int. Rev. Neurobiol. 2007;82:95–111. PubMed
Apelt J., Schliebs R. Β-amyloid-induced glial expression of both pro- and anti-inflammatory cytokines in cerebral cortex of aged transgenic Tg2576 mice with Alzheimer plaque pathology. Brain Res. 2001;894:21–30. doi: 10.1016/S0006-8993(00)03176-0. PubMed DOI
Papadopoulos M.C., Verkman A.S. Aquaporin water channels in the nervous system. Nat. Rev. Neurosci. 2013;14:265–277. doi: 10.1038/nrn3468. PubMed DOI PMC
Butterfield D.A., Pocernich C.B. The glutamatergic system and Alzheimer’s disease: Therapeutic implications. CNS Drugs. 2003;17:641–652. doi: 10.2165/00023210-200317090-00004. PubMed DOI
Lauderback C.M., Hackett J.M., Huang F.F., Keller J.N., Szweda L.I., Markesbery W.R., Butterfield D.A. The glial glutamate transporter, GLT-1, is oxidatively modified by 4-hydroxy-2-nonenal in the Alzheimer’s disease brain: The role of Aβ1-42. J. Neurochem. 2001;78:413–416. doi: 10.1046/j.1471-4159.2001.00451.x. PubMed DOI
Masliah E., Alford M., de Teresa R., Mallory M., Hansen L. Deficient glutamate transport is associated with neurodegeneration in Alzheimer’s disease. Ann. Neurol. 1996;40:759–766. doi: 10.1002/ana.410400512. PubMed DOI
Korn T., Magnus T., Jung S. Autoantigen specific T cells inhibit glutamate uptake in astrocytes by decreasing expression of astrocytic glutamate transporter GLAST: A mechanism mediated by tumor necrosis factor-α. FASEB J. 2005;19:1878–1880. doi: 10.1096/fj.05-3748fje. PubMed DOI
Zou J., Wang Y.X., Dou F.F., Lu H.Z., Ma Z.W., Lu P.H., Xu X.M. Glutamine synthetase down-regulation reduces astrocyte protection against glutamate excitotoxicity to neurons. Neurochem. Int. 2010;56:577–584. doi: 10.1016/j.neuint.2009.12.021. PubMed DOI PMC
Olabarria M., Noristani H.N., Verkhratsky A., Rodriguez J.J. Age-dependent decrease in glutamine synthetase expression in the hippocampal astroglia of the triple transgenic Alzheimer’s disease mouse model: Mechanism of deficient glutamategic transmission? Mol. Neurodegener. 2011;6:55. doi: 10.1186/1750-1326-6-55. PubMed DOI PMC
Kulijewicz-Nawrot M., Verkhratsky A., Chvatal A., Sykova E., Rodriguez J.J. Astrocytic cytoskeletal atrophy in the medial prefrontal cortex of a triple transgenic mouse model of Alzheimer’s disease. J. Anat. 2012;221:252–262. doi: 10.1111/j.1469-7580.2012.01536.x. PubMed DOI PMC
Oberstein T.J., Spitzer P., Klafki H.W., Linning P., Neff F., Knolker H.J., Lewczuk P., Wiltfang J., Kornhuber J., Maler J.M. Astrocytes and microglia but not neurons preferentially generate N-terminally truncated Aβ peptides. Neurobiol. Dis. 2015;73:24–35. doi: 10.1016/j.nbd.2014.08.031. PubMed DOI
Yin K.J., Cirrito J.R., Yan P., Hu X., Xiao Q., Pan X., Bateman R., Song H., Hsu F.F., Turk J., et al. Matrix metalloproteinases expressed by astrocytes mediate extracellular amyloid-β peptide catabolism. J. Neurosci. 2006;26:10939–10948. doi: 10.1523/JNEUROSCI.2085-06.2006. PubMed DOI PMC
Kanemitsu H., Tomiyama T., Mori H. Human neprilysin is capable of degrading amyloid β peptide not only in the monomeric form but also the pathological oligomeric form. Neurosci. Lett. 2003;350:113–116. doi: 10.1016/S0304-3940(03)00898-X. PubMed DOI
