Polycomb Repressive Complex 2 in Eukaryotes-An Evolutionary Perspective
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
ERC200961901
Czech Academy of Sciences
PubMed
35076495
PubMed Central
PMC8788455
DOI
10.3390/epigenomes6010003
PII: epigenomes6010003
Knihovny.cz E-zdroje
- Klíčová slova
- H3K27me3, PRC2, SAR, algae, animal, evolution, fungi, green lineage, plant, polycomb,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Polycomb repressive complex 2 (PRC2) represents a group of evolutionarily conserved multi-subunit complexes that repress gene transcription by introducing trimethylation of lysine 27 on histone 3 (H3K27me3). PRC2 activity is of key importance for cell identity specification and developmental phase transitions in animals and plants. The composition, biochemistry, and developmental function of PRC2 in animal and flowering plant model species are relatively well described. Recent evidence demonstrates the presence of PRC2 complexes in various eukaryotic supergroups, suggesting conservation of the complex and its function. Here, we provide an overview of the current understanding of PRC2-mediated repression in different representatives of eukaryotic supergroups with a focus on the green lineage. By comparison of PRC2 in different eukaryotes, we highlight the possible common and diverged features suggesting evolutionary implications and outline emerging questions and directions for future research of polycomb repression and its evolution.
Zobrazit více v PubMed
Prezioso C., Orlando V. Polycomb Proteins in Mammalian Cell Differentiation and Plasticity. FEBS Lett. 2011;585:2067–2077. doi: 10.1016/j.febslet.2011.04.062. PubMed DOI
Aranda S., Mas G., Di Croce L. Regulation of Gene Transcription by Polycomb Proteins. Sci. Adv. 2015;1:e1500737. doi: 10.1126/sciadv.1500737. PubMed DOI PMC
Mozgova I., Hennig L. The Polycomb Group Protein Regulatory Network. Annu. Rev. Plant Biol. 2015 doi: 10.1146/annurev-arplant-043014-115627. PubMed DOI
Yu J.R., Lee C.H., Oksuz O., Stafford J.M., Reinberg D. PRC2 Is High Maintenance. Genes Dev. 2019;33:903–935. doi: 10.1101/gad.325050.119. PubMed DOI PMC
Shen Q., Lin Y., Li Y., Wang G. Plants Dynamics of H3K27me3 Modification on Plant Adaptation to Environmental Cues. Plants. 2021;10:1165. doi: 10.3390/plants10061165. PubMed DOI PMC
Lee H.-G., Kahn T.G., Simcox A., Schwartz Y.B., Pirrotta V. Genome-Wide Activities of Polycomb Complexes Control Pervasive Transcription. Genome Res. 2015;25:1170–1181. doi: 10.1101/gr.188920.114. PubMed DOI PMC
Bratzel F., López-Torrejón G., Koch M., Del Pozo J.C., Calonje M. Keeping Cell Identity in Arabidopsis Requires PRC1 RING-Finger Homologs That Catalyze H2A Monoubiquitination. Curr. Biol. 2010;20:1853–1859. doi: 10.1016/j.cub.2010.09.046. PubMed DOI
Wang H., Wang L., Erdjument-Bromage H., Vidal M., Tempst P., Jones R.S., Zhang Y. Role of Histone H2A Ubiquitination in Polycomb Silencing. Nature. 2004;431:873–878. doi: 10.1038/nature02985. PubMed DOI
Wiles E.T., Selker E.U. H3K27 Methylation: A Promiscuous Repressive Chromatin Mark. Curr. Opin. Genet. Dev. 2017;43:31–37. doi: 10.1016/j.gde.2016.11.001. PubMed DOI PMC
Chittock E.C., Latwiel S., Miller T.C.R., Müller C.W. Molecular Architecture of Polycomb Repressive Complexes. Biochem. Soc. Trans. 2017;45:193–205. doi: 10.1042/BST20160173. PubMed DOI PMC
Reddington C.J., Fellner M., Burgess A.E., Mace P.D. Molecular Regulation of the Polycomb Repressive-Deubiquitinase. Int. J. Mol. Sci. 2020;21:7837. doi: 10.3390/ijms21217837. PubMed DOI PMC
Derkacheva M., Liu S., Figueiredo D.D., Gentry M., Mozgova I., Nanni P., Tang M., Mannervik M., Köhler C., Hennig L. H2A Deubiquitinases UBP12/13 Are Part of the Arabidopsis Polycomb Group Protein System. Nat. Plants. 2016;2:16126. doi: 10.1038/nplants.2016.126. PubMed DOI
Kralemann L.E.M., Liu S., Trejo-Arellano M.S., Muñoz-Viana R., Köhler C., Hennig L. Removal of H2Aub1 by Ubiquitin-Specific Proteases 12 and 13 Is Required for Stable Polycomb-Mediated Gene Repression in Arabidopsis. Genome Biol. 2020;21:144. doi: 10.1186/s13059-020-02062-8. PubMed DOI PMC
Klymenko T., Papp B., Fischle W., Köcher T., Schelder M., Fritsch C., Wild B., Wilm M., Müller J. A Polycomb Group Protein Complex with Sequence-Specific DNA-Binding and Selective Methyl-Lysine-Binding Activities. Genes Dev. 2006;20:1110–1122. doi: 10.1101/gad.377406. PubMed DOI PMC
Schuettengruber B., Bourbon H.M., Di Croce L., Cavalli G. Genome Regulation by Polycomb and Trithorax: 70 Years and Counting. Cell. 2017;171:34–57. doi: 10.1016/j.cell.2017.08.002. PubMed DOI
Stewart-Morgan K.R., Petryk N., Groth A. Chromatin Replication and Epigenetic Cell Memory. Nat. Cell Biol. 2020;22:361–371. doi: 10.1038/s41556-020-0487-y. PubMed DOI
Probst A.V., Desvoyes B., Gutierrez C. Similar yet Critically Different: The Distribution, Dynamics and Function of Histone Variants. J. Exp. Bot. 2020;71:5191–5204. doi: 10.1093/jxb/eraa230. PubMed DOI
Hugues A., Jacobs C.S., Roudier F. Mitotic Inheritance of PRC2-Mediated Silencing: Mechanistic Insights and Developmental Perspectives. Front. Plant Sci. 2020;11:262. doi: 10.3389/fpls.2020.00262. PubMed DOI PMC
Pu L., Sung Z.R. PcG and TrxG in Plants—Friends or Foes. Trends Genet. 2015;31:252–262. doi: 10.1016/j.tig.2015.03.004. PubMed DOI
Wang S., Ordonez-Rubiano S.C., Dhiman A., Jiao G., Strohmier B.P., Krusemark C.J., Dykhuizen E.C. Polycomb Group Proteins in Cancer: Multifaceted Functions and Strategies for Modulation. NAR Cancer. 2021;3:zcab039. doi: 10.1093/narcan/zcab039. PubMed DOI PMC
Dockerill M., Gregson C., O’ Donovan D.H. Targeting PRC2 for the Treatment of Cancer: An Updated Patent Review (2016–2020) Expert Opin. Ther. Pat. 2021;31:119–135. doi: 10.1080/13543776.2021.1841167. PubMed DOI
Piunti A., Shilatifard A. The Roles of Polycomb Repressive Complexes in Mammalian Development and Cancer. Nat. Rev. Mol. Cell Biol. 2021;22:326–345. doi: 10.1038/s41580-021-00341-1. PubMed DOI
Lewis P.H. New Mutants Report. Drosoph. Inf. Serv. 1947;21:69.
Sanchez-Pulido L., Devos D., Sung Z.R., Calonje M. RAWUL: A New Ubiquitin-like Domain in PRC1 Ring Finger Proteins That Unveils Putative Plant and Worm PRC1 Orthologs. BMC Genom. 2008;9:308. doi: 10.1186/1471-2164-9-308. PubMed DOI PMC
Chen D., Molitor A., Liu C., Shen W.H. The Arabidopsis PRC1-like Ring-Finger Proteins Are Necessary for Repression of Embryonic Traits during Vegetative Growth. Cell Res. 2010;20:1332–1344. doi: 10.1038/cr.2010.151. PubMed DOI
Zhou Y., Romero-Campero F.J., Gómez-Zambrano Á., Turck F., Calonje M. H2A Monoubiquitination in Arabidopsis Thaliana Is Generally Independent of LHP1 and PRC2 Activity. Genome Biol. 2017;18:69. doi: 10.1186/s13059-017-1197-z. PubMed DOI PMC
Berke L., Snel B. The Plant Polycomb Repressive Complex 1 (PRC1) Existed in the Ancestor of Seed Plants and Has a Complex Duplication History. BMC Evol. Biol. 2015;15:44. doi: 10.1186/s12862-015-0319-z. PubMed DOI PMC
Chen D., Huang Y., Ruan Y., Shen W.-H. The Evolutionary Landscape of PRC1 Core Components in Green Lineage. Planta. 2016;243:825–846. doi: 10.1007/s00425-015-2451-9. PubMed DOI
Hennig L., Derkacheva M. Diversity of Polycomb Group Complexes in Plants: Same Rules, Different Players? Trends Genet. 2009;25:414–423. doi: 10.1016/j.tig.2009.07.002. PubMed DOI
Calonje M. Prc1 Marks the Difference in Plant Pcg Repression. Mol. Plant. 2014;7:459–471. doi: 10.1093/mp/sst150. PubMed DOI
Shaver S., Casas-Mollano J.A., Cerny R.L., Cerutti H. Origin of the Polycomb Repressive Complex 2 and Gene Silencing by an E(z) Homolog in the Unicellular Alga Chlamydomonas. Epigenetics. 2010;5:301–312. doi: 10.4161/epi.5.4.11608. PubMed DOI
Sowpati D.T., Ramamoorthy S., Mishra R.K. Expansion of the Polycomb System and Evolution of Complexity. Mech. Dev. 2015;138:97–112. doi: 10.1016/j.mod.2015.07.013. PubMed DOI
Förderer A., Zhou Y., Turck F. The Age of Multiplexity: Recruitment and Interactions of Polycomb Complexes in Plants. Curr. Opin. Plant Biol. 2016;29:169–178. doi: 10.1016/j.pbi.2015.11.010. PubMed DOI
van Mierlo G., Veenstra G.J.C., Vermeulen M., Marks H. The Complexity of PRC2 Subcomplexes. Trends Cell Biol. 2019;29:660–671. doi: 10.1016/j.tcb.2019.05.004. PubMed DOI
Miller S.A., Damle M., Kim J., Kingston R.E. Full Methylation of H3K27 by PRC2 Is Dispensable for Initial Embryoid Body Formation but Required to Maintain Differentiated Cell Identity. Development. 2021;148:dev196329. doi: 10.1242/dev.196329. PubMed DOI PMC
Mozgová I., Muñoz-Viana R., Hennig L. PRC2 Represses Hormone-Induced Somatic Embryogenesis in Vegetative Tissue of Arabidopsis Thaliana. PLoS Genet. 2017;13:e1006562. doi: 10.1371/journal.pgen.1006562. PubMed DOI PMC
Turck F., Roudier F., Farrona S., Martin-Magniette M.L., Guillaume E., Buisine N., Gagnot S., Martienssen R.A., Coupland G., Colot V. Arabidopsis TFL2/LHP1 Specifically Associates with Genes Marked by Trimethylation of Histone H3 Lysine 27. PLoS Genet. 2007;3:e86. doi: 10.1371/journal.pgen.0030086. PubMed DOI PMC
Zhang X., Clarenz O., Cokus S., Bernatavichute Y.V., Pellegrini M., Goodrich J., Jacobsen S.E. Whole-Genome Analysis of Histone H3 Lysine 27 Trimethylation in Arabidopsis. PLoS Biol. 2007;5:e129. doi: 10.1371/journal.pbio.0050129. PubMed DOI PMC
Margueron R., Trojer P., Reinberg D. The Key to Development: Interpreting the Histone Code? Curr. Opin. Genet. Dev. 2005;15:163–176. doi: 10.1016/j.gde.2005.01.005. PubMed DOI
