Astrocytes and extracellular matrix in extrasynaptic volume transmission
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
25225101
PubMed Central
PMC4173293
DOI
10.1098/rstb.2013.0608
PII: rstb.2013.0608
Knihovny.cz E-zdroje
- Klíčová slova
- astrocytes, diffusion, extracellular matrix, extracellular space, tortuosity, volume fraction,
- MeSH
- anizotropie MeSH
- astrocyty patologie MeSH
- difuze MeSH
- extracelulární matrix fyziologie MeSH
- lidé MeSH
- mezibuněčná komunikace fyziologie MeSH
- nervový přenos fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Volume transmission is a form of intercellular communication that does not require synapses; it is based on the diffusion of neuroactive substances across the brain extracellular space (ECS) and their binding to extrasynaptic high-affinity receptors on neurons or glia. Extracellular diffusion is restricted by the limited volume of the ECS, which is described by the ECS volume fraction α, and the presence of diffusion barriers, reflected by tortuosity λ, that are created, for example, by fine astrocytic processes or extracellular matrix (ECM) molecules. Organized astrocytic processes, ECM scaffolds or myelin sheets channel the extracellular diffusion so that it is facilitated in a certain direction, i.e. anisotropic. The diffusion properties of the ECS are profoundly influenced by various processes such as the swelling and morphological rebuilding of astrocytes during either transient or persisting physiological or pathological states, or the remodelling of the ECM in tumorous or epileptogenic tissue, during Alzheimer's disease, after enzymatic treatment or in transgenic animals. The changing diffusion properties of the ECM influence neuron-glia interaction, learning abilities, the extent of neuronal damage and even cell migration. From a clinical point of view, diffusion parameter changes occurring during pathological states could be important for diagnosis, drug delivery and treatment.
Zobrazit více v PubMed
Vizi ES. 1984. Non-synaptic interaction between neurones: modulation of neurochemical transmission. Chichester, UK: Wiley and Sons.
Zoli M, Jansson A, Syková E, Agnati LF, Fuxe K. 1999. Intercellular communication in the central nervous system. The emergence of the volume transmission concept and its relevance for neuropsychopharmacology. Trends Pharmacol. Sci. 20, 142–150. (10.1016/S0165-6147(99)01343-7) PubMed DOI
Fuxe K, Dahlstrom AB, Jonsson G, Marcellino D, Guescini M, Dam M, Manger P, Agnati L. 2010. The discovery of central monoamine neurons gave volume transmission to the wired brain. Prog. Neurobiol. 90, 82–100. (10.1016/j.pneurobio.2009.10.012) PubMed DOI
Sykova E, Nicholson C. 2008. Diffusion in brain extracellular space. Physiol. Rev. 88, 1277–1340. (10.1152/physrev.00027.2007) PubMed DOI PMC
Nicholson C, Sykova E. 1998. Extracellular space structure revealed by diffusion analysis. Trends Neurosci. 21, 207–215. (10.1016/S0166-2236(98)01261-2) PubMed DOI
Rouach N, Koulakoff A, Abudara V, Willecke K, Giaume C. 2008. Astroglial metabolic networks sustain hippocampal synaptic transmission. Science 322, 1551–1555. (10.1126/science.1164022) PubMed DOI
Tasker JG, Oliet SH, Bains JS, Brown CH, Stern JE. 2012. Glial regulation of neuronal function: from synapse to systems physiology. J. Neuroendocrinol. 24, 566–576. (10.1111/j.1365-2826.2011.02259.x) PubMed DOI PMC
Pannasch U, Vargova L, Reingruber J, Ezan P, Holcman D, Giaume C, Sykova E, Rouach N. 2011. Astroglial networks scale synaptic activity and plasticity. Proc. Natl Acad. Sci. USA 108, 8467–8472. (10.1073/pnas.1016650108) PubMed DOI PMC