Eckman E.A., Eckman C.B. Aβ-degrading enzymes: Modulators of Alzheimer’s disease pathogenesis and targets for therapeutic intervention. Biochem. Soc. Trans. 2005;33:1101–1105. doi: 10.1042/BST20051101. PubMed DOI
Elshourbagy N.A., Liao W.S., Mahley R.W., Taylor J.M. Apolipoprotein E mRNA is abundant in the brain and adrenals, as well as in the liver, and is present in other peripheral tissues of rats and marmosets. Proc. Natl. Acad. Sci. USA. 1985;82:203–207. doi: 10.1073/pnas.82.1.203. PubMed DOI PMC
Pitas R.E., Boyles J.K., Lee S.H., Foss D., Mahley R.W. Astrocytes synthesize apolipoprotein E and metabolize apolipoprotein E-containing lipoproteins. Biochim. Biophys. Acta. 1987;917:148–161. doi: 10.1016/0005-2760(87)90295-5. PubMed DOI
Nakai M., Kawamata T., Taniguchi T., Maeda K., Tanaka C. Expression of apolipoprotein E mRNA in rat microglia. Neurosci. Lett. 1996;211:41–44. doi: 10.1016/0304-3940(96)12716-6. PubMed DOI
Hatters D.M., Peters-Libeu C.A., Weisgraber K.H. Apolipoprotein E structure: Insights into function. Trends Biochem. Sci. 2006;31:445–454. doi: 10.1016/j.tibs.2006.06.008. PubMed DOI
Kanekiyo T., Xu H., Bu G. ApoE and Aβ in Alzheimer’s disease: Accidental encounters or partners? Neuron. 2014;81:740–754. doi: 10.1016/j.neuron.2014.01.045. PubMed DOI PMC
Holtzman D.M., Herz J., Bu G. Apolipoprotein E and apolipoprotein E receptors: Normal biology and role in Alzheimer disease. Cold Spring Harb. Perspect. Med. 2012;2 doi: 10.1101/cshperspect.a006312. PubMed DOI PMC
Basak J.M., Verghese P.B., Yoon H., Kim J., Hotzman D.M. Low-density lipoprotein receptor represent an apolipoprotein E-independent pathway of Aβ uptake and degradation by astrocytes. J. Biol. Chem. 2012;287:13959–13971. doi: 10.1074/jbc.M111.288746. PubMed DOI PMC
Myung N.H., Zhu X., Kruman I.I., Castellani R.J., Petersen R.B., Siedlak S.L., Perry G., Smith M.A., Lee H.G. Evidence of DNA damage in Alzheimer disease: Phosphorylation of histone H2AX in astrocytes. Age. 2008;30:209–215. doi: 10.1007/s11357-008-9050-7. PubMed DOI PMC
Bhat R., Crowe E.P., Bitto A., Moh M., Katsetos C.D., Garcia F.U., Johnson F.B., Trojanowski J.Q., Sell C., Torres C. Astrocyte senescence as a component of Alzheimer’s disease. PLoS ONE. 2012;7:e45069. doi: 10.1371/journal.pone.0045069. PubMed DOI PMC
Oakley H., Cole S.L., Logan S., Maus E., Shao P., Craft J., Guillozet-Bongaarts A., Ohno M., Disterhoft J., van Eldik L., et al. Intraneuronal β-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: Potential factors in amyloid plaque formation. J. Neurosci. 2006;26:10129–10140. doi: 10.1523/JNEUROSCI.1202-06.2006. PubMed DOI PMC
Oddo S., Caccamo A., Kitazawa M., Tseng B.P., LaFerla F.M. Amyloid deposition precedes tangle formation in a triple transgenic model of Alzheimer’s disease. Neurobiol. Aging. 2003;24:1063–1070. doi: 10.1016/j.neurobiolaging.2003.08.012. PubMed DOI
Rohn T.T., Vyas V., Hernandez-Estrada T., Nichol K.E., Christie L.A., Head E. Lack of pathology in a triple transgenic mouse model of Alzheimer’s disease after overexpression of the anti-apoptotic protein Bcl-2. J. Neurosci. 2008;28:3051–3059. doi: 10.1523/JNEUROSCI.5620-07.2008. PubMed DOI PMC
