Astrocytes and extracellular matrix in extrasynaptic volume transmission

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid25225101

Volume transmission is a form of intercellular communication that does not require synapses; it is based on the diffusion of neuroactive substances across the brain extracellular space (ECS) and their binding to extrasynaptic high-affinity receptors on neurons or glia. Extracellular diffusion is restricted by the limited volume of the ECS, which is described by the ECS volume fraction α, and the presence of diffusion barriers, reflected by tortuosity λ, that are created, for example, by fine astrocytic processes or extracellular matrix (ECM) molecules. Organized astrocytic processes, ECM scaffolds or myelin sheets channel the extracellular diffusion so that it is facilitated in a certain direction, i.e. anisotropic. The diffusion properties of the ECS are profoundly influenced by various processes such as the swelling and morphological rebuilding of astrocytes during either transient or persisting physiological or pathological states, or the remodelling of the ECM in tumorous or epileptogenic tissue, during Alzheimer's disease, after enzymatic treatment or in transgenic animals. The changing diffusion properties of the ECM influence neuron-glia interaction, learning abilities, the extent of neuronal damage and even cell migration. From a clinical point of view, diffusion parameter changes occurring during pathological states could be important for diagnosis, drug delivery and treatment.

Zobrazit více v PubMed

Vizi ES. 1984. Non-synaptic interaction between neurones: modulation of neurochemical transmission. Chichester, UK: Wiley and Sons.

Zoli M, Jansson A, Syková E, Agnati LF, Fuxe K. 1999. Intercellular communication in the central nervous system. The emergence of the volume transmission concept and its relevance for neuropsychopharmacology. Trends Pharmacol. Sci. 20, 142–150. (10.1016/S0165-6147(99)01343-7) PubMed DOI

Fuxe K, Dahlstrom AB, Jonsson G, Marcellino D, Guescini M, Dam M, Manger P, Agnati L. 2010. The discovery of central monoamine neurons gave volume transmission to the wired brain. Prog. Neurobiol. 90, 82–100. (10.1016/j.pneurobio.2009.10.012) PubMed DOI

Sykova E, Nicholson C. 2008. Diffusion in brain extracellular space. Physiol. Rev. 88, 1277–1340. (10.1152/physrev.00027.2007) PubMed DOI PMC

Nicholson C, Sykova E. 1998. Extracellular space structure revealed by diffusion analysis. Trends Neurosci. 21, 207–215. (10.1016/S0166-2236(98)01261-2) PubMed DOI

Rouach N, Koulakoff A, Abudara V, Willecke K, Giaume C. 2008. Astroglial metabolic networks sustain hippocampal synaptic transmission. Science 322, 1551–1555. (10.1126/science.1164022) PubMed DOI

Tasker JG, Oliet SH, Bains JS, Brown CH, Stern JE. 2012. Glial regulation of neuronal function: from synapse to systems physiology. J. Neuroendocrinol. 24, 566–576. (10.1111/j.1365-2826.2011.02259.x) PubMed DOI PMC

Pannasch U, Vargova L, Reingruber J, Ezan P, Holcman D, Giaume C, Sykova E, Rouach N. 2011. Astroglial networks scale synaptic activity and plasticity. Proc. Natl Acad. Sci. USA 108, 8467–8472. (10.1073/pnas.1016650108) PubMed DOI PMC

Sykova E. 2004. Extrasynaptic volume transmission and diffusion parameters of the extracellular space. Neuroscience 129, 861–876. (10.1016/j.neuroscience.2004.06.077) PubMed DOI

Araque A, Parpura V, Sanzgiri RP, Haydon PG. 1999. Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci. 22, 208–215. (10.1016/S0166-2236(98)01349-6) PubMed DOI

Dityatev A, Frischknecht R, Seidenbecher CI. 2006. Extracellular matrix and synaptic functions. Results Probl. Cell Differ. 43, 69–97. (10.1007/400_025) PubMed DOI

Dityatev A, Rusakov DA. 2011. Molecular signals of plasticity at the tetrapartite synapse. Curr. Opin. Neurobiol. 21, 353–359. (10.1016/j.conb.2010.12.006) PubMed DOI PMC

Bruckner G, et al. 1993. Perineuronal nets provide a polyanionic, glia-associated form of microenvironment around certain neurons in many parts of the rat brain. Glia 8, 183–200. (10.1002/glia.440080306) PubMed DOI