Sykova E. 2004. Extrasynaptic volume transmission and diffusion parameters of the extracellular space. Neuroscience 129, 861–876. (10.1016/j.neuroscience.2004.06.077) PubMed DOI
Araque A, Parpura V, Sanzgiri RP, Haydon PG. 1999. Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci. 22, 208–215. (10.1016/S0166-2236(98)01349-6) PubMed DOI
Dityatev A, Frischknecht R, Seidenbecher CI. 2006. Extracellular matrix and synaptic functions. Results Probl. Cell Differ. 43, 69–97. (10.1007/400_025) PubMed DOI
Dityatev A, Rusakov DA. 2011. Molecular signals of plasticity at the tetrapartite synapse. Curr. Opin. Neurobiol. 21, 353–359. (10.1016/j.conb.2010.12.006) PubMed DOI PMC
Bruckner G, et al. 1993. Perineuronal nets provide a polyanionic, glia-associated form of microenvironment around certain neurons in many parts of the rat brain. Glia 8, 183–200. (10.1002/glia.440080306) PubMed DOI
Morawski M, Bruckner G, Jager C, Seeger G, Matthews RT, Arendt T. 2012. Involvement of perineuronal and perisynaptic extracellular matrix in Alzheimer's disease neuropathology. Brain Pathol. 22, 547–561. (10.1111/j.1750-3639.2011.00557.x) PubMed DOI PMC
Lendvai D, et al. 2013. Neurochemical mapping of the human hippocampus reveals perisynaptic matrix around functional synapses in Alzheimer's disease. Acta Neuropathol. 125, 215–229. (10.1007/s00401-012-1042-0) PubMed DOI PMC
Asztely F, Erdemli G, Kullmann DM. 1997. Extrasynaptic glutamate spillover in the hippocampus: dependence on temperature and the role of active glutamate uptake. Neuron 18, 281–293. (10.1016/S0896-6273(00)80268-8) PubMed DOI
Oliet SH, Piet R, Poulain DA. 2001. Control of glutamate clearance and synaptic efficacy by glial coverage of neurons. Science 292, 923–926. (10.1126/science.1059162) PubMed DOI
Rusakov DA, Savtchenko LP, Zheng K, Henley JM. 2011. Shaping the synaptic signal: molecular mobility inside and outside the cleft. Trends Neurosci. 34, 359–369. (10.1016/j.tins.2011.03.002) PubMed DOI PMC
Kiss JP, Zsilla G, Vizi ES. 2004. Inhibitory effect of nitric oxide on dopamine transporters: interneuronal communication without receptors. Neurochem. Int. 45, 485–489. (10.1016/j.neuint.2003.11.004) PubMed DOI
Nicholson C, Phillips JM. 1981. Ion diffusion modified by tortuosity and volume fraction in the extracellular microenvironment of the rat cerebellum. J. Physiol. 321, 225–257. PubMed PMC
Wolak DJ, Thorne RG. 2013. Diffusion of macromolecules in the brain: implications for drug delivery. Mol. Pharm. 10, 1492–1504. (10.1021/mp300495e) PubMed DOI PMC
Vorisek I, Sykova E. 1997. Evolution of anisotropic diffusion in the developing rat corpus callosum. J. Neurophysiol. 78, 912–919. PubMed
Rice ME, Okada YC, Nicholson C. 1993. Anisotropic and heterogeneous diffusion in the turtle cerebellum: implications for volume transmission. J. Neurophysiol. 70, 2035–2044. PubMed
Piet R, Vargova L, Sykova E, Poulain DA, Oliet SH. 2004. Physiological contribution of the astrocytic environment of neurons to intersynaptic crosstalk. Proc. Natl Acad. Sci. USA 101, 2151–2155. (10.1073/pnas.0308408100) PubMed DOI PMC
Vorisek I, Hajek M, Tintera J, Nicolay K, Sykova E. 2002. Water ADC, extracellular space volume, and tortuosity in the rat cortex after traumatic injury. Magn. Reson. Med. 48, 994–1003. (10.1002/mrm.10305) PubMed DOI
Mazel T, Simonova Z, Sykova E. 1998. Diffusion heterogeneity and anisotropy in rat hippocampus. Neuroreport 9, 1299–1304. (10.1097/00001756-199805110-00008) PubMed DOI
Hrabetova S. 2005. Extracellular diffusion is fast and isotropic in the stratum radiatum of hippocampal CA1 region in rat brain slices. Hippocampus 15, 441–450. (10.1002/hipo.20068) PubMed DOI
