Identification of polycomb repressive complex 1 and 2 core components in hexaploid bread wheat
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
33050875
PubMed Central
PMC7557041
DOI
10.1186/s12870-020-02384-6
PII: 10.1186/s12870-020-02384-6
Knihovny.cz E-zdroje
- Klíčová slova
- Epigenetics, Histone methylation, PRC2, Polycomb repressive complex, Wheat,
- MeSH
- chromozomy rostlin MeSH
- fylogeneze MeSH
- mapování chromozomů MeSH
- molekulární evoluce MeSH
- počítačová simulace MeSH
- PRC1 genetika MeSH
- PRC2 genetika MeSH
- pšenice genetika MeSH
- RNA rostlin MeSH
- sekvenování transkriptomu MeSH
- stanovení celkové genové exprese MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- PRC1 MeSH
- PRC2 MeSH
- RNA rostlin MeSH
BACKGROUND: Polycomb repressive complexes 1 and 2 play important roles in epigenetic gene regulation by posttranslationally modifying specific histone residues. Polycomb repressive complex 2 is responsible for the trimethylation of lysine 27 on histone H3; Polycomb repressive complex 1 catalyzes the monoubiquitination of histone H2A at lysine 119. Both complexes have been thoroughly studied in Arabidopsis, but the evolution of polycomb group gene families in monocots, particularly those with complex allopolyploid origins, is unknown. RESULTS: Here, we present the in silico identification of the Polycomb repressive complex 1 and 2 (PRC2, PRC1) subunits in allohexaploid bread wheat, the reconstruction of their evolutionary history and a transcriptional analysis over a series of 33 developmental stages. We identified four main subunits of PRC2 [E(z), Su(z), FIE and MSI] and three main subunits of PRC1 (Pc, Psc and Sce) and determined their chromosomal locations. We found that most of the genes coding for subunit proteins are present as paralogs in bread wheat. Using bread wheat RNA-seq data from different tissues and developmental stages throughout plant ontogenesis revealed variable transcriptional activity for individual paralogs. Phylogenetic analysis showed a high level of protein conservation among temperate cereals. CONCLUSIONS: The identification and chromosomal location of the Polycomb repressive complex 1 and 2 core components in bread wheat may enable a deeper understanding of developmental processes, including vernalization, in commonly grown winter wheat.
Zobrazit více v PubMed
Wu JI, Lessard J, Crabtree GR. Understanding the words of chromatin regulation. Cell. 2009;136:200–206. PubMed PMC
Matzke MA, Mosher RA. RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat Rev Genet. 2014;15:394–408. PubMed
Fultz D, Choudury SG, Slotkin RK. Silencing of active transposable elements in plants. Curr Opin Plant Biol. 2015;27:67–76. PubMed
Mozgova I, Hennig L. The Polycomb group protein regulatory network. Annu Rev Plant Biol. 2015;66:269–296. PubMed
Margueron R, Reinberg D. The Polycomb complex PRC2 and its mark in life. Nature. 2011;469:343–349. PubMed PMC
Schwartz YB, Pirrotta V. A new world of Polycombs: unexpected partnerships and emerging functions. Nat Rev Genet. 2013;14:853–864. PubMed
Wang L, Brown JL, Cao R, Zhang Y, Kassis JA, Jones RS. Hierarchical recruitment of Polycomb group silencing complexes. Mol Cell. 2004;14:637–646. PubMed
Dorafshan E, Kahn TG, Schwartz YB. Hierarchical recruitment of Polycomb complexes revisited. Nucleus. 2017;8:496–505. PubMed PMC