Steffen P.A., Ringrose L. What Are Memories Made of? How Polycomb and Trithorax Proteins Mediate Epigenetic Memory. Nat. Rev. Mol. Cell Biol. 2014;15:340–356. doi: 10.1038/nrm3789. PubMed DOI
Kang S.J., Chun T. Structural Heterogeneity of the Mammalian Polycomb Repressor Complex in Immune Regulation. Exp. Mol. Med. 2020;52:1004–1015. doi: 10.1038/s12276-020-0462-5. PubMed DOI PMC
Martin C.J., Moorehead R.A. Polycomb Repressor Complex 2 Function in Breast Cancer (Review) Int. J. Oncol. 2020;57:1085–1094. doi: 10.3892/ijo.2020.5122. PubMed DOI PMC
Cao Y., Li L., Fan Z. The Role and Mechanisms of Polycomb Repressive Complex 2 on the Regulation of Osteogenic and Neurogenic Differentiation of Stem Cells. Cell Prolif. 2021;54:e13032. doi: 10.1111/cpr.13032. PubMed DOI PMC
Guo Y., Zhao S., Wang G.G. Polycomb Gene Silencing Mechanisms: PRC2 Chromatin Targeting, H3K27me3 “Readout”, and Phase Separation-Based Compaction. Trends Genet. 2021;37:547–565. doi: 10.1016/j.tig.2020.12.006. PubMed DOI PMC
Bieluszewski T., Xiao J., Yang Y., Wagner D. PRC2 Activity, Recruitment, and Silencing: A Comparative Perspective. Trends Plant Sci. 2021;26:1186–1198. doi: 10.1016/j.tplants.2021.06.006. PubMed DOI
Glancy E., Ciferri C., Bracken A.P. Structural Basis for PRC2 Engagement with Chromatin. Curr. Opin. Struct. Biol. 2021;67:135–144. doi: 10.1016/j.sbi.2020.10.017. PubMed DOI
Shu J., Chen C., Li C., Cui Y. The Complexity of PRC2 Catalysts CLF and SWN in Plants. Biochem. Soc. Trans. 2020;48:2779–2789. doi: 10.1042/BST20200660. PubMed DOI
Hinsch V., Adkins S., Manuela D., Xu M. Post-Embryonic Phase Transitions Mediated by Polycomb Repressive Complexes in Plants. Int. J. Mol. Sci. 2021;22:7533. doi: 10.3390/ijms22147533. PubMed DOI PMC
Déléris A., Berger F., Duharcourt S. Role of Polycomb in the Control of Transposable Elements. Trends Genet. 2021;37:882–889. doi: 10.1016/j.tig.2021.06.003. PubMed DOI
Müller J., Hart C.M., Francis N.J., Vargas M.L., Sengupta A., Wild B., Miller E.L., O’Connor M.B., Kingston R.E., Simon J.A. Histone Methyltransferase Activity of a Drosophila Polycomb Group Repressor Complex. Cell. 2002;111:197–208. doi: 10.1016/S0092-8674(02)00976-5. PubMed DOI
Yang Y., Li G. Post-Translational Modifications of PRC2: Signals Directing Its Activity. Epigenet. Chromatin. 2020;13:47. doi: 10.1186/s13072-020-00369-1. PubMed DOI PMC
Nekrasov M., Wild B., Müller J. Nucleosome Binding and Histone Methyltransferase Activity of Drosophila PRC2. EMBO Rep. 2005;6:348–353. doi: 10.1038/sj.embor.7400376. PubMed DOI PMC
Wang X., Paucek R.D., Gooding A.R., Brown Z.Z., Eva J., Muir T.W., Cech T.R. Molecular Analysis of PRC2 Recruitment to DNA in Chromatin and Its Inhibition by RNA. Nat. Struct. Mol. Biol. 2017;24:1028–1038. doi: 10.1038/nsmb.3487. PubMed DOI PMC
Wang X., Goodrich K.J., Gooding A.R., Youmans D.T., Cech T.R., Wang X., Goodrich K.J., Gooding A.R., Naeem H., Archer S., et al. Targeting of Polycomb Repressive Complex 2 to RNA by Short Repeats of Consecutive Guanines Article Targeting of Polycomb Repressive Complex 2 to RNA by Short Repeats of Consecutive Guanines. Mol. Cell. 2017;65:1056–1067. doi: 10.1016/j.molcel.2017.02.003. PubMed DOI
Kasinath V., Poepsel S., Nogales E. Recent Structural Insights into PRC2 Regulation and Substrate Binding. Biochemistry. 2019;58:346–354. doi: 10.1021/acs.biochem.8b01064. PubMed DOI PMC
Holoch D., Margueron R. Mechanisms Regulating PRC2 Recruitment and Enzymatic Activity. Trends Biochem. Sci. 2017;42:531–542. doi: 10.1016/j.tibs.2017.04.003. PubMed DOI
Ketel C.S., Andersen E.F., Vargas M.L., Suh J., Strome S., Simon J.A. Subunit Contributions to Histone Methyltransferase Activities of Fly and Worm Polycomb Group Complexes. Mol. Cell. Biol. 2005;25:6857–6868. doi: 10.1128/MCB.25.16.6857-6868.2005. PubMed DOI PMC
Cao R., Zhang Y. SUZ12 Is Required for Both the Histone Methyltransferase Activity and the Silencing Function of the EED-EZH2 Complex. Mol. Cell. 2004;15:57–67. doi: 10.1016/j.molcel.2004.06.020. PubMed DOI
Pasini D., Bracken A.P., Jensen M.R., Denchi E.L., Helin K. Suz12 Is Essential for Mouse Development and for EZH2 Histone Methyltransferase Activity. EMBO J. 2004;23:4061–4071. doi: 10.1038/sj.emboj.7600402. PubMed DOI PMC
Kasinath V., Faini M., Poepsel S., Reif D., Feng X.A., Stjepanovic G., Aebersold R., Nogales E. Structures of Human PRC2 with Its Cofactors AEBP2 and JARID2. Science. 2018;359:940–944. doi: 10.1126/science.aar5700. PubMed DOI PMC
Mosquna A., Katz A., Decker E.L., Rensing S.A., Reski R., Ohad N. Regulation of Stem Cell Maintenance by the Polycomb Protein FIE Has Been Conserved during Land Plant Evolution. Development. 2009;136:2433–2444. doi: 10.1242/dev.035048. PubMed DOI
Okano Y., Aono N., Hiwatashi Y., Murata T., Nishiyama T., Ishikawa T., Kubo M., Hasebe M. A Polycomb Repressive Complex 2 Gene Regulates Apogamy and Gives Evolutionary Insights into Early Land Plant Evolution. Proc. Natl. Acad. Sci. USA. 2009;106:16321–16326. doi: 10.1073/pnas.0906997106. PubMed DOI PMC
Mikulski P., Komarynets O., Fachinelli F., Weber A.P.M., Schubert D. Characterization of the Polycomb-Group Mark H3K27me3 in Unicellular Algae. Front. Plant Sci. 2017;8:607. doi: 10.3389/fpls.2017.00607. PubMed DOI PMC
Dumesic P.A., Homer C.M., Moresco J.J., Pack L.R., Shanle E.K., Coyle S.M., Strahl B.D., Fujimori D.G., Yates J.R., Madhani H.D. Product Binding Enforces the Genomic Specificity of a Yeast Polycomb Repressive Complex. Cell. 2015;160:204–218. doi: 10.1016/j.cell.2014.11.039. PubMed DOI PMC
Zhao X., Rastogi A., Deton Cabanillas A.F., Ait Mohamed O., Cantrel C., Lombard B., Murik O., Genovesio A., Bowler C., Bouyer D., et al. Genome Wide Natural Variation of H3K27me3 Selectively Marks Genes Predicted to Be Important for Cell Differentiation in Phaeodactylum Tricornutum. New Phytol. 2021;229:3208–3220. doi: 10.1111/nph.17129. PubMed DOI
Gall Trošelj K., Novak Kujundzic R., Ugarkovic D. Polycomb Repressive Complex’s Evolutionary Conserved Function: The Role of EZH2 Status and Cellular Background. Clin. Epigenet. 2016;8:55. doi: 10.1186/s13148-016-0226-1. PubMed DOI PMC
Deevy O., Bracken A.P. PRC2 Functions in Development and Congenital Disorders. Development. 2019;146:dev181354. doi: 10.1242/dev.181354. PubMed DOI PMC
Lewis Z.A. Polycomb Group Systems in Fungi: New Models for Understanding Polycomb Repressive Complex 2. Trends Genet. 2017;33:220–231. doi: 10.1016/j.tig.2017.01.006. PubMed DOI
Derkacheva M., Hennig L. Variations on a Theme: Polycomb Group Proteins in Plants. J. Exp. Bot. 2014;65:2769–2784. doi: 10.1093/jxb/ert410. PubMed DOI
Smits A.H., Jansen P.W.T.C., Poser I., Hyman A.A., Vermeulen M. Stoichiometry of Chromatin-Associated Protein Complexes Revealed by Label-Free Quantitative Mass Spectrometry-Based Proteomics. Nucleic Acids Res. 2013;41:e28. doi: 10.1093/nar/gks941. PubMed DOI PMC
Laugesen A., Højfeldt J.W., Helin K. Molecular Mechanisms Directing PRC2 Recruitment and H3K27 Methylation. Mol. Cell. 2019;74:8–18. doi: 10.1016/j.molcel.2019.03.011. PubMed DOI PMC
Huang Y., Su T., Wang C., Dong L., Liu S., Zhu Y., Hao K., Xia Y., Jiang Q., Qin J. Rbbp4 Suppresses Premature Differentiation of Embryonic Stem Cells. Stem Cell Rep. 2021;16:566–581. doi: 10.1016/j.stemcr.2021.01.009. PubMed DOI PMC
Xu C., Min J. Structure and Function of WD40 Domain Proteins. Protein Cell. 2011;2:202–214. doi: 10.1007/s13238-011-1018-1. PubMed DOI PMC
Hauri S., Comoglio F., Seimiya M., Gerstung M., Glatter T., Hansen K., Aebersold R., Paro R., Gstaiger M., Beisel C. A High-Density Map for Navigating the Human Polycomb Complexome. Cell Rep. 2016;17:583–595. doi: 10.1016/j.celrep.2016.08.096. PubMed DOI
Margueron R., Reinberg D. The Polycomb Complex PRC2 and Its Mark in Life. Nature. 2011;469:343–349. doi: 10.1038/nature09784. PubMed DOI PMC
Giner-Laguarda N., Vidal M. Functions of Polycomb Proteins on Active Targets. Epigenomes. 2020;4:17. doi: 10.3390/epigenomes4030017. PubMed DOI PMC
Kasinath V., Beck C., Sauer P., Poepsel S., Kosmatka J., Faini M., Toso D., Aebersold R., Nogales E. JARID2 and AEBP2 Regulate PRC2 in the Presence of H2AK119ub1 and Other Histone Modifications. Science. 2021;371:eabc3393. doi: 10.1126/science.abc3393. PubMed DOI PMC
Han Z., Xing X., Hu M., Zhang Y., Liu P., Chai J. Structural Basis of EZH2 Recognition by EED. Structure. 2007;15:1306–1315. doi: 10.1016/j.str.2007.08.007. PubMed DOI
Jiao L., Liu X. Structural Basis of Histone H3K27 Trimethylation by an Active Polycomb Repressive Complex 2. Science. 2015;350:aac4383. doi: 10.1126/science.aac4383. PubMed DOI PMC
Bratkowski M., Yang X., Liu X. Polycomb Repressive Complex 2 in an Autoinhibited State. J. Biol. Chem. 2017;292:13323–13332. doi: 10.1074/jbc.M117.787572. PubMed DOI PMC
Uckelmann M., Davidovich C. Not Just a Writer: PRC2 as a Chromatin Reader. Biochem. Soc. Trans. 2021;49:1159–1170. doi: 10.1042/BST20200728. PubMed DOI PMC
Shi Y., Wang X.X., Zhuang Y.W., Jiang Y., Melcher K., Xu H.E. Structure of the PRC2 Complex and Application to Drug Discovery. Acta Pharmacol. Sin. 2017;38:963–976. doi: 10.1038/aps.2017.7. PubMed DOI PMC
Moritz L.E., Trievel R.C. Structure, Mechanism, and Regulation of Polycomb-Repressive Complex 2. J. Biol. Chem. 2018;293:13805–13814. doi: 10.1074/jbc.R117.800367. PubMed DOI PMC
Chammas P., Mocavini I., Di Croce L. Engaging Chromatin: PRC2 Structure Meets Function. Br. J. Cancer. 2020;122:315–328. doi: 10.1038/s41416-019-0615-2. PubMed DOI PMC
The PyMOL Molecular Graphics System. Schrödinger, LLC.; New York, NY, USA: 2020. Version 2.4.1.