Akiyama H., Barger S., Barnum S., Bradt B., Bauer J., Cole G.M., Cooper N.R., Eikelenboom P., Emmerling M., Fiebich B.L., et al. Inflammation and Alzheimer’s disease. Neurobiol. Aging. 2000;21:383–421. doi: 10.1016/S0197-4580(00)00124-X. PubMed DOI PMC
Montkowski A., Poetting M., Mederer A., Holsboer F. Behavioural performance in three substrains of mouse strain 129. Brain Res. 1997;762:12–18. doi: 10.1016/S0006-8993(97)00370-3. PubMed DOI
Balogh S.A., McDowell C.S., Stavnezer A.J., Denenberg V.H. A behavioral and neuroanatomical assessment of an inbred substrain of 129 mice with behavioral comparisons to C57BL/6J mice. Brain Res. 1999;836:38–48. doi: 10.1016/S0006-8993(99)01586-3. PubMed DOI
Gerlai R. Gene-targeting studies of mammalian behavior: Is it the mutation or the background genotype? Trends Neurosci. 1996;19:177–181. doi: 10.1016/S0166-2236(96)20020-7. PubMed DOI
Wolfer D.P., Muller U., Stagliar M., Lipp H.P. Assessing the effects of the 129/Sc genetic background on swimming navigation learning in transgenic mutants: A study using mice with a modified β-amyloid precursor protein gene. Brain Res. 1997;771:1–13. doi: 10.1016/S0006-8993(97)00673-2. PubMed DOI
Takeda T. Senescence-accelerated mouse (SAM) with special references to neurodegeneration models, SAMP8 and SAMP10 mice. Neurochem. Res. 2009;34:639–659. doi: 10.1007/s11064-009-9922-y. PubMed DOI
Ma Q., Qiang J., Gu P., Wang Y., Geng Y., Wang M. Age-related autophagy alterations in the brain of senescence accelerated mouse prone 8 (SAMP8) mice. Exp. Gerontol. 2011;46:533–541. doi: 10.1016/j.exger.2011.02.006. PubMed DOI
Alvarez-Garcia O., Vega-Naredo I., Sierra V., Caballero B., Tomas-Zapico C., Camins A., Garcia J.J., Pallas M., Coto-Montes A. Elevated oxidative stress in the brain of senescence-accelerated mice at 5 months of age. Biogerontology. 2006;7:43–52. doi: 10.1007/s10522-005-6041-2. PubMed DOI
Morley J.E., Farr S.A., Kumar V.B., Armbrecht H.J. The SAMP8 mouse: A model to develop therapeutic interventions for Alzheimer’s disease. Curr. Pharm. Des. 2012;18:1123–1130. doi: 10.2174/138161212799315795. PubMed DOI
Li M., Inaba M., Guo K., Abraham N.G., Ikehara S. Amelioration of cognitive ability in senescence-accelerated mouse prone 8 (SAMP8) by intra-bone marrow-bone marrow transplantation. Neurosci. Lett. 2009;465:36–40. doi: 10.1016/j.neulet.2009.09.001. PubMed DOI
Chouliaras L., Rutten B.P., Kenis G., Peerbooms O., Visser P.J., Verhey F., van Os J., Steinbusch H.W., van den Hove D.L. Epigenetic regulation in the pathophysiology of Alzheimer’s disease. Prog. Neurobiol. 2010;90:498–510. doi: 10.1016/j.pneurobio.2010.01.002. PubMed DOI
Lee H.J., Lee J.K., Lee H., Carter J.E., Chang J.W., Oh W., Yang Y.S., Suh J.G., Lee B.H., Jin H.K., et al. Human umbilical cord blood-derived mesenchymal stem cells improve neuropathology and cognitive impairment in an Alzheimer’s disease mouse model through modulation of neuroinflammation. Neurobiol. Aging. 2012;33:588–602. doi: 10.1016/j.neurobiolaging.2010.03.024. PubMed DOI