Kahn TG, Dorafshan E, Schultheis D, Zare A, Stenberg P, Reim I, et al. Interdependence of PRC1 and PRC2 for recruitment to Polycomb response elements. Nucleic Acids Res. 2016;44:10132–10149. PubMed PMC
Endoh M, Endo TA, Endoh T, Isono K, Sharif J, Ohara O, et al. Histone H2A mono-ubiquitination is a crucial step to mediate PRC1-dependent repression of developmental genes to maintain ES cell identity. PLoS Genet 2012;8. PubMed PMC
Xu L, Shen WH. Polycomb silencing of KNOX genes confines shoot stem cell niches in Arabidopsis. Curr Biol. 2008;18:1966–1971. PubMed
Chen D, Molitor A, Liu C, Shen WH. The arabidopsis PRC1-like ring-finger proteins are necessary for repression of embryonic traits during vegetative growth. Cell Res. 2010;20:1332–1344. PubMed
Turck F, Roudier F, Farrona S, Martin-Magniette ML, Guillaume E, Buisine N, et al. Arabidopsis TFL2/LHP1 specifically associates with genes marked by trimethylation of histone H3 lysine 27. PLoS Genet. 2007;3:0855–0866. PubMed PMC
Zhang X, Clarenz O, Cokus S, Bernatavichute YV, Pellegrini M, Goodrich J, et al. Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis. PLoS Biol. 2007;5:1026–1035. PubMed PMC
Chen DH, Huang Y, Ruan Y, Shen WH. The evolutionary landscape of PRC1 core components in green lineage. Planta. 2016;243:825–846. PubMed
Bemer M, Grossniklaus U. Dynamic regulation of Polycomb group activity during plant development. Curr Opin Plant Biol. 2012;15:523–529. PubMed
Calonje M, Sanchez R, Chen L, Sung ZR. EMBRYONIC FLOWER1 participates in Polycomb group-mediated AG gene silencing in arabidopsis. Plant Cell Online. 2008;20:277–291. PubMed PMC
Mylne JS, Barrett L, Tessadori F, Mesnage S, Johnson L, Bernatavichute YV, et al. LHP1, the Arabidopsis homologue of HETEROCHROMATIN PROTEIN1, is required for epigenetic silencing of FLC. Proc Natl Acad Sci. 2006;103:5012–5017. PubMed PMC
Aubert D, Chen L, Moon YH, Martin D, Castle LA, Yang CH, et al. EMF1, a novel protein involved in the control of shoot architecture and flowering in Arabidopsis. Plant Cell. 2001;13:1865–1875. PubMed PMC
Bratzel F, López-Torrejón G, Koch M, Del Pozo JC, Calonje M. Keeping cell identity in arabidopsis requires PRC1 RING-finger homologs that catalyze H2A monoubiquitination. Curr Biol. 2010;20:1853–1859. PubMed
Bratzel F, Yang C, Angelova A, López-Torrejón G, Koch M, Del Pozo JC, et al. Regulation of the new arabidopsis imprinted gene AtBMI1 requires the interplay of different epigenetic mechanisms. Mol Plant. 2012;5:260–269. PubMed
Levy YY, Mesnage S, Mylne JS, Gendall AR, Dean C. Multiple roles of Arabidopsis VRN1 in vernalization and flowering time control. Science. 2002;297:243–246. PubMed
Berke L, Snel B. The plant Polycomb repressive complex 1 (PRC1) existed in the ancestor of seed plants and has a complex duplication history. BMC Evol Biol. 2015;15:1–10. PubMed PMC
Li Z, Fu X, Wang Y, Liu R, He Y. Polycomb-mediated gene silencing by the BAH–EMF1 complex in plants. Nat Genet. 2018;50:1254–1261. PubMed
Bantignies F, Cavalli G. Polycomb group proteins: repression in 3D. Trends Genet. 2011;27:454–464. PubMed
Chanvivattana Y. Interaction of Polycomb-group proteins controlling flowering in Arabidopsis. Development. 2004;131:5263–5276. PubMed
Goodrich J, Puangsomlee P, Martin M, Long D, Meyerowitz E, Coupland G. A polycomb-group gene regulates homeotic gene expression in Arabidopsis. Nature. 1997;386. PubMed