Kasinath V., Nogales E., Beck C., Sauer P., Poepsel S., Kosmatka J., Faini M., Toso D., Aebersold R. PRC2-AEBP2-JARID2 Bound to H2AK119ub1 Nucleosome. [(accessed on 20 November 2021)]. Available online: https://www.wwpdb.org/pdb?id=pdb_00006wkr. DOI
Li L., Zhang H., Zhang M., Zhao M., Feng L., Luo X., Gao Z., Huang Y., Ardayfio O., Zhang J.H., et al. Discovery and Molecular Basis of a Diverse Set of Polycomb Repressive Complex 2 Inhibitors Recognition by EED. PLoS ONE. 2017;12:e0169855. doi: 10.1371/journal.pone.0169855. PubMed DOI PMC
Blackledge N.P., Klose R.J. The Molecular Principles of Gene Regulation by Polycomb Repressive Complexes. Nat. Rev. Mol. Cell Biol. 2021;22:815–833. doi: 10.1038/s41580-021-00398-y. PubMed DOI PMC
Huang Y., Chen D.H., Liu B.Y., Shen W.H., Ruan Y. Conservation and Diversification of Polycomb Repressive Complex 2 (PRC2) Proteins in the Green Lineage. Brief. Funct. Genom. 2017;16:106–119. doi: 10.1093/bfgp/elw007. PubMed DOI
Chen L.J., Diao Z.Y., Specht C., Sung Z.R. Molecular Evolution of VEF-Domain-Containing PcG Genes in Plants. Mol. Plant. 2009;2:738–754. doi: 10.1093/mp/ssp032. PubMed DOI
Luo M., Platten D., Chaudhury A., Peacock W.J., Dennis E.S. Expression, Imprinting, and Evolution of Rice Homologs of the Polycomb Group Genes. Mol. Plant. 2009;2:711–723. doi: 10.1093/mp/ssp036. PubMed DOI
Nakamura M., Batista R.A., Köhler C., Hennig L. Polycomb Repressive Complex 2-Mediated Histone Modification H3K27me3 Is Associated with Embryogenic Potential in Norway Spruce. J. Exp. Bot. 2020;71:6366–6378. doi: 10.1093/jxb/eraa365. PubMed DOI PMC
Liu X., Zhou C., Zhao Y., Zhou S., Wang W., Zhou D.X. The Rice Enhancer of Zeste [E(z)] Genes SDG711 and SDG718 Are Respectively Involved in Long Day and Short Day Signaling to Mediate the Accurate Photoperiod Control of Flowering Time. Front. Plant Sci. 2014;5:591. doi: 10.3389/fpls.2014.00591. PubMed DOI PMC
Ni J., Ma X., Feng Y., Tian Q., Wang Y., Xu N., Tang J., Wang G. Updating and Interaction of Polycomb Repressive Complex 2 Components in Maize (Zea Mays) Planta. 2019;250:573–588. doi: 10.1007/s00425-019-03193-4. PubMed DOI
Cheng X., Pan M., Zhiguo E., Zhou Y., Niu B., Chen C. The Maternally Expressed Polycomb Group Gene OsEMF2a Is Essential for Endosperm Cellularization and Imprinting in Rice. Plant Commun. 2020;2:100092. doi: 10.1016/j.xplc.2020.100092. PubMed DOI PMC
Conrad L.J., Khanday I., Johnson C., Guiderdoni E., An G., Vijayraghavan U., Sundaresan V. The Polycomb Group Gene EMF2B Is Essential for Maintenance of Floral Meristem Determinacy in Rice. Plant J. 2014;80:883–894. doi: 10.1111/tpj.12688. PubMed DOI
Strejčková B., Čegan R., Pecinka A., Milec Z., Šafář J. Identification of Polycomb Repressive Complex 1 and 2 Core Components in Hexaploid Bread Wheat. BMC Plant Biol. 2020;20:175. doi: 10.1186/s12870-020-02384-6. PubMed DOI PMC
Higgins J.A., Bailey P.C., Laurie D.A. Comparative Genomics of Flowering Time Pathways Using Brachypodium Distachyon as a Model for the Temperate Grasses. PLoS ONE. 2010;5:e10065. doi: 10.1371/journal.pone.0010065. PubMed DOI PMC
Lomax A., Woods D.P., Dong Y., Bouché F., Rong Y., Mayer K.S., Zhong X., Amasino R.M. An Ortholog of CURLY LEAF/ENHANCER OF ZESTE like-1 Is Required for Proper Flowering in Brachypodium Distachyon. Plant J. 2018;93:871–882. doi: 10.1111/tpj.13815. PubMed DOI
Kapazoglou A., Tondelli A., Papaefthimiou D., Ampatzidou H., Francia E., Stanca M.A., Bladenopoulos K., Tsaftaris A.S. Epigenetic Chromatin Modifiers in Barley: IV. The Study of Barley Polycomb Group (PcG) Genes during Seed Development and in Response to External ABA. BMC Plant Biol. 2010;10:73. doi: 10.1186/1471-2229-10-73. PubMed DOI PMC
Tonosaki K., Kinoshita T. Possible Roles for Polycomb Repressive Complex 2 in Cereal Endosperm. Front. Plant Sci. 2015;6:144. doi: 10.3389/fpls.2015.00144. PubMed DOI PMC
Derkacheva M., Steinbach Y., Wildhaber T., Mozgová I., Mahrez W., Nanni P., Bischof S., Gruissem W., Hennig L. Arabidopsis MSI1 Connects LHP1 to PRC2 Complexes. EMBO J. 2013;32:2073–2085. doi: 10.1038/emboj.2013.145. PubMed DOI PMC
Zhao X., Deton Cabanillas A.F., Veluchamy A., Bowler C., Vieira F.R.J., Tirichine L. Probing the Diversity of Polycomb and Trithorax Proteins in Cultured and Environmentally Sampled Microalgae. Front. Mar. Sci. 2020;7:189. doi: 10.3389/fmars.2020.00189. DOI
Bourdareau S., Tirichine L., Lombard B., Loew D., Scornet D., Wu Y., Coelho S.M., Cock J.M. Histone Modifications during the Life Cycle of the Brown Alga Ectocarpus. Genome Biol. 2021;22:12. doi: 10.1186/s13059-020-02216-8. PubMed DOI PMC
Rzeszutek I., Maurer-Alcalá X.X., Nowacki M. Programmed Genome Rearrangements in Ciliates. Cell. Mol. Life Sci. 2020;77:4615–4629. doi: 10.1007/s00018-020-03555-2. PubMed DOI PMC
Frapporti A., Miró Pina C., Arnaiz O., Holoch D., Kawaguchi T., Humbert A., Eleftheriou E., Lombard B., Loew D., Sperling L., et al. The Polycomb Protein Ezl1 Mediates H3K9 and H3K27 Methylation to Repress Transposable Elements in Paramecium. Nat. Commun. 2019;10:2710. doi: 10.1038/s41467-019-10648-5. PubMed DOI PMC
Xu J., Zhao X., Mao F., Basrur V., Ueberheide B., Chait B.T., David Allis C., Taverna S.D., Gao S., Wang W., et al. A Polycomb Repressive Complex Is Required for RNAi-Mediated Heterochromatin Formation and Dynamic Distribution of Nuclear Bodies. Nucleic Acids Res. 2021;49:5407–5425. doi: 10.1093/nar/gkaa1262. PubMed DOI PMC
Nabeel-Shah S., Garg J., Saettone A., Ashraf K., Lee H., Wahab S., Ahmed N., Fine J., Derynck J., Pu S., et al. Functional Characterization of RebL1 Highlights the Evolutionary Conservation of Oncogenic Activities of the RBBP4/7 Orthologue in Tetrahymena Thermophila. Nucleic Acids Res. 2021;49:6196–6212. doi: 10.1093/nar/gkab413. PubMed DOI PMC
Ridenour J.B., Möller M., Freitag M. Polycomb Repression without Bristles: Facultative Heterochromatin and Genome Stability in Fungi. Genes. 2020;11:638. doi: 10.3390/genes11060638. PubMed DOI PMC
Connolly L.R., Smith K.M., Freitag M. The Fusarium Graminearum Histone H3 K27 Methyltransferase KMT6 Regulates Development and Expression of Secondary Metabolite Gene Clusters. PLoS Genet. 2013;9:e1003916. doi: 10.1371/journal.pgen.1003916. PubMed DOI PMC
Jamieson K., Rountree M.R., Lewis Z.A., Stajich J.E., Selker E.U. Regional Control of Histone H3 Lysine 27 Methylation in Neurospora. Proc. Natl. Acad. Sci. USA. 2013;110:6027–6032. doi: 10.1073/pnas.1303750110. PubMed DOI PMC
McNaught K.J., Wiles E.T., Selker E.U. Identification of a PRC2 Accessory Subunit Required for Subtelomeric H3K27 Methylation in Neurospora Crassa. Mol. Cell. Biol. 2020;40:e00003-20. doi: 10.1128/MCB.00003-20. PubMed DOI PMC
Sebé-Pedrós A., Ballaré C., Parra-Acero H., Chiva C., Tena J.J., Sabidó E., Gómez-Skarmeta J.L., Di Croce L., Ruiz-Trillo I. The Dynamic Regulatory Genome of Capsaspora and the Origin of Animal Multicellularity. Cell. 2016;165:1224–1237. doi: 10.1016/j.cell.2016.03.034. PubMed DOI PMC
Gaiti F., Jindrich K., Fernandez-Valverde S.L., Roper K.E., Degnan B.M., Tanurdžić M. Landscape of Histone Modifications in a Sponge Reveals the Origin of Animal Cis-Regulatory Complexity. eLife. 2017;6:e22194. doi: 10.7554/eLife.22194. PubMed DOI PMC
Genikhovich G., Kürn U., Hemmrich G., Bosch T.C.G. Discovery of Genes Expressed in Hydra Embryogenesis. Dev. Biol. 2006;289:466–481. doi: 10.1016/j.ydbio.2005.10.028. PubMed DOI
Pillai A., Gungi A., Reddy P.C., Galande S. Epigenetic Regulation in Hydra: Conserved and Divergent Roles. Front. Cell Dev. Biol. 2021;9:663208. doi: 10.3389/fcell.2021.663208. PubMed DOI PMC
PREDICTED: Polycomb Protein Suz12-like [Hydra Vulgaris] [(accessed on 21 October 2021)]; Available online: Https://Www.Ncbi.Nlm.Nih.Gov/Protein/XP_012556196.1?Report=genbank&log$=prottop&blast_rank=1&RID=R2KAB9PA013.
PREDICTED: Histone-Binding Protein RBBP7 [Hydra Vulgaris] [(accessed on 21 October 2021)]; Available online: Https://Www.Ncbi.Nlm.Nih.Gov/Protein/XP_012554465.1?Report=genbank&log$=prottop&blast_rank=1&RID=R2KUGECN013.
Herz H.-M., Mohan M., Garrett A.S., Miller C., Casto D., Zhang Y., Seidel C., Haug J.S., Florens L., Washburn M.P., et al. Polycomb Repressive Complex 2-Dependent and -Independent Functions of Jarid2 in Transcriptional Regulation in Drosophila. Mol. Cell. Biol. 2012;32:1683–1693. doi: 10.1128/MCB.06503-11. PubMed DOI PMC
Tolhuis B., Muijrers I., de Wit E., Teunissen H., Talhout W., van Steensel B., van Lohuizen M. Genome-Wide Profiling of PRC1 and PRC2 Polycomb Chromatin Binding in Drosophila Melanogaster. Nat. Genet. 2006;38:694–699. doi: 10.1038/ng1792. PubMed DOI
Siebold A.P., Banerjee R., Tie F., Kiss D.L., Moskowitz J., Harte P.J. Polycomb Repressive Complex 2 and Trithorax Modulate Drosophila Longevity and Stress Resistance. Proc. Natl. Acad. Sci. USA. 2010;107:169. doi: 10.1073/pnas.0907739107. PubMed DOI PMC
Bender L.B., Cao R., Zhang Y., Strome S. The MES-2/MES-3/MES-6 Complex and Regulation of Histone H3 Methylation in C. Elegans. Curr. Biol. 2004;14:1639–1643. doi: 10.1016/j.cub.2004.08.062. PubMed DOI
Gaydos L.J., Wang W., Strome S. H3K27me and PRC2 Transmit a Memory of Repression across Generations and during Development. Science. 2014;345:1515–1518. doi: 10.1126/science.1255023. PubMed DOI PMC
Brooun A., Gajiwala K.S., Deng Y.L., Liu W., Bolaños B., Bingham P., He Y.A., Diehl W., Grable N., Kung P.P., et al. Polycomb Repressive Complex 2 Structure with Inhibitor Reveals a Mechanism of Activation and Drug Resistance. Nat. Commun. 2016;7:11384. doi: 10.1038/ncomms11384. PubMed DOI PMC
PREDICTED: LOW QUALITY PROTEIN: Polycomb Protein SUZ12 [Anolis Carolinensis] [(accessed on 21 October 2021)]; Available online: Https://Www.Ncbi.Nlm.Nih.Gov/Protein/XP_008112590.1?Report=genbank&log$=prottop&blast_rank=1&RID=R2PMHJ83016.