Anderova M, Vorisek I, Pivonkova H, Benesova J, Vargova L, Cicanic M, Chvatal A, Sykova E. 2011. Cell death/proliferation and alterations in glial morphology contribute to changes in diffusivity in the rat hippocampus after hypoxia-ischemia. J. Cereb. Blood Flow Metab. 31, 894–907. (10.1038/jcbfm.2010.168) PubMed DOI PMC
Sykova E, Mazel T, Hasenohrl RU, Harvey AR, Simonova Z, Mulders WH, Huston JP. 2002. Learning deficits in aged rats related to decrease in extracellular volume and loss of diffusion anisotropy in hippocampus. Hippocampus 12, 269–279. (10.1002/hipo.1101) PubMed DOI
Nicholson C, Tao L. 1993. Hindered diffusion of high molecular weight compounds in brain extracellular microenvironment measured with integrative optical imaging. Biophys. J. 65, 2277–2290. (10.1016/S0006-3495(93)81324-9) PubMed DOI PMC
Xiao F, Nicholson C, Hrabe J, Hrabetova S. 2008. Diffusion of flexible random-coil dextran polymers measured in anisotropic brain extracellular space by integrative optical imaging. Biophys. J. 95, 1382–1392. (10.1529/biophysj.107.124743) PubMed DOI PMC
Savtchenko LP, Rusakov DA. 2005. Extracellular diffusivity determines contribution of high-versus low-affinity receptors to neural signaling. Neuroimage 25, 101–111. (10.1016/j.neuroimage.2004.11.020) PubMed DOI
Binder DK, Papadopoulos MC, Haggie PM, Verkman AS. 2004. In vivo measurement of brain extracellular space diffusion by cortical surface photobleaching. J. Neurosci. 24, 8049–8056. (10.1523/JNEUROSCI.2294-04.2004) PubMed DOI PMC
Zhang H, Verkman AS. 2010. Microfiberoptic measurement of extracellular space volume in brain and tumor slices based on fluorescent dye partitioning. Biophys. J. 99, 1284–1291. (10.1016/j.bpj.2010.06.023) PubMed DOI PMC
Vorisek I, Sykova E. 2009. Measuring diffusion parameters in the brain: comparing the real-time iontophoretic method and diffusion-weighted magnetic resonance. Acta Physiol. 195, 101–110. (10.1111/j.1748-1716.2008.01924.x) PubMed DOI
Prokopova-Kubinova S, Sykova E. 2000. Extracellular diffusion parameters in spinal cord and filum terminale of the frog. J. Neurosci. Res. 62, 530–538. (10.1002/1097-4547(20001115)62:4<530::AID-JNR7>3.0.CO;2-7) PubMed DOI
Xie L., et al. 2013. Sleep drives metabolite clearance from the adult brain. Science 342, 373–377. (10.1126/science.1241224) PubMed DOI PMC
Kimelberg HK. 2005. Astrocytic swelling in cerebral ischemia as a possible cause of injury and target for therapy. Glia 50, 389–397. (10.1002/glia.20174) PubMed DOI
Kimelberg HK. 2004. Water homeostasis in the brain: basic concepts. Neuroscience 129, 851–860. (10.1016/j.neuroscience.2004.07.033) PubMed DOI
MacAulay N, Hamann S, Zeuthen T. 2004. Water transport in the brain: role of cotransporters. Neuroscience 129, 1031–1044. (10.1016/j.neuroscience.2004.06.045) PubMed DOI
Sykova E, Vargova L, Prokopova S, Simonova Z. 1999. Glial swelling and astrogliosis produce diffusion barriers in the rat spinal cord. Glia 25, 56–70. (10.1002/(SICI)1098-1136(19990101)25:1<56::AID-GLIA6>3.0.CO;2-4) PubMed DOI
Dmytrenko L, Cicanic M, Anderova M, Vorisek I, Ottersen OP, Sykova E, Vargova L. 2013. The impact of alpha-syntrophin deletion on the changes in tissue structure and extracellular diffusion associated with cell swelling under physiological and pathological conditions. PLoS ONE 8, e68044 (10.1371/journal.pone.0068044) PubMed DOI PMC
Solenov EI, Vetrivel L, Oshio K, Manley GT, Verkman AS. 2002. Optical measurement of swelling and water transport in spinal cord slices from aquaporin null mice. J. Neurosci. Methods 113, 85–90. (10.1016/S0165-0270(01)00481-2) PubMed DOI