Grossniklaus U, Vielle-Calzada J-P, Hoeppner M, Gagliana WB. Maternal control of embryogenesis by MEDEA, a Polycomb group gene in Arabidopsis. Science. 1998;280:446–450. PubMed
Gendall AR, Levy YY, Wilson A, Dean C. The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis. Cell. 2001;107:525–535. PubMed
Yoshida N. EMBRYONIC FLOWER2, a novel Polycomb group protein homolog, mediates shoot development and flowering in Arabidopsis. Plant Cell Online. 2001;13:2471–2481. PubMed PMC
Luo M, Bilodeau P, Koltunow A, Dennis ES, Peacock WJ, Chaudhury AM. Genes controlling fertilization-independent seed development in Arabidopsis thaliana. Proc Natl Acad Sci. 1999;96:296–301. PubMed PMC
Hennig L. Arabidopsis MSI1 is required for epigenetic maintenance of reproductive development. Development. 2003;130:2555–2565. PubMed
Derkacheva M, Hennig L. Variations on a theme: Polycomb group proteins in plants. J Exp Bot. 2014;65:2769–2784. PubMed
Köhler C, Hennig L, Bouveret R, Gheyselinck J, Grossniklaus U, Gruissem W. Arabidopsis MSI1 is a component of the MEA/FIE Polycomb group complex and required for seed development. EMBO J. 2003;22:4804–4814. PubMed PMC
Sheldon CC, Burn JE, Perez PP, Metzger J, Edwards JA, Peacock WJ, et al. The FLF MADS box gene: a repressor of flowering in Arabidopsis regulated by vernalization and methylation. Plant Cell. 1999;11:445. PubMed PMC
Michaels S, Amasino R. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell. 1999;11:949–956. PubMed PMC
Angel A, Song J, Dean C, Howard M. A Polycomb-based switch underlying quantitative epigenetic memory. Nature. 2011;476:105–109. PubMed
Sheldon CC, Rouse DT, Finnegan EJ, Peacock WJ, Dennis ES. The molecular basis of vernalization: the central role of FLOWERING LOCUS C (FLC) Proc Natl Acad Sci. 2000;97:3753–3758. PubMed PMC
Lafos M, Kroll P, Hohenstatt ML, Thorpe FL, Clarenz O, Schubert D. Dynamic regulation of H3K27 Trimethylation during Arabidopsis differentiation. PLoS Genet. 2011;7:e1002040. PubMed PMC
He C, Chen X, Huang H, Xu L. Reprogramming of H3K27me3 is critical for acquisition of pluripotency from cultured Arabidopsis tissues. PLoS Genet. 2012;8. PubMed PMC
Chaudhury AM, Ming L, Miller C, Craig S, Dennis ES, Peacock WJ. Fertilization-independent seed development in Arabidopsis thaliana. Proc Natl Acad Sci. 1997;94:4223–4228. PubMed PMC
Yang C-H, Chen L-J, Sung Z. Genetic regulation of shoot development in Arabidopsis-role of the EMF genes. Dev Biol. 1995;169:421–435. PubMed
Springer NM, Danilevskaya ON, Hermon P, Helentjaris TG, Phillips RL, Kaeppler HF, et al. Sequence relationships, conserved domains, and expression patterns for maize homologs of the Polycomb group genes E(z), esc, and E(pc) Plant Physiol. 2002;128:1332–1345. PubMed PMC
Thakur JK, Malik MR, Bhatt V, Reddy MK, Sopory SK, Tyagi AK, et al. A POLYCOMB group gene of rice (Oryza sativa L. subspecies indica), OsiEZ1, codes for a nuclear-localized protein expressed preferentially in young seedlings and during reproductive development. Gene. 2003;314:1–13. PubMed
Hennig L, Bouveret R, Gruissem W. MSI1-like proteins: an escort service for chromatin assembly and remodeling complexes. Trends Cell Biol. 2005;15:295–302. PubMed
Haun WJ, Laoueillé-Duprat S, O’Connell MJ, Spillane C, Grossniklaus U, Phillips AR, et al. Genomic imprinting, methylation and molecular evolution of maize Enhancer of zeste (Mez) homologs: imprinting of Mez1 in the maize endosperm. Plant J. 2007;49:325–337. PubMed