PREDICTED: Polycomb Protein EED [Anolis Carolinensis] [(accessed on 21 October 2021)]; Available online: Https://Www.Ncbi.Nlm.Nih.Gov/Protein/XP_003219406.1?Report=genbank&log$=prottop&blast_rank=1&RID=R2PDKH5B013.
PREDICTED: Histone-Binding Protein RBBP4 Isoform X2 [Anolis Carolinensis] [(accessed on 21 October 2021)]; Available online: Https://Www.Ncbi.Nlm.Nih.Gov/Protein/XP_003230003.3?Report=genbank&log$=prottop&blast_rank=1&RID=R2P2UE3N013.
Grossniklaus U., Paro R. Transcriptional Silencing by Polycomb Group Proteins Cellular Memory. Cold Spring Harb. Perspect. Biol. 2014;6:a019331. doi: 10.1101/cshperspect.a019331. PubMed DOI PMC
He A., Ma Q., Cao J., von Gise A., Zhou P., Xie H., Zhang B., Hsing M., Christodoulou D.C., Cahan P., et al. Polycomb Repressive Complex 2 Regulates Normal Development of the Mouse Heart. Circ. Res. 2012;110:406–415. doi: 10.1161/CIRCRESAHA.111.252205. PubMed DOI PMC
Hennig L., Taranto P., Walser M., Schönrock N., Gruissem W. Arabidopsis MSI1 Is Required for Epigenetic Maintenance of Reproductive Development. Development. 2003;130:2555–2565. doi: 10.1242/dev.00470. PubMed DOI
Köhler C., Hennig L., Bouveret R., Gheyselinck J., Grossniklaus U., Gruissem W. Arabidopsis MSI1 Is a Component of the MEA/FIE Polycomb Group Complex and Required for Seed Development. EMBO J. 2003;22:4804–4814. doi: 10.1093/emboj/cdg444. PubMed DOI PMC
Hennig L., Bouveret R., Gruissem W. MSI1-like Proteins: An Escort Service for Chromatin Assembly and Remodeling Complexes. Trends Cell Biol. 2005;15:295–302. doi: 10.1016/j.tcb.2005.04.004. PubMed DOI
Doyle M.R., Amasino R.M. A Single Amino Acid Change in the Enhancer of Zeste Ortholog CURLY LEAF Results in Vernalization-Independent, Rapid Flowering in Arabidopsis. Plant Physiol. 2009;151:1688–1697. doi: 10.1104/pp.109.145581. PubMed DOI PMC
Xu M., Hu T., Smith M.R., Poethig R.S. Epigenetic Regulation of Vegetative Phase Change in Arabidopsis. Plant Cell. 2016;28:28–41. doi: 10.1105/tpc.15.00854. PubMed DOI PMC
Schubert D., Primavesi L., Bishopp A., Roberts G., Doonan J., Jenuwein T., Goodrich J. Silencing by Plant Polycomb-Group Genes Requires Dispersed Trimethylation of Histone H3 at Lysine 27. EMBO J. 2006;25:4638–4649. doi: 10.1038/sj.emboj.7601311. PubMed DOI PMC
Chanvivattana Y., Bishopp A., Schubert D., Stock C., Moon Y.H., Sung Z.R., Goodrich J. Interaction of Polycomb-Group Proteins Controlling Flowering in Arabidopsis. Development. 2004;131:5263–5276. doi: 10.1242/dev.01400. PubMed DOI
Aichinger E., Villar C.B.R., Farrona S., Reyes J.C., Hennig L., Köhler C. CHD3 Proteins and Polycomb Group Proteins Antagonistically Determine Cell Identity in Arabidopsis. PLoS Genet. 2009;5:e1000605. doi: 10.1371/journal.pgen.1000605. PubMed DOI PMC
Aichinger E., Villar C.B.R., Di Mambro R., Sabatini S., Köhler C. The CHD3 Chromatin Remodeler PICKLE and Polycomb Group Proteins Antagonistically Regulate Meristem Activity in the Arabidopsis Root. Plant Cell. 2011;23:1047–1060. doi: 10.1105/tpc.111.083352. PubMed DOI PMC
Simonini S., Bemer M., Bencivenga S., Gagliardini V., Pires N.D., Desvoyes B., van der Graaff E., Gutierrez C., Grossniklaus U. The Polycomb Group Protein MEDEA Controls Cell Proliferation and Embryonic Patterning in Arabidopsis. Dev. Cell. 2021;56:1945–1960.e7. doi: 10.1016/j.devcel.2021.06.004. PubMed DOI PMC
Moon Y.H., Chen L., Pan R.L., Chang H.S., Zhu T., Maffeo D.M., Sung Z.R. Erratum: EMF Genes Maintain Vegetative Development by Repressing the Flower Program in Arabidopsis. Plant Cell. 2003;15:681–693. doi: 10.1105/tpc.007831. PubMed DOI PMC
De Lucia F., Crevillen P., Jones A.M.E., Greb T., Dean C. A PHD-Polycomb Repressive Complex 2 Triggers the Epigenetic Silencing of FLC during Vernalization. Proc. Natl. Acad. Sci. USA. 2008;105:16831–16836. doi: 10.1073/pnas.0808687105. PubMed DOI PMC
Zhang S., Wang D., Zhang H., Skaggs M.I., Lloyd A., Ran D., An L., Schumaker K.S., Drews G.N., Yadegari R. FERTILIZATION-INDEPENDENT SEED-Polycomb Repressive Complex 2 Plays a Dual Role in Regulating Type i MADS-Box Genes in Early Endosperm Development. Plant Physiol. 2018;177:285–299. doi: 10.1104/pp.17.00534. PubMed DOI PMC
Bloomer R.H., Hutchison C.E., Bäurle I., Walker J., Fang X., Perera P., Velanis C.N., Gümüs S., Spanos C., Rappsilber J., et al. The Arabidopsis Epigenetic Regulator ICU11 as an Accessory Protein of Polycomb Repressive Complex 2. Proc. Natl. Acad. Sci. USA. 2020;117:16660. doi: 10.1073/pnas.1920621117. PubMed DOI PMC
Zhou Y., Wang Y., Krause K., Yang T., Dongus J.A., Zhang Y., Turck F. Telobox Motifs Recruit CLF/SWN-PRC2 for H3K27me3 Deposition via TRB Factors in Arabidopsis. Nat. Genet. 2018;50:638–644. doi: 10.1038/s41588-018-0109-9. PubMed DOI
Hohenstatt M.L., Mikulski P., Komarynets O., Klose C., Kycia I., Jeltsch A., Farrona S., Schubert D. PWWP-DOMAIN INTERACTOR OF POLYCOMBS1 Interacts with Polycomb-Group Proteins and Histones and Regulates Arabidopsis Flowering and Development. Plant Cell. 2018;30:117–133. doi: 10.1105/tpc.17.00117. PubMed DOI PMC
Yuan L., Song X., Zhang L., Yu Y., Liang Z., Lei Y., Ruan J., Tan B., Liu J., Li C. The Transcriptional Repressors VAL1 and VAL2 Recruit PRC2 for Genome-Wide Polycomb Silencing in Arabidopsis. Nucleic Acids Res. 2021;49:98–113. doi: 10.1093/nar/gkaa1129. PubMed DOI PMC
Zhang P., Zhu C., Geng Y., Wang Y., Yang Y., Liu Q., Guo W., Chachar S., Riaz A., Yan S., et al. Rice and Arabidopsis Homologs of Yeast CHROMOSOME TRANSMISSION FIDELITY PROTEIN 4 Commonly Interact with Polycomb Complexes but Exert Divergent Regulatory Functions. Plant Cell. 2021;33:1417–1429. doi: 10.1093/plcell/koab047. PubMed DOI PMC
Velanis C.N., Perera P., Thomson B., de Leau E., Liang S.C., Hartwig B., Förderer A., Thornton H., Arede P., Chen J., et al. The Domesticated Transposase ALP2 Mediates Formation of a Novel Polycomb Protein Complex by Direct Interaction with MSI1, a Core Subunit of Polycomb Repressive Complex 2 (PRC2) PLoS Genet. 2020;16:e1008681. doi: 10.1371/journal.pgen.1008681. PubMed DOI PMC
Zhou Y., Tergemina E., Cui H., Förderer A., Hartwig B., Velikkakam James G., Schneeberger K., Turck F. Ctf4-Related Protein Recruits LHP1-PRC2 to Maintain H3K27me3 Levels in Dividing Cells in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 2017;114:4833. doi: 10.1073/pnas.1620955114. PubMed DOI PMC
Jacob Y., Feng S., LeBlanc C.A., Bernatavichute Y.V., Stroud H., Cokus S., Johnson L.M., Pellegrini M., Jacobsen S.E., Michaels S.D. ATXR5 and ATXR6 Are H3K27 Monomethyltransferases Required for Chromatin Structure and Gene Silencing. Nat. Struct. Mol. Biol. 2009;16:763–768. doi: 10.1038/nsmb.1611. PubMed DOI PMC
Schwartz Y.B., Kahn T.G., Nix D.A., Li X.-Y., Bourgon R., Biggin M., Pirrotta V. Genome-Wide Analysis of Polycomb Targets in Drosophila Melanogaster. Nat. Genet. 2006;38:700–705. doi: 10.1038/ng1817. PubMed DOI
Crispatzu G., Rehimi R., Pachano T., Bleckwehl T., Cruz-Molina S., Xiao C., Mahabir E., Bazzi H., Rada-Iglesias A. The Chromatin, Topological and Regulatory Properties of Pluripotency-Associated Poised Enhancers Are Conserved in Vivo. Nat. Commun. 2021;12:4344. doi: 10.1038/s41467-021-24641-4. PubMed DOI PMC
Chan H.L., Beckedorff F., Zhang Y., Garcia-Huidobro J., Jiang H., Colaprico A., Bilbao D., Figueroa M.E., LaCava J., Shiekhattar R., et al. Polycomb Complexes Associate with Enhancers and Promote Oncogenic Transcriptional Programs in Cancer through Multiple Mechanisms. Nat. Commun. 2018;9:3377. doi: 10.1038/s41467-018-05728-x. PubMed DOI PMC
Roudier F., Ahmed I., Bérard C., Sarazin A., Mary-Huard T., Cortijo S., Bouyer D., Caillieux E., Duvernois-Berthet E., Al-Shikhley L., et al. Integrative Epigenomic Mapping Defines Four Main Chromatin States in Arabidopsis. EMBO J. 2011;30:1928–1938. doi: 10.1038/emboj.2011.103. PubMed DOI PMC
Sequeira-Mendes J., Aragüez I., Peiró R., Mendez-Giraldez R., Zhang X., Jacobsen S.E., Bastolla U., Gutierrez C. The Functional Topography of the Arabidopsis Genome Is Organized in a Reduced Number of Linear Motifs of Chromatin States. Plant Cell. 2014;26:2351–2366. doi: 10.1105/tpc.114.124578. PubMed DOI PMC
Yu N., Nützmann H.W., Macdonald J.T., Moore B., Field B., Berriri S., Trick M., Rosser S.J., Kumar S.V., Freemont P.S., et al. Delineation of Metabolic Gene Clusters in Plant Genomes by Chromatin Signatures. Nucleic Acids Res. 2016;44:2255–2265. doi: 10.1093/nar/gkw100. PubMed DOI PMC
Lafos M., Kroll P., Hohenstatt M.L., Thorpe F.L., Clarenz O., Schubert D. Dynamic Regulation of H3K27 Trimethylation during Arabidopsis Differentiation. PLoS Genet. 2011;7:e1002040. doi: 10.1371/journal.pgen.1002040. PubMed DOI PMC
Bellegarde F., Herbert L., Séré D., Caillieux E., Boucherez J., Fizames C., Roudier F., Gojon A., Martin A. Polycomb Repressive Complex 2 Attenuates the Very High Expression of the Arabidopsis Gene NRT2.1. Sci. Rep. 2018;8:7905. doi: 10.1038/s41598-018-26349-w. PubMed DOI PMC
Park E.Y., Tsuyuki K.M., Hu F., Lee J., Jeong J. PRC2-Mediated H3K27me3 Contributes to Transcriptional Regulation of FIT-Dependent Iron Deficiency Response. Front. Plant Sci. 2019;10:627. doi: 10.3389/fpls.2019.00627. PubMed DOI PMC