Park H.J., Shin J.Y., Lee B.R., Kim H.O., Lee P.H. Mesenchymal stem cells augment neurogenesis in the subventricular zone and enhance differentiation of neural precursor cells into dopaminergic neurons in the substantia nigra of a parkinsonian model. Cell Transpl. 2012;21:1629–1640. doi: 10.3727/096368912X640556. PubMed DOI
Martinez-Morales P.L., Revilla A., Ocana I., Gonzalez C., Sainz P., McGuire D., Liste I. Progress in stem cell therapy for major human neurological disorders. Stem Cell Rev. 2013;9:685–699. doi: 10.1007/s12015-013-9443-6. PubMed DOI
Forostyak S., Homola A., Turnovcova K., Svitil P., Jendelova P., Sykova E. Intrathecal delivery of mesenchymal stromal cells protects the structure of altered perineuronal nets in SOD1 rats and amends the course of ALS. Stem Cells. 2014;32:3163–3172. doi: 10.1002/stem.1812. PubMed DOI PMC
Mazzini L., Vercelli A., Ferrero I., Boido M., Cantello R., Fagioli F. Transplantation of mesenchymal stem cells in ALS. Prog. Brain Res. 2012;201:333–359. PubMed
Hayashi T., Wakao S., Kitada M., Ose T., Watabe H., Kuroda Y., Mitsunaga K., Matsuse D., Shigemoto T., Ito A., et al. Autologous mesenchymal stem cell-derived dopaminergic neurons function in parkinsonian macaques. J. Clin. Investig. 2013;123:272–284. doi: 10.1172/JCI62516. PubMed DOI PMC
Glavaski-Joksimovic A., Bohn M.C. Mesenchymal stem cells and neuroregeneration in Parkinson’s disease. Exp. Neurol. 2013;247:25–38. doi: 10.1016/j.expneurol.2013.03.016. PubMed DOI
Kern S., Eichler H., Stoeve J., Kluter H., Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006;24:1294–1301. doi: 10.1634/stemcells.2005-0342. PubMed DOI
Kassem M. Abdallah, B.M. Human bone-marrow-derived mesenchymal stem cells: Biological characteristics and potential role in therapy of degenerative diseases. Cell Tissue Res. 2008;331:157–163. doi: 10.1007/s00441-007-0509-0. PubMed DOI
Fukuchi Y., Nakajima H., Sugiyama D., Hirose I., Kitamura T., Tsuji K. Human placenta-derived cells have mesenchymal stem/progenitor cell potential. Stem Cells. 2004;22:649–658. doi: 10.1634/stemcells.22-5-649. PubMed DOI
Wyse R.D., Dunbar G.L., Rossignol J. Use of genetically modified mesenchymal stem cells to treat neurodegenerative diseases. Int. J. Mol. Sci. 2014;15:1719–1745. doi: 10.3390/ijms15021719. PubMed DOI PMC
Harting M.T., Jimenez F., Xue H., Fischer U.M., Baumgartner J., Dash P.K., Cox C.S. Intravenous mesenchymal stem cell therapy for traumatic brain injury. J. Neurosurg. 2009;110:1189–1197. doi: 10.3171/2008.9.JNS08158. PubMed DOI PMC
Danielyan L., Schafer R., von Ameln-Mayerhofer A., Buadze M., Geisler J., Klopher T., Burkhardt U., Proksch B., Verleysdonk S., Ayturan M., et al. Intranasal delivery of cells to the brain. Eur. J. Cell Biol. 2009;88:315–324. doi: 10.1016/j.ejcb.2009.02.001. PubMed DOI
Paul C., Samdani A.F., Betz R.R., Fischer I., Neuhuber B. Grafting of human bone marrow stromal cells into spinal cord injury: A comparison of delivery methods. Spine. 2009;34:328–334. doi: 10.1097/BRS.0b013e31819403ce. PubMed DOI PMC