Morawski M, Bruckner G, Jager C, Seeger G, Matthews RT, Arendt T. 2012. Involvement of perineuronal and perisynaptic extracellular matrix in Alzheimer's disease neuropathology. Brain Pathol. 22, 547–561. (10.1111/j.1750-3639.2011.00557.x) PubMed DOI PMC

Lendvai D, et al. 2013. Neurochemical mapping of the human hippocampus reveals perisynaptic matrix around functional synapses in Alzheimer's disease. Acta Neuropathol. 125, 215–229. (10.1007/s00401-012-1042-0) PubMed DOI PMC

Asztely F, Erdemli G, Kullmann DM. 1997. Extrasynaptic glutamate spillover in the hippocampus: dependence on temperature and the role of active glutamate uptake. Neuron 18, 281–293. (10.1016/S0896-6273(00)80268-8) PubMed DOI

Oliet SH, Piet R, Poulain DA. 2001. Control of glutamate clearance and synaptic efficacy by glial coverage of neurons. Science 292, 923–926. (10.1126/science.1059162) PubMed DOI

Rusakov DA, Savtchenko LP, Zheng K, Henley JM. 2011. Shaping the synaptic signal: molecular mobility inside and outside the cleft. Trends Neurosci. 34, 359–369. (10.1016/j.tins.2011.03.002) PubMed DOI PMC

Kiss JP, Zsilla G, Vizi ES. 2004. Inhibitory effect of nitric oxide on dopamine transporters: interneuronal communication without receptors. Neurochem. Int. 45, 485–489. (10.1016/j.neuint.2003.11.004) PubMed DOI

Nicholson C, Phillips JM. 1981. Ion diffusion modified by tortuosity and volume fraction in the extracellular microenvironment of the rat cerebellum. J. Physiol. 321, 225–257. PubMed PMC

Wolak DJ, Thorne RG. 2013. Diffusion of macromolecules in the brain: implications for drug delivery. Mol. Pharm. 10, 1492–1504. (10.1021/mp300495e) PubMed DOI PMC

Vorisek I, Sykova E. 1997. Evolution of anisotropic diffusion in the developing rat corpus callosum. J. Neurophysiol. 78, 912–919. PubMed

Rice ME, Okada YC, Nicholson C. 1993. Anisotropic and heterogeneous diffusion in the turtle cerebellum: implications for volume transmission. J. Neurophysiol. 70, 2035–2044. PubMed

Piet R, Vargova L, Sykova E, Poulain DA, Oliet SH. 2004. Physiological contribution of the astrocytic environment of neurons to intersynaptic crosstalk. Proc. Natl Acad. Sci. USA 101, 2151–2155. (10.1073/pnas.0308408100) PubMed DOI PMC

Vorisek I, Hajek M, Tintera J, Nicolay K, Sykova E. 2002. Water ADC, extracellular space volume, and tortuosity in the rat cortex after traumatic injury. Magn. Reson. Med. 48, 994–1003. (10.1002/mrm.10305) PubMed DOI

Mazel T, Simonova Z, Sykova E. 1998. Diffusion heterogeneity and anisotropy in rat hippocampus. Neuroreport 9, 1299–1304. (10.1097/00001756-199805110-00008) PubMed DOI

Hrabetova S. 2005. Extracellular diffusion is fast and isotropic in the stratum radiatum of hippocampal CA1 region in rat brain slices. Hippocampus 15, 441–450. (10.1002/hipo.20068) PubMed DOI

Anderova M, Vorisek I, Pivonkova H, Benesova J, Vargova L, Cicanic M, Chvatal A, Sykova E. 2011. Cell death/proliferation and alterations in glial morphology contribute to changes in diffusivity in the rat hippocampus after hypoxia-ischemia. J. Cereb. Blood Flow Metab. 31, 894–907. (10.1038/jcbfm.2010.168) PubMed DOI PMC

Sykova E, Mazel T, Hasenohrl RU, Harvey AR, Simonova Z, Mulders WH, Huston JP. 2002. Learning deficits in aged rats related to decrease in extracellular volume and loss of diffusion anisotropy in hippocampus. Hippocampus 12, 269–279. (10.1002/hipo.1101) PubMed DOI

Nicholson C, Tao L. 1993. Hindered diffusion of high molecular weight compounds in brain extracellular microenvironment measured with integrative optical imaging. Biophys. J. 65, 2277–2290. (10.1016/S0006-3495(93)81324-9) PubMed DOI PMC