Tao L, Masri D, Hrabetova S, Nicholson C. 2002. Light scattering in rat neocortical slices differs during spreading depression and ischemia. Brain Res. 952, 290–300. (10.1016/S0006-8993(02)03254-7) PubMed DOI
Mazel T, Richter F, Vargova L, Sykova E. 2002. Changes in extracellular space volume and geometry induced by cortical spreading depression in immature and adult rats. Physiol. Res. 51(Suppl. 1), S85–S93. PubMed
Zhou N, Gordon GR, Feighan D, MacVicar BA. 2010. Transient swelling, acidification, and mitochondrial depolarization occurs in neurons but not astrocytes during spreading depression. Cereb. Cortex 20, 2614–2624. (10.1093/cercor/bhq018) PubMed DOI
Vorisek I, Sykova E. 1997. Ischemia-induced changes in the extracellular space diffusion parameters, K+, and pH in the developing rat cortex and corpus callosum. J. Cereb. Blood Flow Metab. 17, 191–203. (10.1097/00004647-199702000-00009) PubMed DOI
Hrabetova S, Hrabe J, Nicholson C. 2003. Dead-space microdomains hinder extracellular diffusion in rat neocortex during ischemia. J. Neurosci. 23, 8351–8359. PubMed PMC
Amiry-Moghaddam M, Ottersen OP. 2003. The molecular basis of water transport in the brain. Nat. Rev. Neurosci. 4, 991–1001. (10.1038/nrn1252) PubMed DOI
Verkman AS. 2013. Aquaporins. Curr. Biol. 23, R52–R55. (10.1016/j.cub.2012.11.025) PubMed DOI PMC
Amiry-Moghaddam M, et al. 2003. Delayed K+ clearance associated with aquaporin-4 mislocalization: phenotypic defects in brains of alpha-syntrophin-null mice. Proc. Natl Acad. Sci. USA 100, 13 615–13 620. (10.1073/pnas.2336064100) PubMed DOI PMC
Benfenati V, Caprini M, Dovizio M, Mylonakou MN, Ferroni S, Ottersen OP, Amiry-Moghaddam M. 2011. An aquaporin-4/transient receptor potential vanilloid 4 (AQP4/TRPV4) complex is essential for cell-volume control in astrocytes. Proc. Natl Acad. Sci. USA 108, 2563–2568. (10.1073/pnas.1012867108) PubMed DOI PMC
Yao X, Hrabetova S, Nicholson C, Manley GT. 2008. Aquaporin-4-deficient mice have increased extracellular space without tortuosity change. J. Neurosci. 28, 5460–5464. (10.1523/JNEUROSCI.0257-08.2008) PubMed DOI PMC
Kilb W, Dierkes PW, Sykova E, Vargova L, Luhmann HJ. 2006. Hypoosmolar conditions reduce extracellular volume fraction and enhance epileptiform activity in the CA3 region of the immature rat hippocampus. J. Neurosci. Res. 84, 119–129. (10.1002/jnr.20871) PubMed DOI
Lehmenkuhler A, Sykova E, Svoboda J, Zilles K, Nicholson C. 1993. Extracellular space parameters in the rat neocortex and subcortical white matter during postnatal development determined by diffusion analysis. Neuroscience 55, 339–351. (10.1016/0306-4522(93)90503-8) PubMed DOI
Prokopova S, Vargova L, Sykova E. 1997. Heterogeneous and anisotropic diffusion in the developing rat spinal cord. Neuroreport 8, 3527–3532. (10.1097/00001756-199711100-00022) PubMed DOI
Roitbak T, Sykova E. 1999. Diffusion barriers evoked in the rat cortex by reactive astrogliosis. Glia 28, 40–48. (10.1002/(SICI)1098-1136(199910)28:1<40::AID-GLIA5>3.0.CO;2-6) PubMed DOI
Soleman S, Filippov MA, Dityatev A, Fawcett JW. 2013. Targeting the neural extracellular matrix in neurological disorders. Neuroscience 253, 194–213. (10.1016/j.neuroscience.2013.08.050) PubMed DOI
Dityatev A, Seidenbecher CI, Schachner M. 2010. Compartmentalization from the outside: the extracellular matrix and functional microdomains in the brain. Trends Neurosci. 33, 503–512. (10.1016/j.tins.2010.08.003) PubMed DOI
Galtrey CM, Fawcett JW. 2007. The role of chondroitin sulfate proteoglycans in regeneration and plasticity in the central nervous system. Brain Res. Rev. 54, 1–18. (10.1016/j.brainresrev.2006.09.006) PubMed DOI