Urdzikova L.M., Ruzicka J., LaBagnara M., Karova K., Kubinova S., Jirakova K., Murali R., Sykova E., Jhanwar-Uniyal M., Jendelova P. Human mesenchymal stem cells modulate inflammatory cytokines after spinal cord injury in rat. Int. J. Mol. Sci. 2014;15:11275–11293. doi: 10.3390/ijms150711275. PubMed DOI PMC
Yun H.M., Kim H.S., Park K.R., Shin J.M., Kang A.R., Lee K., Song S., Kim Y.B., Han S.B., Chung H.M., et al. Placenta-derived mesenchymal stem cells improve memory dysfunction in an Aβ1-42-induced mouse model of Alzheimer’s disease. Cell Death Dis. 2013;4:e958. doi: 10.1038/cddis.2013.490. PubMed DOI PMC
Ikehara S., Li M. Stem cell transplantation improves aging-related disease. Front. Cell Dev. Biol. 2014;2:16. doi: 10.3389/fcell.2014.00016. PubMed DOI PMC
Lee J.K., Jin H.K., Bae J.S. Bone marrow-derived mesenchymal stem cells reduce brain amyloid-β deposition and accelerate the activation of microglia in an acutely induced Alzheimer’s disease mouse model. Neurosci. Lett. 2009;450:136–141. doi: 10.1016/j.neulet.2008.11.059. PubMed DOI
Lee J.K., Jin H.K., Endo S., Schuchman E.H., Carter J.E., Bae J.S. Intracerebral transplantation of bone marrow-derived mesenchymal stem cells reduces amyloid-β deposition and rescues memory deficits in Alzheimer’s disease mice by modulation of immune responses. Stem Cells. 2010;28:329–343. doi: 10.1002/stem.277. PubMed DOI
Butovsky O., Talpalar A.E., Ben-Yaakov K., Schwartz M. Activation of microglia by aggregated β-amyloid or lipopolysaccharide impairs MHC-II expression and renders them cytotoxic whereas IFN-γ and IL-4 render them protective. Mol. Cell. Neurosci. 2005;29:381–393. doi: 10.1016/j.mcn.2005.03.005. PubMed DOI
Butovsky O., Koronyo-Hamaoui M., Kunis G., Ophir E., Landa G., Cohen H., Schwartz M. Glatiramer acetate fights against Alzheimer’s disease by inducing dendritic-like microglia expression insulin-like growth factor 1. Proc. Natl. Acad. Sci. USA. 2006;103:11784–11789. doi: 10.1073/pnas.0604681103. PubMed DOI PMC
Nemeth K., Leelahavanichkul A., Yuen P.S., Mayer B., Parmelee A., Doi K., Robey P.G., Leelahavanichkul K., Koller B.H., Brown J.M., et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat. Med. 2009;15:42–49. doi: 10.1038/nm.1905. PubMed DOI PMC
Chen W.W., Blurton-Jones M. Can stem cells be used to treat or model Alzheimer disease? Stem Cells. 2012;30:2612–2618. doi: 10.1002/stem.1240. PubMed DOI PMC
Ma S., Xie N., Li W., Yuan B., Shi Y., Wang Y. Immunobiology of mesenchymal stem cells. Cell Death Differ. 2014;21:216–225. doi: 10.1038/cdd.2013.158. PubMed DOI PMC
Parr A.M., Kulbatski I., Tator C.H. Transplantation of adult rat spinal cord stem/progenitor cells for spinal cord injury. J. Neurotrauma. 2007;24:835–845. doi: 10.1089/neu.2006.3771. PubMed DOI
Munoz J.R., Stoutenger B.R., Robinson A.P., Spees J.L., Prockop D.J. Human stem/progenitor cells from bone marrow promote neurogenesis of endogenous neural stem cells in the hippocampus of mice. Proc. Natl. Acad. Sci. USA. 2005;102:18171–18176. doi: 10.1073/pnas.0508945102. PubMed DOI PMC