Sani E., Herzyk P., Perrella G., Colot V., Amtmann A. Hyperosmotic Priming of Arabidopsis Seedlings Establishes a Long-Term Somatic Memory Accompanied by Specific Changes of the Epigenome. Genome Biol. 2013;14:R59. doi: 10.1186/gb-2013-14-6-r59. PubMed DOI PMC
Chica C., Louis A., Roest Crollius H., Colot V., Roudier F. Comparative Epigenomics in the Brassicaceae Reveals Two Evolutionarily Conserved Modes of PRC2-Mediated Gene Regulation. Genome Biol. 2017;18:207. doi: 10.1186/s13059-017-1333-9. PubMed DOI PMC
Lämke J., Bäurle I. Epigenetic and Chromatin-Based Mechanisms in Environmental Stress Adaptation and Stress Memory in Plants. Genome Biol. 2017;18:124. doi: 10.1186/s13059-017-1263-6. PubMed DOI PMC
Kim J.-M., Sasaki T., Ueda M., Sako K., Seki M. Chromatin Changes in Response to Drought, Salinity, Heat, and Cold Stresses in Plants. Front. Plant Sci. 2015;6:114. doi: 10.3389/fpls.2015.00114. PubMed DOI PMC
You Y., Sawikowska A., Neumann M., Posé D., Capovilla G., Langenecker T., Neher R.A., Krajewski P., Schmid M. Temporal Dynamics of Gene Expression and Histone Marks at the Arabidopsis Shoot Meristem during Flowering. Nat. Commun. 2017;8:207. doi: 10.1038/ncomms15120. PubMed DOI PMC
Veluchamy A., Rastogi A., Lin X., Lombard B., Murik O., Thomas Y., Dingli F., Rivarola M., Ott S., Liu X., et al. An Integrative Analysis of Post-Translational Histone Modifications in the Marine Diatom Phaeodactylum Tricornutum. Genome Biol. 2015;16:102. doi: 10.1186/s13059-015-0671-8. PubMed DOI PMC
Montgomery S.A., Tanizawa Y., Galik B., Wang N., Ito T., Mochizuki T., Akimcheva S., Bowman J.L., Cognat V., Maréchal-Drouard L., et al. Chromatin Organization in Early Land Plants Reveals an Ancestral Association between H3K27me3, Transposons, and Constitutive Heterochromatin. Curr. Biol. 2020;30:573–588.e7. doi: 10.1016/j.cub.2019.12.015. PubMed DOI PMC
Moreno-Romero J., Jiang H., Santos-González J., Köhler C. Parental Epigenetic Asymmetry of PRC2-Mediated Histone Modifications in the Arabidopsis Endosperm. EMBO J. 2016;35:1298–1311. doi: 10.15252/embj.201593534. PubMed DOI PMC
Ma Z., Wang H., Cai Y., Wang H., Niu K., Wu X., Ma H., Yang Y., Tong W., Liu F., et al. Epigenetic Drift of H3K27me3 in Aging Links Glycolysis to Healthy Longevity in Drosophila. Elife. 2018;7:e35368. doi: 10.7554/eLife.35368. PubMed DOI PMC
Trim Galore. [(accessed on 7 January 2022)]. Available online: http://www.Bioinformatics.Babraham.Ac.Uk/Projects/Trim_galore/
Langmead B., Salzberg S.L. Fast Gapped-Read Alignment with Bowtie 2. Nat. Methods. 2012;9:357–359. doi: 10.1038/nmeth.1923. PubMed DOI PMC
Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R. 1000 Genome Project Data Processing Subgroup the Sequence Alignment/Map Format and SAMtools. Bioinformatics. 2009;25:2078–2079. doi: 10.1093/bioinformatics/btp352. PubMed DOI PMC
Robinson J.T., Thorvaldsdóttir H., Wenger A.M., Zehir A., Mesirov J.P. Variant Review with the Integrative Genomics Viewer. Cancer Res. 2017;77:e31–e34. doi: 10.1158/0008-5472.CAN-17-0337. PubMed DOI PMC
Ramírez F., Ryan D.P., Grüning B., Bhardwaj V., Kilpert F., Richter A.S., Heyne S., Dündar F., Manke T. DeepTools2: A next Generation Web Server for Deep-Sequencing Data Analysis. Nucleic Acids Res. 2016;44:W160–W165. doi: 10.1093/nar/gkw257. PubMed DOI PMC
Bredesen B.A., Rehmsmeier M. DNA Sequence Models of Genome-Wide Drosophila Melanogaster Polycomb Binding Sites Improve Generalization to Independent Polycomb Response Elements. Nucleic Acids Res. 2019;47:7781–7797. doi: 10.1093/nar/gkz617. PubMed DOI PMC
Erokhin M., Gorbenko F., Lomaev D., Mazina M.Y., Mikhailova A., Garaev A.K., Parshikov A., Vorobyeva N.E., Georgiev P., Schedl P., et al. Boundaries Potentiate Polycomb Response Element-Mediated Silencing. BMC Biol. 2021;19:113. doi: 10.1186/s12915-021-01047-8. PubMed DOI PMC
Kassis J.A., Brown J.L. Polycomb Group Response Elements in Drosophila and Vertebrates. Adv. Genet. 2013;81:83–118. doi: 10.1016/B978-0-12-407677-8.00003-8. PubMed DOI PMC
Schorderet P., Lonfat N., Darbellay F., Tschopp P., Gitto S., Soshnikova N., Duboule D. A Genetic Approach to the Recruitment of PRC2 at the HoxD Locus. PLoS Genet. 2013;9:e1003951. doi: 10.1371/journal.pgen.1003951. PubMed DOI PMC
Ray P., De S., Mitra A., Bezstarosti K., Demmers J.A.A., Pfeifer K., Kassis J.A. Combgap Contributes to Recruitment of Polycomb Group Proteins in Drosophila. Proc. Natl. Acad. Sci. USA. 2016;113:3826–3831. doi: 10.1073/pnas.1520926113. PubMed DOI PMC
Du J., Kirk B., Zeng J., Ma J., Wang Q. Three Classes of Response Elements for Human PRC2 and MLL1/2-Trithorax Complexes. Nucleic Acids Res. 2018;46:8848–8864. doi: 10.1093/nar/gky595. PubMed DOI PMC
Lynch M.D., Smith A.J.H., De Gobbi M., Flenley M., Hughes J.R., Vernimmen D., Ayyub H., Sharpe J.A., Sloane-Stanley J.A., Sutherland L., et al. An Interspecies Analysis Reveals a Key Role for Unmethylated CpG Dinucleotides in Vertebrate Polycomb Complex Recruitment. EMBO J. 2012;31:317–329. doi: 10.1038/emboj.2011.399. PubMed DOI PMC
Chen S., Jiao L., Liu X., Yang X., Liu X. A Dimeric Structural Scaffold for PRC2-PCL Targeting to CpG Island Chromatin. Mol. Cell. 2020;77:1265–1278. doi: 10.1016/j.molcel.2019.12.019. PubMed DOI PMC
Mendenhall E.M., Koche R.P., Truong T., Zhou V.W., Issac B., Chi A.S., Ku M., Bernstein B.E. GC-Rich Sequence Elements Recruit PRC2 in Mammalian ES Cells. PLoS Genet. 2010;6:e1001244. doi: 10.1371/journal.pgen.1001244. PubMed DOI PMC
Lodha M., Marco C.F., Timmermans M.C.P. The ASYMMETRIC LEAVES Complex Maintains Repression of KNOX Homeobox Genes via Direct Recruitment of Polycomb-Repressive Complex2. Genes Dev. 2013;27:596–601. doi: 10.1101/gad.211425.112. PubMed DOI PMC
Berger N., Dubreucq B., Roudier F., Dubos C., Lepiniec L. Transcriptional Regulation of Arabidopsis LEAFY COTYLEDON2 Involves RLE, a Cis-Element That Regulates Trimethylation of Histone H3 at Lysine-27. Plant Cell. 2011;23:4065–4078. doi: 10.1105/tpc.111.087866. PubMed DOI PMC
Xiao J., Jin R., Yu X., Shen M., Wagner J.D., Pai A., Song C., Zhuang M., Klasfeld S., He C., et al. Cis and Trans Determinants of Epigenetic Silencing by Polycomb Repressive Complex 2 in Arabidopsis. Nat. Genet. 2017;49:1546–1552. doi: 10.1038/ng.3937. PubMed DOI
Mu Y., Zou M., Sun X., He B., Xu X., Liu Y., Zhang L., Chi W. BASIC PENTACYSTEINE Proteins Repress Abscisic Acid INSENSITIVE 4 Expression via Direct Recruitment of the Polycomb-Repressive Complex 2 in Arabidopsis Root Development. Plant Cell Physiol. 2017;58:607–621. doi: 10.1093/pcp/pcx006. PubMed DOI
Fouracre J.P., He J., Chen V.J., Sidoli S., Scott Poethig R. VAL Genes Regulate Vegetative Phase Change via MiR156-Dependent and Independent Mechanisms. PLoS Genet. 2021;17:e1009626. doi: 10.1371/journal.pgen.1009626. PubMed DOI PMC
Brockdorff N. Noncoding RNA and Polycomb Recruitment. RNA. 2013;19:429–442. doi: 10.1261/rna.037598.112. PubMed DOI PMC
Davidovich C., Cech T.R. The Recruitment of Chromatin Modifiers by Long Noncoding RNAs: Lessons from PRC2. Rna. 2015;21:2007–2022. doi: 10.1261/rna.053918.115. PubMed DOI PMC
Skourti-Stathaki K., Torlai Triglia E., Warburton M., Voigt P., Bird A., Pombo A. R-Loops Enhance Polycomb Repression at a Subset of Developmental Regulator Genes. Mol. Cell. 2019;73:930–945. doi: 10.1016/j.molcel.2018.12.016. PubMed DOI PMC
Allison D.F., Wang G.G. R-Loops: Formation, Function, and Relevance to Cell Stress. Cell Stress. 2019;3:38–46. doi: 10.15698/cst2019.02.175. PubMed DOI PMC
Alecki C., Chiwara V., Sanz L.A., Grau D., Arias Pérez O., Boulier E.L., Armache K.J., Chédin F., Francis N.J. RNA-DNA Strand Exchange by the Drosophila Polycomb Complex PRC2. Nat. Commun. 2020;11:1781. doi: 10.1038/s41467-020-15609-x. PubMed DOI PMC
Chen P.B., Chen H.V., Acharya D., Rando O.J., Fazzio T.G. R Loops Regulate Promoter-Proximal Chromatin Architecture and Cellular Differentiation. Nat. Struct. Mol. Biol. 2015;22:999–1007. doi: 10.1038/nsmb.3122. PubMed DOI PMC
Tian Y., Zheng H., Zhang F., Wang S., Ji X., Xu C., He Y., Ding Y. PRC2 Recruitment and H3K27me3 Deposition at FLC Require FCA Binding of COOLAIR. Sci. Adv. 2019;5:eaau7246. doi: 10.1126/sciadv.aau7246. PubMed DOI PMC
Csorba T., Questa J.I., Sun Q., Dean C. Antisense COOLAIR Mediates the Coordinated Switching of Chromatin States at FLC during Vernalization. Proc. Natl. Acad. Sci. USA. 2014;111:16160–16165. doi: 10.1073/pnas.1419030111. PubMed DOI PMC
Ariel F., Jegu T., Latrasse D., Romero-Barrios N., Christ A., Benhamed M., Crespi M. Noncoding Transcription by Alternative RNA Polymerases Dynamically Regulates an Auxin-Driven Chromatin Loop. Mol. Cell. 2014;55:383–396. doi: 10.1016/j.molcel.2014.06.011. PubMed DOI
Cai L., Rothbart S.B., Lu R., Xu B., Chen W.-Y., Tripathy A., Rockowitz S., Zheng D., Patel D.J., Allis C.D., et al. An H3K36 Methylation-Engaging Tudor Motif of Polycomb-like Proteins Mediates PRC2 Complex Targeting. Mol. Cell. 2013;49:571–582. doi: 10.1016/j.molcel.2012.11.026. PubMed DOI PMC
Schmitges F.W., Prusty A.B., Faty M., Stützer A., Lingaraju G.M., Aiwazian J., Sack R., Hess D., Li L., Zhou S., et al. Histone Methylation by PRC2 Is Inhibited by Active Chromatin Marks. Mol. Cell. 2011;42:330–341. doi: 10.1016/j.molcel.2011.03.025. PubMed DOI