Chen L-J, Diao Z-Y, Specht C, Sung ZR. Molecular evolution of VEF-domain-containing PcG genes in plants. Mol Plant. 2009;2:738–754. PubMed
Luo M, Platten D, Chaudhury A, Peacock WJ, Dennis ES. Expression, imprinting, and evolution of rice homologs of the Polycomb group genes. Mol Plant. 2009;2:711–723. PubMed
Kapazoglou A, Tondelli A, Papaefthimiou D, Ampatzidou H, Francia E, Stanca MA, et al. Epigenetic chromatin modifiers in barley: IV. The study of barley Polycomb group (PcG) genes during seed development and in response to external ABA. BMC Plant Biol. 2010;10:73. PubMed PMC
Tonosaki K, Kinoshita T. Possible roles for polycomb repressive complex 2 in cereal endosperm. Front Plant Sci. 2015;6:1–5. PubMed PMC
Butenko Y, Ohad N. Polycomb-group mediated epigenetic mechanisms through plant evolution. Biochim Biophys Acta (BBA) Gene Regul Mech. 2011;1809:395–406. PubMed
Lomax A, Woods DP, Dong Y, Bouché F, Rong Y, Mayer KS, et al. An ortholog of CURLY LEAF/ENHANCER OF ZESTE like-1 is required for proper flowering in Brachypodium distachyon. Plant J. 2018;93:871–882. PubMed
Xiao J, Xu S, Li C, Xu Y, Xing L, Niu Y, et al. O-GlcNAc-mediated interaction between VER2 and TaGRP2 elicits TaVRN1 mRNA accumulation during vernalization in winter wheat. Nat Commun. 2014;5:1–13. PubMed PMC
The International Wheat Genome Sequencing Consortium (IWGSC) IWGSC RefSeq principal investigators. Appels R, Eversole K, Feuillet C, Keller B, et al. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science. 2018;361:eaar7191. PubMed
Bennett MD, Smith JB. Nuclear DNA amounts in angiosperms. Philos Trans R Soc Lond B Biol Sci. 1991;334:309–345. PubMed
Hernandez P, Martis M, Dorado G, Pfeifer M, Gálvez S, Schaaf S, et al. Next-generation sequencing and syntenic integration of flow-sorted arms of wheat chromosome 4A exposes the chromosome structure and gene content. Plant J. 2012;69:377–386. PubMed
Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok SO, Wicker T, et al. A chromosome conformation capture ordered sequence of the barley genome. Nature. 2017;544:427–433. PubMed
Monat C, Padmarasu S, Lux T, Wicker T, Gundlach H, Himmelbach A, et al. TRITEX: chromosome-scale sequence assembly of Triticeae genomes with open-source tools. Genome Biol. 2019;20:284. PubMed PMC
Clavijo BJ, Venturini L, Schudoma C, Accinelli GG, Kaithakottil G, Wright J, et al. An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations. Genome Res. 2017;27:885–896. PubMed PMC
Jiang D, Wang Y, Wang Y, He Y. Repression of FLOWERING LOCUS C and FLOWERING LOCUS T by the Arabidopsis Polycomb repressive complex 2 components. PLoS ONE. 2008;3. PubMed PMC
Xu Y, Zhang L, Wu G. Epigenetic regulation of juvenile-to-adult transition in plants. Front Plant Sci. 2018;9:1–8. PubMed PMC
Zhang X, Clarenz O, Cokus S, Bernatavichute YV, Pellegrini M, Goodrich J, et al. Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis. PLoS Biol. 2007;5:e129. PubMed PMC
Farrona S, Thorpe FL, Engelhorn J, Adrian J, Dong X, Sarid-Krebs L, et al. Tissue-specific expression of FLOWERING LOCUS T in Arabidopsis is maintained independently of Polycomb group protein repression. Plant Cell. 2011;23:3204–3214. PubMed PMC
He G, Zhu X, Elling AA, Chen L, Wang X, Guo L, et al. Global epigenetic and transcriptional trends among two rice subspecies and their reciprocal hybrids. Plant Cell. 2010;22:17–33. PubMed PMC