Kan I., Barhum Y., Melamed E., Offen D. Mesenchymal stem cells stimulate endogenous neurogenesis in the subventricular zone of adult mice. Stem Cell Rev. 2011;7:404–412. doi: 10.1007/s12015-010-9190-x. PubMed DOI
Kim S., Chang K.A., Kim J.A., Park H.G., Ra J.C., Kim H.S., Suh Y.H. The preventive and therapeutic effects of intravenous human adipose-derived stem cells in Alzheimer’s disease mice. PLoS ONE. 2012;7:e45757. doi: 10.1371/journal.pone.0045757. PubMed DOI PMC
Tfilin M., Sudai E., Merenlender A., Gispan I., Yadid G., Turgeman G. Mesenchymal stem cells increase hippocampal neurogenesis and counteract depressive-like behavior. Mol. Psychiatry. 2010;15:1164–1175. doi: 10.1038/mp.2009.110. PubMed DOI
Lu S., Lu C., Han Q., Li J., Du Z., Liao L., Zhao R.C. Adipose-derived mesenchymal stem cells protect PC12 cells from glutamate excitotoxicity-induced apoptosis by upregulation of XIAP through PI3-K/Akt activation. Toxicology. 2011;279:189–195. doi: 10.1016/j.tox.2010.10.011. PubMed DOI
Lois C., Alvarez-Buylla A. Long-distance neuronal migration in the adult mammalian brain. Science. 1994;264:1145–1148. doi: 10.1126/science.8178174. PubMed DOI
Alvarez-Buylla A., Garcia-Verdugo J.M., Tramontin A.D. A unified hypothesis on the lineage of neural stem cells. Nat. Rev. Neurosci. 2001;2:287–293. doi: 10.1038/35067582. PubMed DOI
Cameron H.A., McKay R.D. Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J. Comp. Neurol. 2001;435:406–417. doi: 10.1002/cne.1040. PubMed DOI
Zhao C., Deng W., Gage F.H. Mechanisms and functional implications of adult neurogenesis. Cell. 2008;132:645–660. doi: 10.1016/j.cell.2008.01.033. PubMed DOI
Ahlenius H., Visan V., Kokaia M., Lindvall O., Kokaia Z. Neural stem and progenitor cells retain their potential for proliferation and differentiation into functional neurons despite lower number in aged brain. J. Neurosci. 2009;29:4408–4419. doi: 10.1523/JNEUROSCI.6003-08.2009. PubMed DOI PMC
Miranda C.J., Braun L., Jiang Y., Hester M.E., Zhang L., Riolo M., Wang H., Rao M., Altura R.A., Kaspar B.K. Aging brain microenvironment decreases hippocampal neurogenesis through Wnt-mediated survivin signaling. Aging Cell. 2012;11:542–552. doi: 10.1111/j.1474-9726.2012.00816.x. PubMed DOI PMC
Lee S.W., Clemenson G.D., Gage F.H. New neurons in an aged brain. Behav. Brain Res. 2012;227:497–507. doi: 10.1016/j.bbr.2011.10.009. PubMed DOI PMC
Ferron S.R., Marques-Torrejon M.A., Mira H., Flores I., Taylor K., Blasco M.A., Farinas I. Telomere shortening in neural stem cells disrupts neuronal differentiation and neuritogenesis. J. Neurosci. 2009;29:14394–14407. doi: 10.1523/JNEUROSCI.3836-09.2009. PubMed DOI PMC
Blurton-Jones M., Kitazawa M., Martinez-Coria H., Castello N.A., Muller F.J., Loring J.F., Yamasaki T.R., Poon W.W., Green K.N., LaFerla F.M. Neural stem cell improve cognition via BDNF in a transgenic model of Alzheimer disease. Proc. Natl. Acad. Sci. USA. 2009;106:13594–13599. doi: 10.1073/pnas.0901402106. PubMed DOI PMC
Sugaya K. Possible use of autologous stem cell therapies for Alzheimer’s disease. Curr. Alzheimer Res. 2005;2:367–376. doi: 10.2174/1567205054367919. PubMed DOI