Yuan W., Xu M., Huang C., Liu N., Chen S., Zhu B. H3K36 Methylation Antagonizes PRC2-Mediated H3K27 Methylation. J. Biol. Chem. 2011;286:7983–7989. doi: 10.1074/jbc.M110.194027. PubMed DOI PMC
Finogenova K., Bonnet J., Poepsel S., Schäfer I.B., Finkl K., Schmid K., Litz C., Strauss M., Benda C., Müller J. Structural Basis for PRC2 Decoding of Active Histone Methylation Marks H3K36me2/3. eLife. 2020;9:e61964. doi: 10.7554/eLife.61964. PubMed DOI PMC
Van Kruijsbergen I., Hontelez S., Veenstra G.J.C. Recruiting Polycomb to Chromatin. Int. J. Biochem. Cell Biol. 2015;67:177–187. doi: 10.1016/j.biocel.2015.05.006. PubMed DOI PMC
Ballaré C., Lange M., Lapinaite A., Martin G.M., Morey L., Pascual G., Liefke R., Simon B., Shi Y., Gozani O., et al. Phf19 Links Methylated Lys36 of Histone H3 to Regulation of Polycomb Activity. Nat. Struct. Mol. Biol. 2012;19:1257–1265. doi: 10.1038/nsmb.2434. PubMed DOI PMC
Blanco E., González-Ramírez M., Alcaine-Colet A., Aranda S., Croce L.D. The Bivalent Genome: Characterization, Structure, and Regulation. Trends Genet. 2020;36:118–131. doi: 10.1016/j.tig.2019.11.004. PubMed DOI
Zhang Q., Guan P., Zhao L., Ma M., Xie L., Li Y., Zheng R., Ouyang W., Wang S., Li H., et al. Asymmetric Epigenome Maps of Subgenomes Reveal Imbalanced Transcription and Distinct Evolutionary Trends in Brassica Napus. Mol. Plant. 2021;14:604–619. doi: 10.1016/j.molp.2020.12.020. PubMed DOI
Zhao K., Kong D., Jin B., Smolke C.D., Rhee S.Y. A Novel Bivalent Chromatin Associates with Rapid Induction of Camalexin Biosynthesis Genes in Response to a Pathogen Signal in Arabidopsis. elife. 2021;10:e69508. doi: 10.7554/eLife.69508. PubMed DOI PMC
Hansen K.H., Bracken A.P., Pasini D., Dietrich N., Gehani S.S., Monrad A., Rappsilber J., Lerdrup M., Helin K. A Model for Transmission of the H3K27me3 Epigenetic Mark. Nat. Cell Biol. 2008;10:1291–1300. doi: 10.1038/ncb1787. PubMed DOI
Margueron R., Justin N., Ohno K., Sharpe M.L., Son J., Iii W.J.D., Voigt P., Martin S., Taylor W.R., Marco V.D., et al. Role of the Polycomb Protein EED in the Propagation of Repressive Histone Marks. Nature. 2009;461:762–767. doi: 10.1038/nature08398. PubMed DOI PMC
Exner V., Aichinger E., Shu H., Wildhaber T., Alfarano P., Caflisch A., Gruissem W., Köhler C., Hennig L. The Chromodomain of LIKE HETEROCHROMATIN PROTEIN 1 Is Essential for H3K27me3 Binding and Function during Arabidopsis Development. PLoS ONE. 2009;4:e0005335. doi: 10.1371/journal.pone.0005335. PubMed DOI PMC
Cooper S., Dienstbier M., Hassan R., Schermelleh L., Sharif J., Blackledge N.P., De Marco V., Elderkin S., Koseki H., Klose R., et al. Targeting Polycomb to Pericentric Heterochromatin in Embryonic Stem Cells Reveals a Role for H2AK119u1 in PRC2 Recruitment. Cell Rep. 2014;7:1456–1470. doi: 10.1016/j.celrep.2014.04.012. PubMed DOI PMC
Dobrinić P., Szczurek A.T., Klose R.J. PRC1 Drives Polycomb-Mediated Gene Repression by Controlling Transcription Initiation and Burst Frequency. Nat. Struct. Mol. Biol. 2021;28:811–824. doi: 10.1038/s41594-021-00661-y. PubMed DOI PMC
Blackledge N.P., Rose N.R., Klose R.J. Targeting Polycomb Systems to Regulate Gene Expression: Modifications to a Complex Story. Nat. Rev. Mol. Cell Biol. 2015;16:643–649. doi: 10.1038/nrm4067. PubMed DOI PMC
Barbour H., Daou S., Hendzel M., Affar E.B. Polycomb Group-Mediated Histone H2A Monoubiquitination in Epigenome Regulation and Nuclear Processes. Nat. Commun. 2020;11:5947. doi: 10.1038/s41467-020-19722-9. PubMed DOI PMC
Yin X., Romero-Campero F.J., de Los Reyes P., Yan P., Yang J., Tian G., Yang X., Mo X., Zhao S., Calonje M., et al. H2AK121ub in Arabidopsis Associates with a Less Accessible Chromatin State at Transcriptional Regulation Hotspots. Nat. Commun. 2021;12:315. doi: 10.1038/s41467-020-20614-1. PubMed DOI PMC
Freitag M. Histone Methylation by SET Domain Proteins in Fungi. Annu. Rev. Microbiol. 2017;71:413–439. doi: 10.1146/annurev-micro-102215-095757. PubMed DOI
Köhler C., Villar C.B.R. Programming of Gene Expression by Polycomb Group Proteins. Trends Cell Biol. 2008;18:236–243. doi: 10.1016/j.tcb.2008.02.005. PubMed DOI
Trojer P., Reinberg D. Histone Lysine Demethylases and Their Impact on Epigenetics. Cell. 2006;125:213–217. doi: 10.1016/j.cell.2006.04.003. PubMed DOI
Sharaf A., Vijayanathan M., Oborník M., Mozgová I. Phylogenetic Profiling Suggests Early Origin of the Core Subunits of Polycomb Repressive Complex 2 (PRC2) 2021. [(accessed on 28 December 2021)]. Available online: https://www.biorxiv.org/content/10.1101/2021.07.16.452543v1.abstract. DOI
Margulis L., Chapman M., Guerrero R., Hall J. The Last Eukaryotic Common Ancestor (LECA): Acquisition of Cytoskeletal Motility from Aerotolerant Spirochetes in the Proterozoic Eon. Proc. Natl. Acad. Sci. USA. 2006;103:13080. doi: 10.1073/pnas.0604985103. PubMed DOI PMC
O’Malley M.A., Leger M.M., Wideman J.G., Ruiz-Trillo I. Concepts of the Last Eukaryotic Common Ancestor. Nat. Ecol. Evol. 2019;3:338–344. doi: 10.1038/s41559-019-0796-3. PubMed DOI
Spillane C., Schmid K.J., Laoueillé-Duprat S., Pien S., Escobar-Restrepo J.M., Baroux C., Gagliardini V., Page D.R., Wolfe K.H., Grossniklaus U. Positive Darwinian Selection at the Imprinted MEDEA Locus in Plants. Nature. 2007;448:349–352. doi: 10.1038/nature05984. PubMed DOI
Qiu Y., Liu S.L., Adams K.L. Concerted Divergence after Gene Duplication in Polycomb Repressive Complexes. Plant Physiol. 2017;174:1192–1204. doi: 10.1104/pp.16.01983. PubMed DOI PMC
Wong J.T.Y. Architectural Organization of Dinoflagellate Liquid Crystalline Chromosomes. Microorganisms. 2019;7:27. doi: 10.3390/microorganisms7020027. PubMed DOI PMC
Marinov G.K., Lynch M. Diversity and Divergence of Dinoflagellate Histone Proteins. G3: Genes Genomes Genet. 2016;6:397–422. doi: 10.1534/g3.115.023275. PubMed DOI PMC
Gornik S.G., Ford K.L., Mulhern T.D., Bacic A., McFadden G.I., Waller R.F. Loss of Nucleosomal DNA Condensation Coincides with Appearance of a Novel Nuclear Protein in Dinoflagellates. Curr. Biol. 2012;22:2303–2312. doi: 10.1016/j.cub.2012.10.036. PubMed DOI
Pan B., Chen X., Hou L., Zhang Q., Qu Z., Warren A., Miao M. Comparative Genomics Analysis of Ciliates Provides Insights on the Evolutionary History Within “Nassophorea–Synhymenia–Phyllopharyngea” Assemblage. Front. Microbiol. 2019;10:2819. doi: 10.3389/fmicb.2019.02819. PubMed DOI PMC
Chalker D.L., Meyer E., Mochizuki K. Epigenetics of Ciliates. Cold Spring Harb. Perspect. Biol. 2013;5:a017764. doi: 10.1101/cshperspect.a017764. PubMed DOI PMC
Taverna S.D., Coyne R.S., Allis C.D. Methylation of Histone H3 at Lysine 9 Targets Programmed DNA Elimination in Tetrahymena. Cell. 2002;110:701–711. doi: 10.1016/S0092-8674(02)00941-8. PubMed DOI
Liu Y., Mochizuki K., Gorovsky M.A. Histone H3 Lysine 9 Methylation Is Required for DNA Elimination in Developing Macronuclei in Tetrahymena. Proc. Natl. Acad. Sci. USA. 2004;101:1679–1684. doi: 10.1073/pnas.0305421101. PubMed DOI PMC
Liu Y., Taverna S.D., Muratore T.L., Shabanowitz J., Hunt D.F., Allis C.D. RNAi-Dependent H3K27 Methylation Is Required for Heterochromatin Formation and DNA Elimination in Tetrahymena. Genes Dev. 2007;21:1530–1545. doi: 10.1101/gad.1544207. PubMed DOI PMC
Zhao X., Xiong J., Mao F., Sheng Y., Chen X., Feng L., Dui W., Yang W., Kapusta A., Feschotte C., et al. RNAi-Dependent Polycomb Repression Controls Transposable Elements in Tetrahymena. Genes Dev. 2019;33:348–364. doi: 10.1101/gad.320796.118. PubMed DOI PMC
Cao R., Wang L., Wang H., Xia L., Erdjument-Bromage H., Tempst P., Jones R.S., Zhang Y. Role of Histone H3 Lysine 27 Methylation in Polycomb-Group Silencing. Science. 2002;298:1039–1043. doi: 10.1126/science.1076997. PubMed DOI
Czermin B., Melfi R., McCabe D., Seitz V., Imhof A., Pirrotta V. Drosophila Enhancer of Zeste/ESC Complexes Have a Histone H3 Methyltransferase Activity That Marks Chromosomal Polycomb Sites. Cell. 2002;111:185–196. doi: 10.1016/S0092-8674(02)00975-3. PubMed DOI
Kuzmichev A., Nishioka K., Erdjument-Bromage H., Tempst P., Reinberg D. Histone Methyltransferase Activity Associated with a Human Multiprotein Complex Containing the Enhancer of Zeste Protein. Genes Dev. 2002;16:2893–2905. doi: 10.1101/gad.1035902. PubMed DOI PMC
Erlendson A.A., Friedman S., Freitag M. A Matter of Scale and Dimensions: Chromatin of Chromosome Landmarks in the Fungi. Microbiol. Spectr. 2017;5 doi: 10.1128/microbiolspec.FUNK-0054-2017. PubMed DOI PMC
Smith K.M., Kothe G.O., Matsen C.B., Khlafallah T.K., Adhvaryu K.K., Hemphill M., Freitag M., Motamedi M.R., Selker E.U. The Fungus Neurospora Crassa Displays Telomeric Silencing Mediated by Multiple Sirtuins and by Methylation of Histone H3 Lysine 9. Epigenet. Chromatin. 2008;1:5. doi: 10.1186/1756-8935-1-5. PubMed DOI PMC
Bratkowski M., Yang X., Liu X. An Evolutionarily Conserved Structural Platform for PRC2 Inhibition by a Class of Ezh2 Inhibitors. Sci. Rep. 2018;8 doi: 10.1038/s41598-018-27175-w. PubMed DOI PMC