Carulli D, et al. 2010. Animals lacking link protein have attenuated perineuronal nets and persistent plasticity. Brain 133, 2331–2347. (10.1093/brain/awq145) PubMed DOI
Pizzorusso T, Medini P, Berardi N, Chierzi S, Fawcett JW, Maffei L. 2002. Reactivation of ocular dominance plasticity in the adult visual cortex. Science 298, 1248–1251. (10.1126/science.1072699) PubMed DOI
Happel MF, Niekisch H, Castiblanco Rivera LL, Ohl FW, Deliano M, Frischknecht R. 2014. Enhanced cognitive flexibility in reversal learning induced by removal of the extracellular matrix in auditory cortex. Proc. Natl Acad. Sci. USA 111, 2800–2805. (10.1073/pnas.1310272111) PubMed DOI PMC
Morellini F, Sivukhina E, Stoenica L, Oulianova E, Bukalo O, Jakovcevski I, Dityatev A, Irintchev A, Schachner M. 2010. Improved reversal learning and working memory and enhanced reactivity to novelty in mice with enhanced GABAergic innervation in the dentate gyrus. Cereb. Cortex 20, 2712–2727. (10.1093/cercor/bhq017) PubMed DOI
Suttkus A, Rohn S, Weigel S, Glockner P, Arendt T, Morawski M. 2014. Aggrecan, link protein and tenascin-R are essential components of the perineuronal net to protect neurons against iron-induced oxidative stress. Cell Death Dis. 5, e1119 (10.1038/cddis.2014.25) PubMed DOI PMC
Sykova E, Vorisek I, Antonova T, Mazel T, Meyer-Luehmann M, Jucker M, Hajek M, Ort M, Bures J. 2005. Changes in extracellular space size and geometry in APP23 transgenic mice: a model of Alzheimer's disease. Proc. Natl Acad. Sci. USA 102, 479–484. (10.1073/pnas.0408235102) PubMed DOI PMC
Zamecnik J, Homola A, Cicanic M, Kuncova K, Marusic P, Krsek P, Sykova E, Vargova L. 2012. The extracellular matrix and diffusion barriers in focal cortical dysplasias. Eur. J. Neurosci. 36, 2017–2024. (10.1111/j.1460-9568.2012.08107.x) PubMed DOI
Zamecnik J, Vargova L, Homola A, Kodet R, Sykova E. 2004. Extracellular matrix glycoproteins and diffusion barriers in human astrocytic tumours. Neuropathol. Appl. Neurobiol. 30, 338–350. (10.1046/j.0305-1846.2003.00541.x) PubMed DOI
Morgenstern DA, Asher RA, Fawcett JW. 2002. Chondroitin sulphate proteoglycans in the CNS injury response. Prog. Brain Res. 137, 313–332. (10.1016/S0079-6123(02)37024-9) PubMed DOI
Hu B, Kong LL, Matthews RT, Viapiano MS. 2008. The proteoglycan brevican binds to fibronectin after proteolytic cleavage and promotes glioma cell motility. J. Biol. Chem. 283, 24 848–24 859. (10.1074/jbc.M801433200) PubMed DOI PMC
Zheng PS, Wen J, Ang LC, Sheng W, Viloria-Petit A, Wang Y, Wu Y, Kerbel RS, Yang BB. 2004. Versican/PG-M G3 domain promotes tumor growth and angiogenesis. FASEB J. 18, 754–756. PubMed
Sykova E, Vorisek I, Mazel T, Antonova T, Schachner M. 2005. Reduced extracellular space in the brain of tenascin-R- and HNK-1-sulphotransferase deficient mice. Eur. J. Neurosci. 22, 1873–1880. (10.1111/j.1460-9568.2005.04375.x) PubMed DOI
Bekku Y, et al. 2010. Bral1: its role in diffusion barrier formation and conduction velocity in the CNS. J. Neurosci. 30, 3113–3123. (10.1523/JNEUROSCI.5598-09.2010) PubMed DOI PMC
Hrabetova S, Masri D, Tao L, Xiao F, Nicholson C. 2009. Calcium diffusion enhanced after cleavage of negatively charged components of brain extracellular matrix by chondroitinase ABC. J. Physiol. 587, 4029–4049. (10.1113/jphysiol.2009.170092) PubMed DOI PMC
Thorne RG, Lakkaraju A, Rodriguez-Boulan E, Nicholson C. 2008. In vivo diffusion of lactoferrin in brain extracellular space is regulated by interactions with heparan sulfate. Proc. Natl Acad. Sci. USA 105, 8416–8421. (10.1073/pnas.0711345105) PubMed DOI PMC
Out of the core: the impact of focal ischemia in regions beyond the penumbra
Alzheimer's Disease: Mechanism and Approach to Cell Therapy