Waldau B., Shetty A.K. Behavior of neural stem cells in the Alzheimer brain. Cell. Mol. Life Sci. 2008;65:2372–2384. doi: 10.1007/s00018-008-8053-y. PubMed DOI PMC
Rivera F.J., Siebzehnrubl F.A., Kandasamy M., Couillard-Despres S., Caioni M., Poehler A.M., Berninger B., Sandner B., Bogdahn U., Goetz M., et al. Mesenchymal stem cells promote oligodendroglial differentiation in hippocampal slice cultures. Cell. Physiol. Biochem. 2009;24:317–324. doi: 10.1159/000233256. PubMed DOI
Stewart C.R., Stuart L.M., Wilkinson K., van Gils J.M., Deng J., Halle A., Rayner K.J., Boyer L., Zhong R., Frazier W.A., et al. CD36 ligands promote sterile inflammation through assembly of a toll like receptor 4 and 6 heterodimer. Nat. Immunol. 2010;11:155–161. doi: 10.1038/ni.1836. PubMed DOI PMC
Reed-Geaghan E.G., Savage J.C., Hise A.G., Landreth G.E. CD14 and Toll-like receptors 2 and 4 are required for fibrillar Aβ-stimulated microglial activation. J. Neurosci. 2009;29:11982–11992. doi: 10.1523/JNEUROSCI.3158-09.2009. PubMed DOI PMC
Lim J.E., Kou J., Song M., Pattanayak A., Jin J., Lalonde R., Fukuchi K. MyD88 deficiency ameliorates β-amyloidosis in an animal model of AD. Am. J. Pathol. 2011;179:1095–1103. doi: 10.1016/j.ajpath.2011.05.045. PubMed DOI PMC
Malm T., Koistinaho J., Kanninen K. Utilization of APPswe/PS1dE9 transgenic mice in research of Alzheimer’s disease: Focus on gene therapy and cell-based therapy applications. Int. J. Alzheimers Dis. 2011;2011 doi: 10.4061/2011/517160. PubMed DOI PMC
Fischer W., Wictorin K., Bjorklund A., Williams L.P., Varon S., Gage F.H. Amelioration of cholinergic neuron atrophy and spatial memory impairment in aged rats by nerve growth factor. Nature. 1987;329:65–68. doi: 10.1038/329065a0. PubMed DOI
Pan W., Banks W.A., Kastin A.J. Permeability of the blood-brain barrier to neurotrophins. Brain Res. 1998;788:87–94. doi: 10.1016/S0006-8993(97)01525-4. PubMed DOI
Williams L.R. Hypophagia is induced by intracerebroventricular administration of nerve growth factor. Exp. Neurol. 1991;113:31–37. doi: 10.1016/0014-4886(91)90143-Z. PubMed DOI
Tuszynski M.H., Thal L., Pay M., Salmon D.P., Sang U H., Bakay R., Patel P., Blesch A., Vahlsing H.L., Ho G., et al. A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nat. Med. 2005;11:551–555. doi: 10.1038/nm1239. PubMed DOI
Rafii M.S., Baumann T.L., Bakay R.A., Ostrove J.M., Siffert J., Fleisher A.S., Herzog C.D., Barba D., Pay M., Salmon D.P., et al. A phase 1 study of stereotactic gene delivery of AAV2-NGF for Alzheimer’s disease. Alzheimers Dement. 2014;10:571–581. doi: 10.1016/j.jalz.2013.09.004. PubMed DOI
Nagahara A.H., Merrill D.A., Coppola G., Tsukada S., Schroeder B.E., Shaked G.M., Wang L., Blesch A., Kim A., Conner J.M., et al. Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer’s disease. Nat. Med. 2009;15:331–337. doi: 10.1038/nm.1912. PubMed DOI PMC
Connor B., Young D., Yan Q., Faull R.L., Synek B., Dragunow M. Brain-derived neurotrophic factor is reduced in Alzheimer’s disease. Mol. Brain Res. 1997;49:71–81. doi: 10.1016/S0169-328X(97)00125-3. PubMed DOI