Studt L., Rösler S.M., Burkhardt I., Arndt B., Freitag M., Humpf H.U., Dickschat J.S., Tudzynski B. Knock-down of the Methyltransferase Kmt6 Relieves H3K27me3 and Results in Induction of Cryptic and Otherwise Silent Secondary Metabolite Gene Clusters in Fusarium Fujikuroi. Environ. Microbiol. 2016;18:4037–4054. doi: 10.1111/1462-2920.13427. PubMed DOI PMC
Carlier F., Li M., Maroc L., Debuchy R., Souaid C., Noordermeer D., Grognet P., Malagnac F. Loss of EZH2-like or SU(VAR)3–9-like Proteins Causes Simultaneous Perturbations in H3K27 and H3K9 Tri-Methylation and Associated Developmental Defects in the Fungus Podospora Anserina. Epigenet. Chromatin. 2021;14:22. doi: 10.1186/s13072-021-00395-7. PubMed DOI PMC
Ferraro A.R., Ameri A.J., Lu Z., Kamei M., Schmitz R.J., Lewis Z.A. Chromatin Accessibility Profiling in Neurospora Crassa Reveals Molecular Features Associated with Accessible and Inaccessible Chromatin. BMC Genom. 2021;22:459. doi: 10.1186/s12864-021-07774-0. PubMed DOI PMC
Jiao L., Liu X. Structural Analysis of an Active Fungal PRC2. Nucleus. 2016;7:284–291. doi: 10.1080/19491034.2016.1183849. PubMed DOI PMC
Srivastava M., Simakov O., Chapman J., Fahey B., Gauthier M.E.A., Mitros T., Richards G.S., Conaco C., Dacre M., Hellsten U., et al. The Amphimedon Queenslandica Genome and the Evolution of Animal Complexity. Nature. 2010;466:720–726. doi: 10.1038/nature09201. PubMed DOI PMC
Müller W.E.G., Wiens M., Adell T., Gamulin V., Schröder H.C., Müller I.M. Bauplan of Urmetazoa: Basis for Genetic Complexity of Metazoa. Int. Rev. Cytol. 2004;235:53–92. doi: 10.1016/S0074-7696(04)35002-3. PubMed DOI
Verheul T.C.J., van Hijfte L., Perenthaler E., Barakat T.S. The Why of YY1: Mechanisms of Transcriptional Regulation by Yin Yang 1. Front. Cell Dev. Biol. 2020;8:1034. doi: 10.3389/fcell.2020.592164. PubMed DOI PMC
Vandamme J., Sidoli S., Mariani L., Friis C., Christensen J., Helin K., Jensen O.N., Salcini A.E. H3K23me2 Is a New Heterochromatic Mark in Caenorhabditis Elegans. Nucleic Acids Res. 2015;43:9694–9710. doi: 10.1093/nar/gkv1063. PubMed DOI PMC
Ahringer J., Gasser S.M. Repressive Chromatin in Caenorhabditis Elegans: Establishment, Composition, and Function. Genetics. 2018;208:491–511. doi: 10.1534/genetics.117.300386. PubMed DOI PMC
Holdeman R., Nehrt S., Strome S. MES-2, a Maternal Protein Essential for Viability of the Germline in Caenorhabditis Elegans, Is Homologous to a Drosophila Polycomb Group Protein. Development. 1998;125:2457–2467. doi: 10.1242/dev.125.13.2457. PubMed DOI
Xu L., Paulsen J., Yoo Y., Goodwin E.B., Strome S. Caenorhabditis Elegans MES-3 Is a Target of GLD-1 and Functions Epigenetically in Germline Development. Genetics. 2001;159:1007–1017. doi: 10.1093/genetics/159.3.1007. PubMed DOI PMC
Guillermo A.R.R., Chocian K., Gavriilidis G., Vandamme J., Salcini A.E., Mellor J., Woollard A. H3K27 Modifiers Regulate Lifespan in C. Elegans in a Context-Dependent Manner. BMC Biol. 2021;19:59. doi: 10.1186/s12915-021-00984-8. PubMed DOI PMC
Matsuzaki M., Misumi O., Shin-I T., Maruyama S., Takahara M., Miyagishima S.Y., Mori T., Nishida K., Yagisawa F., Nishida K., et al. Genome Sequence of the Ultrasmall Unicellular Red Alga Cyanidioschyzon Merolae 10D. Nature. 2004;428:653–657. doi: 10.1038/nature02398. PubMed DOI
Schubert D. Evolution of Polycomb-Group Function in the Green Lineage. F1000Research. 2019;8:268. doi: 10.12688/f1000research.16986.1. PubMed DOI PMC
Xiao J., Wagner D. Polycomb Repression in the Regulation of Growth and Development in Arabidopsis. Curr. Opin. Plant Biol. 2015;23:15–24. doi: 10.1016/j.pbi.2014.10.003. PubMed DOI
Mozgova I., Köhler C., Hennig L. Keeping the Gate Closed: Functions of the Polycomb Repressive Complex PRC2 in Development. Plant J. 2015;83:121–132. doi: 10.1111/tpj.12828. PubMed DOI
Yan B., Lv Y., Zhao C., Wang X. Knowing When to Silence: Roles of Polycomb-Group Proteins in SAM Maintenance, Root Development, and Developmental Phase Transition. Int. J. Mol. Sci. 2020;21:5871. doi: 10.3390/ijms21165871. PubMed DOI PMC
Tonosaki K., Ono A., Kunisada M., Nishino M., Nagata H., Sakamoto S., Kijima S.T., Furuumi H., Nonomura K.I., Sato Y., et al. Mutation of the Imprinted Gene OsEMF2a Induces Autonomous Endosperm Development and Delayed Cellularization in Rice. Plant Cell. 2021;33:85–103. doi: 10.1093/plcell/koaa006. PubMed DOI PMC
Springer N.M., Danilevskaya O.N., Hermon P., Helentjaris T.G., Phillips R.L., Kaeppler H.F., Kaeppler S.M. Sequence Relationships, Conserved Domains, and Expression Patterns for Maize Homologs of the Polycomb Group Genes E(z), Esc, and E(Pc) Plant Physiol. 2002;128:1332–1345. doi: 10.1104/pp.010742. PubMed DOI PMC
Horst N.A., Katz A., Pereman I., Decker E.L., Ohad N., Reski R. A Single Homeobox Gene Triggers Phase Transition, Embryogenesis and Asexual Reproduction. Nat. Plants. 2016;2:15209. doi: 10.1038/nplants.2015.209. PubMed DOI
Widiez T., Symeonidi A., Luo C., Lam E., Lawton M., Rensing S.A. The Chromatin Landscape of the Moss Physcomitrella Patens and Its Dynamics during Development and Drought Stress. Plant J. 2014;79:67–81. doi: 10.1111/tpj.12542. PubMed DOI
Goodrich J., Puangsomlee P., Martin M., Long D., Meyerowitz E.M., Coupland G. A Polycomb-Group Gene Regulates Homeotic Gene Expression in Arabidopsis. Nature. 1997;386:44–51. doi: 10.1038/386044a0. PubMed DOI
Grossniklaus U., Vielle-Calzada J.-P., Hoeppner M.A., Gagliano W.B. Maternal Control of Embryogenesis by MEDEA, a Polycomb Group Gene in Arabidopsis. Science. 1998;280:446–450. doi: 10.1126/science.280.5362.446. PubMed DOI
Danilevskaya O.N., Hermon P., Hantke S., Muszynski M.G., Kollipara K., Ananiev E.V. Duplicated Fie Genes in Maize: Expression Pattern and Imprinting Suggest Distinct Functions. Plant Cell. 2003;15:425–438. doi: 10.1105/tpc.006759. PubMed DOI PMC
Wang H., Liu C., Cheng J., Liu J., Zhang L., He C., Shen W.H., Jin H., Xu L., Zhang Y. Arabidopsis Flower and Embryo Developmental Genes Are Repressed in Seedlings by Different Combinations of Polycomb Group Proteins in Association with Distinct Sets of Cis-Regulatory Elements. PLoS Genet. 2016;12:e1005771. doi: 10.1371/journal.pgen.1005771. PubMed DOI PMC
Pereman I., Mosquna A., Katz A., Wiedemann G., Lang D., Decker E.L., Tamada Y., Ishikawa T., Nishiyama T., Hasebe M., et al. The Polycomb Group Protein CLF Emerges as a Specific Tri-Methylase of H3K27 Regulating Gene Expression and Development in Physcomitrella Patens. Biochim. Biophys. Acta (BBA) Gene Regul. Mech. 2016;1859:860–870. doi: 10.1016/j.bbagrm.2016.05.004. PubMed DOI
Gibbs D.J., Tedds H.M., Labandera A.M., Bailey M., White M.D., Hartman S., Sprigg C., Mogg S.L., Osborne R., Dambire C., et al. Oxygen-Dependent Proteolysis Regulates the Stability of Angiosperm Polycomb Repressive Complex 2 Subunit VERNALIZATION 2. Nat. Commun. 2018;9:5438. doi: 10.1038/s41467-018-07875-7. PubMed DOI PMC
Katz A., Oliva M., Mosquna A., Hakim O., Ohad N. FIE and CURLY LEAF Polycomb Proteins Interact in the Regulation of Homeobox Gene Expression during Sporophyte Development. Plant J. 2004;37:707–719. doi: 10.1111/j.1365-313X.2003.01996.x. PubMed DOI
He G., Zhu X., Elling A.A., Chen L., Wang X., Guo L., Liang M., He H., Zhang H., Chen F., et al. Global Epigenetic and Transcriptional Trends among Two Rice Subspecies and Their Reciprocal Hybrids. Plant Cell. 2010;22:17–33. doi: 10.1105/tpc.109.072041. PubMed DOI PMC
Saripalli G., Singh K., Gautam T., Kumar S., Raghuvanshi S., Prasad P., Jain N., Sharma P.K., Balyan H.S., Gupta P.K. Genome-Wide Analysis of H3K4me3 and H3K27me3 Modifications Due to Lr28 for Leaf Rust Resistance in Bread Wheat (Triticum Aestivum) Plant Mol. Biol. 2020;104:113–136. doi: 10.1007/s11103-020-01029-4. PubMed DOI
Makarevitch I., Eichten S.R., Briskine R., Waters A.J., Danilevskaya O.N., Meeley R.B., Myers C.L., Vaughn M.W., Springer N.M. Genomic Distribution of Maize Facultative Heterochromatin Marked by Trimethylation of H3K27. Plant Cell. 2013;25:780–793. doi: 10.1105/tpc.112.106427. PubMed DOI PMC
Baker K., Dhillon T., Colas I., Cook N., Milne I., Milne L., Bayer M., Flavell A.J. Chromatin State Analysis of the Barley Epigenome Reveals a Higher-Order Structure Defined by H3K27me1 and H3K27me3 Abundance. Plant J. 2015;84:111–124. doi: 10.1111/tpj.12963. PubMed DOI PMC
Payá-Milans M., Poza-Viejo L., Martín-Uriz P.S., Lara-Astiaso D., Wilkinson M.D., Crevillén P. Genome-Wide Analysis of the H3K27me3 Epigenome and Transcriptome in Brassica Rapa. GigaScience. 2019;8:giz147. doi: 10.1093/gigascience/giz147. PubMed DOI PMC
Huan Q., Mao Z., Chong K., Zhang J. Global Analysis of H3K4me3/H3K27me3 in Brachypodium Distachyon Reveals VRN3 as Critical Epigenetic Regulation Point in Vernalization and Provides Insights into Epigenetic Memory. New Phytol. 2018;219:1373–1387. doi: 10.1111/nph.15288. PubMed DOI
Wang X., Elling A.A., Li X., Li N., Peng Z., He G., Sun H., Qi Y., Liu X.S., Deng X.W. Genome-Wide and Organ-Specific Landscapes of Epigenetic Modifications and Their Relationships to MRNA and Small RNA Transcriptomes in Maize. Plant Cell. 2009;21:1053–1069. doi: 10.1105/tpc.109.065714. PubMed DOI PMC
Fuchs J., Jovtchev G., Schubert I. The Chromosomal Distribution of Histone Methylation Marks in Gymnosperms Differs from That of Angiosperms. Chromosome Res. 2008;16:891–898. doi: 10.1007/s10577-008-1252-4. PubMed DOI