Xiao F, Nicholson C, Hrabe J, Hrabetova S. 2008. Diffusion of flexible random-coil dextran polymers measured in anisotropic brain extracellular space by integrative optical imaging. Biophys. J. 95, 1382–1392. (10.1529/biophysj.107.124743) PubMed DOI PMC

Savtchenko LP, Rusakov DA. 2005. Extracellular diffusivity determines contribution of high-versus low-affinity receptors to neural signaling. Neuroimage 25, 101–111. (10.1016/j.neuroimage.2004.11.020) PubMed DOI

Binder DK, Papadopoulos MC, Haggie PM, Verkman AS. 2004. In vivo measurement of brain extracellular space diffusion by cortical surface photobleaching. J. Neurosci. 24, 8049–8056. (10.1523/JNEUROSCI.2294-04.2004) PubMed DOI PMC

Zhang H, Verkman AS. 2010. Microfiberoptic measurement of extracellular space volume in brain and tumor slices based on fluorescent dye partitioning. Biophys. J. 99, 1284–1291. (10.1016/j.bpj.2010.06.023) PubMed DOI PMC

Vorisek I, Sykova E. 2009. Measuring diffusion parameters in the brain: comparing the real-time iontophoretic method and diffusion-weighted magnetic resonance. Acta Physiol. 195, 101–110. (10.1111/j.1748-1716.2008.01924.x) PubMed DOI

Prokopova-Kubinova S, Sykova E. 2000. Extracellular diffusion parameters in spinal cord and filum terminale of the frog. J. Neurosci. Res. 62, 530–538. (10.1002/1097-4547(20001115)62:4<530::AID-JNR7>3.0.CO;2-7) PubMed DOI

Xie L., et al. 2013. Sleep drives metabolite clearance from the adult brain. Science 342, 373–377. (10.1126/science.1241224) PubMed DOI PMC

Kimelberg HK. 2005. Astrocytic swelling in cerebral ischemia as a possible cause of injury and target for therapy. Glia 50, 389–397. (10.1002/glia.20174) PubMed DOI

Kimelberg HK. 2004. Water homeostasis in the brain: basic concepts. Neuroscience 129, 851–860. (10.1016/j.neuroscience.2004.07.033) PubMed DOI

MacAulay N, Hamann S, Zeuthen T. 2004. Water transport in the brain: role of cotransporters. Neuroscience 129, 1031–1044. (10.1016/j.neuroscience.2004.06.045) PubMed DOI

Sykova E, Vargova L, Prokopova S, Simonova Z. 1999. Glial swelling and astrogliosis produce diffusion barriers in the rat spinal cord. Glia 25, 56–70. (10.1002/(SICI)1098-1136(19990101)25:1<56::AID-GLIA6>3.0.CO;2-4) PubMed DOI

Dmytrenko L, Cicanic M, Anderova M, Vorisek I, Ottersen OP, Sykova E, Vargova L. 2013. The impact of alpha-syntrophin deletion on the changes in tissue structure and extracellular diffusion associated with cell swelling under physiological and pathological conditions. PLoS ONE 8, e68044 (10.1371/journal.pone.0068044) PubMed DOI PMC

Solenov EI, Vetrivel L, Oshio K, Manley GT, Verkman AS. 2002. Optical measurement of swelling and water transport in spinal cord slices from aquaporin null mice. J. Neurosci. Methods 113, 85–90. (10.1016/S0165-0270(01)00481-2) PubMed DOI

Tao L, Masri D, Hrabetova S, Nicholson C. 2002. Light scattering in rat neocortical slices differs during spreading depression and ischemia. Brain Res. 952, 290–300. (10.1016/S0006-8993(02)03254-7) PubMed DOI

Mazel T, Richter F, Vargova L, Sykova E. 2002. Changes in extracellular space volume and geometry induced by cortical spreading depression in immature and adult rats. Physiol. Res. 51(Suppl. 1), S85–S93. PubMed

Zhou N, Gordon GR, Feighan D, MacVicar BA. 2010. Transient swelling, acidification, and mitochondrial depolarization occurs in neurons but not astrocytes during spreading depression. Cereb. Cortex 20, 2614–2624. (10.1093/cercor/bhq018) PubMed DOI