Blurton-Jones M., Spencer B., Michael S., Castello N.A., Agazaryan A.A., Davis J.L., Muller F.J., Loring J.F., Masliah E., LaFerla F.M. Neural stem cells genetically-modified to express neprilysin reduce pathology in Alzheimer transgenic models. Stem Cell Res. Ther. 2014;5:46. doi: 10.1186/scrt440. PubMed DOI PMC
Takahashi K., Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–676. doi: 10.1016/j.cell.2006.07.024. PubMed DOI
Lapasset L., Milhavet O., Prieur A., Besnard E., Babled A., Ait-Hamou N., Leschik J., Pellestor F., Ramirez J.M., de Vos J., et al. Rejuvenating senescent and centenarian human cells by reprogramming through the pluripotent state. Genes Dev. 2011;25:2248–2253. doi: 10.1101/gad.173922.111. PubMed DOI PMC
Yagi T., Kosakai A., Ito D., Okada Y., Akamatsu W., Nihei Y., Nabetani A., Ishikawa F., Arai Y., Hirose N., et al. Establishment of induced pluripotent stem cells from centenarians for neurodegenerative disease research. PLoS ONE. 2012;7:e41572. doi: 10.1371/journal.pone.0041572. PubMed DOI PMC
Yagi T., Ito D., Okada Y., Akamatsu W., Nihei Y., Yoshizaki T., Yamanaka S., Okano H., Suzuki N. Modeling familial Alzheimer’s disease with induced pluripotent stem cells. Hum. Mol. Genet. 2011;20:4530–4539. doi: 10.1093/hmg/ddr394. PubMed DOI
Israel M.A., Yuan S.H., Bardy C., Reyna S.M., Mu Y., Herrera C., Hefferan M.P., van Gorp S., Nazor K.L., Bascolo F.S., et al. Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells. Nature. 2012;482:216–220. doi: 10.1038/nature10821. PubMed DOI PMC
Isobe K., Cheng Z., Nishio N., Suganya T., Tanaka Y., Ito S. iPSCs, aging and age-related diseases. N. Biotechnol. 2014;31:411–421. doi: 10.1016/j.nbt.2014.04.004. PubMed DOI
Blasco M.A. Telomere length, stem cells and aging. Nat. Chem. Biol. 2007;3:640–649. doi: 10.1038/nchembio.2007.38. PubMed DOI
Marion R.M., Strati K., Li H., Tejera A., Schoeftner S., Ortega S., Serrano M., Blasco M.A. Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells. Cell Stem Cell. 2009;4:141–154. doi: 10.1016/j.stem.2008.12.010. PubMed DOI
Huang J., Wang F., Okuka M., Liu N., Ji G., Ye X., Zuo B., Li M., Liang P., Ge W.W., et al. Association of telomere length with authentic pluripotency of ES/iPS cells. Cell Res. 2011;21:779–792. doi: 10.1038/cr.2011.16. PubMed DOI PMC
Golde T.E., Miller V.M. Proteinopathy-induced neuronal senescence: A hypothesis for brain failure in Alzheimer’s and other neurodegenerative diseases. Alzheimers Res. Ther. 2009;1:5. doi: 10.1186/alzrt5. PubMed DOI PMC
Hunter S., Arendt T., Brayne C. The senescence hypothesis of disease progression in Alzheimer’s disease: An integrated matrix of disease pathways for FAD and SAD. Mol. Neurobiol. 2013;48:556–570. doi: 10.1007/s12035-013-8445-3. PubMed DOI
Amemori T., Ermakova I.V., Buresova O., Zigova T., Racekova E., Bures J. Brain transplants enhance rather than reduce the impairment of spatial memory and olfaction in bulbectomized rats. Behav. Neurosci. 1989;103:61–70. doi: 10.1037/0735-7044.103.1.61. PubMed DOI
Vorhees C.V., Williams M.T. Morris water maze: Procedures for assessing spatial and related forms of learning and memory. Nat. Protoc. 2006;1:848–858. doi: 10.1038/nprot.2006.116. PubMed DOI PMC