Makarevitch I, Eichten SR, Briskine R, Waters AJ, Danilevskaya ON, Meeley RB, et al. Genomic distribution of maize facultative heterochromatin marked by trimethylation of H3K27. Plant Cell. 2013;25:780–793. PubMed PMC
Baker K, Dhillon T, Colas I, Cook N, Milne I, Milne L, et al. Chromatin state analysis of the barley epigenome reveals a higher-order structure defined by H3K27me1 and H3K27me3 abundance. Plant J. 2015;84:111–124. PubMed PMC
Song J, Angel A, Howard M, Dean C. Vernalization—a cold-induced epigenetic switch. J Cell Sci. 2012;125:3723–3731. PubMed
Whittaker C, Dean C. The FLC locus: a platform for discoveries in epigenetics and adaptation. Annu Rev Cell Dev Biol. 2017;33:555–575. PubMed
Oliver SN, Finnegan EJ, Dennis ES, Peacock WJ, Trevaskis B. Vernalization-induced flowering in cereals is associated with changes in histone methylation at the VERNALIZATION1 gene. Proc Natl Acad Sci. 2009;106:8386–8391. PubMed PMC
Alonso-Peral MM, Oliver SN, Casao MC, Greenup AA, Trevaskis B. The promoter of the cereal VERNALIZATION1 gene is sufficient for transcriptional induction by prolonged cold. PLoS ONE. 2011;6:e29456. PubMed PMC
Spillane C, Schmid KJ, Laoueillé-Duprat S, Pien S, Escobar-Restrepo J-M, Baroux C, et al. Positive darwinian selection at the imprinted MEDEA locus in plants. Nature. 2007;448:349–352. PubMed
Mozgová I, Muñoz-Viana R, Hennig L. PRC2 represses hormone-induced somatic embryogenesis in vegetative tissue of Arabidopsis thaliana. PLoS Genet. 2017;13:e1006562. PubMed PMC
Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, et al. A gene expression map of Arabidopsis thaliana development. Nat Genet. 2005;37:501. PubMed
Beh LY, Colwell LJ, Francis NJ. A core subunit of Polycomb repressive complex 1 is broadly conserved in function but not primary sequence. Proc Natl Acad Sci. 2012;109:E1063–E1071. PubMed PMC
Holec S, Berger F. Polycomb group complexes mediate developmental transitions in plants. Plant Physiol. 2011;158:35–43. PubMed PMC
Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J. Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci. 2003;100:6263–6268. PubMed PMC
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35:1547–1549. PubMed PMC
Jones DT, Taylor WR, Thornton JM. The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci. 1992;8:275–282. PubMed
Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39:783–791. PubMed
Borrill P, Ramirez-Gonzalez R, Uauy C. expVIP: a customizable RNA-seq data analysis and visualization platform. Plant Physiol. 2016;170:2172–2186. PubMed PMC
Ramírez-González RH, Borrill P, Lang D, Harrington SA, Brinton J, Venturini L, et al. The transcriptional landscape of polyploid wheat. Science. 2018;361:eaar6089. PubMed
Letunic I, Bork P. 20 years of the SMART protein domain annotation resource. Nucleic Acids Res. 2018;46:493–496. PubMed PMC
El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2019;47:427–432. PubMed PMC
Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–3066. PubMed PMC
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–780. PubMed PMC
The transcriptome landscape of developing barley seeds
Polycomb Repressive Complex 2 in Eukaryotes-An Evolutionary Perspective
Contemplation on wheat vernalization
In-Depth Sequence Analysis of Bread Wheat VRN1 Genes