Vorisek I, Sykova E. 1997. Ischemia-induced changes in the extracellular space diffusion parameters, K+, and pH in the developing rat cortex and corpus callosum. J. Cereb. Blood Flow Metab. 17, 191–203. (10.1097/00004647-199702000-00009) PubMed DOI

Hrabetova S, Hrabe J, Nicholson C. 2003. Dead-space microdomains hinder extracellular diffusion in rat neocortex during ischemia. J. Neurosci. 23, 8351–8359. PubMed PMC

Amiry-Moghaddam M, Ottersen OP. 2003. The molecular basis of water transport in the brain. Nat. Rev. Neurosci. 4, 991–1001. (10.1038/nrn1252) PubMed DOI

Verkman AS. 2013. Aquaporins. Curr. Biol. 23, R52–R55. (10.1016/j.cub.2012.11.025) PubMed DOI PMC

Amiry-Moghaddam M, et al. 2003. Delayed K+ clearance associated with aquaporin-4 mislocalization: phenotypic defects in brains of alpha-syntrophin-null mice. Proc. Natl Acad. Sci. USA 100, 13 615–13 620. (10.1073/pnas.2336064100) PubMed DOI PMC

Benfenati V, Caprini M, Dovizio M, Mylonakou MN, Ferroni S, Ottersen OP, Amiry-Moghaddam M. 2011. An aquaporin-4/transient receptor potential vanilloid 4 (AQP4/TRPV4) complex is essential for cell-volume control in astrocytes. Proc. Natl Acad. Sci. USA 108, 2563–2568. (10.1073/pnas.1012867108) PubMed DOI PMC

Yao X, Hrabetova S, Nicholson C, Manley GT. 2008. Aquaporin-4-deficient mice have increased extracellular space without tortuosity change. J. Neurosci. 28, 5460–5464. (10.1523/JNEUROSCI.0257-08.2008) PubMed DOI PMC

Kilb W, Dierkes PW, Sykova E, Vargova L, Luhmann HJ. 2006. Hypoosmolar conditions reduce extracellular volume fraction and enhance epileptiform activity in the CA3 region of the immature rat hippocampus. J. Neurosci. Res. 84, 119–129. (10.1002/jnr.20871) PubMed DOI

Lehmenkuhler A, Sykova E, Svoboda J, Zilles K, Nicholson C. 1993. Extracellular space parameters in the rat neocortex and subcortical white matter during postnatal development determined by diffusion analysis. Neuroscience 55, 339–351. (10.1016/0306-4522(93)90503-8) PubMed DOI

Prokopova S, Vargova L, Sykova E. 1997. Heterogeneous and anisotropic diffusion in the developing rat spinal cord. Neuroreport 8, 3527–3532. (10.1097/00001756-199711100-00022) PubMed DOI

Roitbak T, Sykova E. 1999. Diffusion barriers evoked in the rat cortex by reactive astrogliosis. Glia 28, 40–48. (10.1002/(SICI)1098-1136(199910)28:1<40::AID-GLIA5>3.0.CO;2-6) PubMed DOI

Soleman S, Filippov MA, Dityatev A, Fawcett JW. 2013. Targeting the neural extracellular matrix in neurological disorders. Neuroscience 253, 194–213. (10.1016/j.neuroscience.2013.08.050) PubMed DOI

Dityatev A, Seidenbecher CI, Schachner M. 2010. Compartmentalization from the outside: the extracellular matrix and functional microdomains in the brain. Trends Neurosci. 33, 503–512. (10.1016/j.tins.2010.08.003) PubMed DOI

Galtrey CM, Fawcett JW. 2007. The role of chondroitin sulfate proteoglycans in regeneration and plasticity in the central nervous system. Brain Res. Rev. 54, 1–18. (10.1016/j.brainresrev.2006.09.006) PubMed DOI

Carulli D, et al. 2010. Animals lacking link protein have attenuated perineuronal nets and persistent plasticity. Brain 133, 2331–2347. (10.1093/brain/awq145) PubMed DOI

Pizzorusso T, Medini P, Berardi N, Chierzi S, Fawcett JW, Maffei L. 2002. Reactivation of ocular dominance plasticity in the adult visual cortex. Science 298, 1248–1251. (10.1126/science.1072699) PubMed DOI