Liu S., Trejo-arellano M.S., Qiu Y., Eklund D.M., Köhler C., Hennig L. H2A Ubiquitination is Essential for Polycomb Repressive Complex 1-Mediated Gene Regulation in Marchantia polymorpha. Genome Biol. 2021;22:253. doi: 10.1186/s13059-021-02476-y. PubMed DOI PMC
Lang D., Ullrich K.K., Murat F., Fuchs J., Jenkins J., Haas F.B., Piednoel M., Gundlach H., Van Bel M., Meyberg R., et al. The Physcomitrella Patens Chromosome-Scale Assembly Reveals Moss Genome Structure and Evolution. Plant J. 2018;93:515–533. doi: 10.1111/tpj.13801. PubMed DOI
Waterborg J.H., Robertson A.J., Tatar D.L., Borza C.M., Davie J.R. Histones of Chlamydomonas Reinhardtii (Synthesis, Acetylation, and Methylation) Plant Physiol. 1995;109:393–407. doi: 10.1104/pp.109.2.393. PubMed DOI PMC
Ngan C.Y., Wong C.-H., Choi C., Yoshinaga Y., Louie K., Jia J., Chen C., Bowen B., Cheng H., Leonelli L., et al. Lineage-Specific Chromatin Signatures Reveal a Regulator of Lipid Metabolism in Microalgae. Nat. Plants. 2015;1:15107. doi: 10.1038/nplants.2015.107. PubMed DOI
Kiyosue T., Ohad N., Yadegari R., Hannon M., Dinneny J., Wells D., Katz A., Margossian L., Harada J.J., Goldberg R.B., et al. Control of Fertilization-Independent Endosperm Development by the MEDEA Polycomb Gene in Arabidopsis. Proc. Natl. Acad. Sci. USA. 1999;96:4186. doi: 10.1073/pnas.96.7.4186. PubMed DOI PMC
Ohad N., Yadegari R., Margossian L., Hannon M., Michaeli D., Harada J.J., Goldberg R.B., Fischer R.L. Mutations in FIE, a WD Polycomb Group Gene, Allow Endosperm Development without Fertilization. Plant Cell. 1999;11:407–415. doi: 10.1105/tpc.11.3.407. PubMed DOI PMC
Luo M., Bilodeau P., Koltunow A., Dennis E.S., Peacock W.J., Chaudhury A.M. Genes Controlling Fertilization-Independent Seed Development in Arabidopsis Thaliana. Proc. Natl. Acad. Sci. USA. 1999;96:296–301. doi: 10.1073/pnas.96.1.296. PubMed DOI PMC
Ringrose L., Ehret H., Paro R. Distinct Contributions of Histone H3 Lysine 9 and 27 Methylation to Locus-Specific Stability of Polycomb Complexes. Mol. Cell. 2004;16:641–653. doi: 10.1016/j.molcel.2004.10.015. PubMed DOI
Kim J., Kim H. Recruitment and Biological Consequences of Histone Modification of H3K27me3 and H3K9me3. ILAR J. 2012;53:232–239. doi: 10.1093/ilar.53.3-4.232. PubMed DOI PMC
Zervudacki J., Yu A., Amesefe D., Wang J., Drouaud J., Navarro L., Deleris A. Transcriptional Control and Exploitation of an Immune-Responsive Family of Plant Retrotransposons. EMBO J. 2018;37:e98482. doi: 10.15252/embj.201798482. PubMed DOI PMC
Peters A.H.F.M., Kubicek S., Mechtler K., O’Sullivan R.J., Derijck A.A.H.A., Perez-Burgos L., Kohlmaier A., Opravil S., Tachibana M., Shinkai Y., et al. Partitioning and Plasticity of Repressive Histone Methylation States in Mammalian Chromatin. Mol. Cell. 2003;12:1577–1589. doi: 10.1016/S1097-2765(03)00477-5. PubMed DOI
Saksouk N., Barth T.K., Ziegler-Birling C., Olova N., Nowak A., Rey E., Mateos-Langerak J., Urbach S., Reik W., Torres-Padilla M.-E., et al. Redundant Mechanisms to Form Silent Chromatin at Pericentromeric Regions Rely on BEND3 and DNA Methylation. Mol. Cell. 2014;56:580–594. doi: 10.1016/j.molcel.2014.10.001. PubMed DOI
Walter M., Teissandier A., Pérez-Palacios R., Bourc’his D. An Epigenetic Switch Ensures Transposon Repression upon Dynamic Loss of DNA Methylation in Embryonic Stem Cells. eLife. 2016;5:e11418. doi: 10.7554/eLife.11418. PubMed DOI PMC
Deleris A., Stroud H., Bernatavichute Y., Johnson E., Klein G., Schubert D., Jacobsen S.E. Loss of the DNA Methyltransferase MET1 Induces H3K9 Hypermethylation at PcG Target Genes and Redistribution of H3K27 Trimethylation to Transposons in Arabidopsis Thaliana. PLoS Genet. 2012;8:e1003062. doi: 10.1371/journal.pgen.1003062. PubMed DOI PMC
Mathieu O., Probst A.V., Paszkowski J. Distinct Regulation of Histone H3 Methylation at Lysines 27 and 9 by CpG Methylation in Arabidopsis. EMBO J. 2005;24:2783–2791. doi: 10.1038/sj.emboj.7600743. PubMed DOI PMC
Weinhofer I., Hehenberger E., Roszak P., Hennig L., Köhler C. H3K27me3 Profiling of the Endosperm Implies Exclusion of Polycomb Group Protein Targeting by DNA Methylation. PLoS Genet. 2010;6:e1001152. doi: 10.1371/journal.pgen.1001152. PubMed DOI PMC
Moreno-Romero J., Del Toro-De León G., Yadav V.K., Santos-González J., Köhler C. Epigenetic Signatures Associated with Imprinted Paternally Expressed Genes in the Arabidopsis Endosperm. Genome Biol. 2019;20:41. doi: 10.1186/s13059-019-1652-0. PubMed DOI PMC
Rougée M., Quadrana L., Zervudacki J., Hure V., Colot V., Navarro L., Deleris A. Polycomb Mutant Partially Suppresses DNA Hypomethylation-Associated Phenotypes in Arabidopsis. Life Sci. Alliance. 2021;4:e202000848. doi: 10.26508/lsa.202000848. PubMed DOI PMC
Jamieson K., Wiles E.T., McNaught K.J., Sidoli S., Leggett N., Shao Y., Garcia B.A., Selker E.U. Loss of HP1 Causes Depletion of H3K27me3 from Facultative Heterochromatin and Gain of H3K27me2 at Constitutive Heterochromatin. Genome Res. 2016;26:97–107. doi: 10.1101/gr.194555.115. PubMed DOI PMC
Basenko E.Y., Sasaki T., Ji L., Prybol C.J., Burckhardt R.M., Schmitz R.J., Lewis Z.A. Genome-Wide Redistribution of H3K27me3 Is Linked to Genotoxic Stress and Defective Growth. Proc. Natl. Acad. Sci. USA. 2015;112:E6339–E6348. doi: 10.1073/pnas.1511377112. PubMed DOI PMC
Möller M., Schotanus K., Soyer J.L., Haueisen J., Happ K., Stralucke M., Happel P., Smith K.M., Connolly L.R., Freitag M., et al. Destabilization of Chromosome Structure by Histone H3 Lysine 27 Methylation. PLoS Genet. 2019;15:e1008093. doi: 10.1371/journal.pgen.1008093. PubMed DOI PMC
Leeb M., Pasini D., Novatchkova M., Jaritz M., Helin K., Wutz A. Polycomb Complexes Act Redundantly to Repress Genomic Repeats and Genes. Genes Dev. 2010;24:265–276. doi: 10.1101/gad.544410. PubMed DOI PMC
Klocko A.D., Ormsby T., Galazka J.M., Leggett N.A., Uesaka M., Honda S., Freitag M., Selker E.U. Normal Chromosome Conformation Depends on Subtelomeric Facultative Heterochromatin in Neurospora Crassa. Proc. Natl. Acad. Sci. USA. 2016;113:15048–15053. doi: 10.1073/pnas.1615546113. PubMed DOI PMC
Montero J.J., López-Silanes I., Megías D., Fraga F.M., Castells-García Á., Blasco M.A. TERRA Recruitment of Polycomb to Telomeres Is Essential for Histone Trymethylation Marks at Telomeric Heterochromatin. Nat. Commun. 2018;9:1548. doi: 10.1038/s41467-018-03916-3. PubMed DOI PMC
Majerová E., Mandáková T., Vu G.T.H., Fajkus J., Lysak M.A., Fojtová M. Chromatin Features of Plant Telomeric Sequences at Terminal vs. Internal Positions. Front. Plant Sci. 2014;5:593. doi: 10.3389/fpls.2014.00593. PubMed DOI PMC
Adamusová K., Khosravi S., Fujimoto S., Houben A., Matsunaga S., Fajkus J., Fojtová M. Two Combinatorial Patterns of Telomere Histone Marks in Plants with Canonical and Non-Canonical Telomere Repeats. Plant J. 2020;102:678–687. doi: 10.1111/tpj.14653. PubMed DOI
Bettin N., Oss Pegorar C., Cusanelli E. The Emerging Roles of TERRA in Telomere Maintenance and Genome Stability. Cells. 2019;8:246. doi: 10.3390/cells8030246. PubMed DOI PMC
Vrbsky J., Akimcheva S., Watson J.M., Turner T.L., Daxinger L., Vyskot B., Aufsatz W., Riha K. SiRNA–Mediated Methylation of Arabidopsis Telomeres. PLoS Genet. 2010;6:e1000986. doi: 10.1371/journal.pgen.1000986. PubMed DOI PMC
De Lange T. Shelterin: The Protein Complex That Shapes and Safeguards Human Telomeres. Genes Dev. 2005;19:2100–2110. doi: 10.1101/gad.1346005. PubMed DOI
Marión R.M., Montero J.J., de Silanes I.L., Graña-Castro O., Martínez P., Schoeftner S., Palacios-Fábrega J.A., Blasco M.A. TERRA Regulate the Transcriptional Landscape of Pluripotent Cells through TRF1-Dependent Recruitment of PRC2. eLife. 2019;8:e44656. doi: 10.7554/eLife.44656. PubMed DOI PMC
Procházková Schrumpfová P., Vychodilová I., Dvořáčková M., Majerská J., Dokládal L., Schořová Š., Fajkus J. Telomere Repeat Binding Proteins Are Functional Components of Arabidopsis Telomeres and Interact with Telomerase. Plant J. 2014;77:770–781. doi: 10.1111/tpj.12428. PubMed DOI PMC
Procházková Schrumpfová P., Fojtová M., Fajkus J. Telomeres in Plants and Humans: Not So Different, Not So Similar. Cells. 2019;8:58. doi: 10.3390/cells8010058. PubMed DOI PMC
Zhou Y., Hartwig B., James G.V., Schneeberger K., Turck F. Complementary Activities of TELOMERE REPEAT BINDING Proteins and Polycomb Group Complexes in Transcriptional Regulation of Target Genes. Plant Cell. 2016;28:87–101. doi: 10.1105/tpc.15.00787. PubMed DOI PMC
Jamieson K., McNaught K.J., Ormsby T., Leggett N.A., Honda S., Selker E.U. Telomere Repeats Induce Domains of H3K27 Methylation in Neurospora. eLife. 2018;7:87–101. doi: 10.7554/eLife.31216. PubMed DOI PMC
Teano G., Concia L., Carron L., Wolff L., Adamusová K., Fojtová M., Bourge M., Kramdi A., Colot V., Grossniklaus U., et al. Histone H1 Protects Telomeric Repeats from H3K27me3 Invasion in Arabidopsis. bioRxiv. 2021 doi: 10.1101/2020.11.28.402172. PubMed DOI
Marasca F., Bodega B., Orlando V. How Polycomb-Mediated Cell Memory Deals With a Changing Environment. BioEssays. 2018;40:1700137. doi: 10.1002/bies.201700137. PubMed DOI