Happel MF, Niekisch H, Castiblanco Rivera LL, Ohl FW, Deliano M, Frischknecht R. 2014. Enhanced cognitive flexibility in reversal learning induced by removal of the extracellular matrix in auditory cortex. Proc. Natl Acad. Sci. USA 111, 2800–2805. (10.1073/pnas.1310272111) PubMed DOI PMC

Morellini F, Sivukhina E, Stoenica L, Oulianova E, Bukalo O, Jakovcevski I, Dityatev A, Irintchev A, Schachner M. 2010. Improved reversal learning and working memory and enhanced reactivity to novelty in mice with enhanced GABAergic innervation in the dentate gyrus. Cereb. Cortex 20, 2712–2727. (10.1093/cercor/bhq017) PubMed DOI

Suttkus A, Rohn S, Weigel S, Glockner P, Arendt T, Morawski M. 2014. Aggrecan, link protein and tenascin-R are essential components of the perineuronal net to protect neurons against iron-induced oxidative stress. Cell Death Dis. 5, e1119 (10.1038/cddis.2014.25) PubMed DOI PMC

Sykova E, Vorisek I, Antonova T, Mazel T, Meyer-Luehmann M, Jucker M, Hajek M, Ort M, Bures J. 2005. Changes in extracellular space size and geometry in APP23 transgenic mice: a model of Alzheimer's disease. Proc. Natl Acad. Sci. USA 102, 479–484. (10.1073/pnas.0408235102) PubMed DOI PMC

Zamecnik J, Homola A, Cicanic M, Kuncova K, Marusic P, Krsek P, Sykova E, Vargova L. 2012. The extracellular matrix and diffusion barriers in focal cortical dysplasias. Eur. J. Neurosci. 36, 2017–2024. (10.1111/j.1460-9568.2012.08107.x) PubMed DOI

Zamecnik J, Vargova L, Homola A, Kodet R, Sykova E. 2004. Extracellular matrix glycoproteins and diffusion barriers in human astrocytic tumours. Neuropathol. Appl. Neurobiol. 30, 338–350. (10.1046/j.0305-1846.2003.00541.x) PubMed DOI

Morgenstern DA, Asher RA, Fawcett JW. 2002. Chondroitin sulphate proteoglycans in the CNS injury response. Prog. Brain Res. 137, 313–332. (10.1016/S0079-6123(02)37024-9) PubMed DOI

Hu B, Kong LL, Matthews RT, Viapiano MS. 2008. The proteoglycan brevican binds to fibronectin after proteolytic cleavage and promotes glioma cell motility. J. Biol. Chem. 283, 24 848–24 859. (10.1074/jbc.M801433200) PubMed DOI PMC

Zheng PS, Wen J, Ang LC, Sheng W, Viloria-Petit A, Wang Y, Wu Y, Kerbel RS, Yang BB. 2004. Versican/PG-M G3 domain promotes tumor growth and angiogenesis. FASEB J. 18, 754–756. PubMed

Sykova E, Vorisek I, Mazel T, Antonova T, Schachner M. 2005. Reduced extracellular space in the brain of tenascin-R- and HNK-1-sulphotransferase deficient mice. Eur. J. Neurosci. 22, 1873–1880. (10.1111/j.1460-9568.2005.04375.x) PubMed DOI

Bekku Y, et al. 2010. Bral1: its role in diffusion barrier formation and conduction velocity in the CNS. J. Neurosci. 30, 3113–3123. (10.1523/JNEUROSCI.5598-09.2010) PubMed DOI PMC

Hrabetova S, Masri D, Tao L, Xiao F, Nicholson C. 2009. Calcium diffusion enhanced after cleavage of negatively charged components of brain extracellular matrix by chondroitinase ABC. J. Physiol. 587, 4029–4049. (10.1113/jphysiol.2009.170092) PubMed DOI PMC

Thorne RG, Lakkaraju A, Rodriguez-Boulan E, Nicholson C. 2008. In vivo diffusion of lactoferrin in brain extracellular space is regulated by interactions with heparan sulfate. Proc. Natl Acad. Sci. USA 105, 8416–8421. (10.1073/pnas.0711345105) PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Out of the core: the impact of focal ischemia in regions beyond the penumbra

. 2024 ; 18 () : 1336886. [epub] 20240305

Alzheimer's Disease: Mechanism and Approach to Cell Therapy

. 2015 Nov 04 ; 16 (11) : 26417-51. [epub] 20151104

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...