Chromatin features of plant telomeric sequences at terminal vs. internal positions
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
25408695
PubMed Central
PMC4219495
DOI
10.3389/fpls.2014.00593
Knihovny.cz E-zdroje
- Klíčová slova
- Ballantinia antipoda, DNA methylation, Nicotiana tabacum, chromatin, epigenetics, histone modifications, telomere,
- Publikační typ
- časopisecké články MeSH
Epigenetic mechanisms are involved in regulation of crucial cellular processes in eukaryotic organisms. Data on the epigenetic features of plant telomeres and their epigenetic regulation were published mostly for Arabidopsis thaliana, in which the presence of interstitial telomeric repeats (ITRs) may interfere with genuine telomeres in most analyses. Here, we studied the epigenetic landscape and transcription of telomeres and ITRs in Nicotiana tabacum with long telomeres and no detectable ITRs, and in Ballantinia antipoda with large blocks of pericentromeric ITRs and relatively short telomeres. Chromatin of genuine telomeres displayed heterochromatic as well as euchromatic marks, while ITRs were just heterochromatic. Methylated cytosines were present at telomeres and ITRs, but showed a bias with more methylation toward distal telomere positions and different blocks of B. antipoda ITRs methylated to different levels. Telomeric transcripts TERRA (G-rich) and ARRET (C-rich) were identified in both plants and their levels varied among tissues with a maximum in blossoms. Plants with substantially different proportions of internally and terminally located telomeric repeats are instrumental in clarifying the chromatin status of telomeric repeats at distinct chromosome locations.
Zobrazit více v PubMed
Azzalin C. M., Reichenbach P., Khoriauli L., Giulotto E., Lingner J. (2007). Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 318, 798–801. 10.1126/science.1147182 PubMed DOI
Bah A., Azzalin C. M. (2012). The telomeric transcriptome: from fission yeast to mammals. Int. J. Biochem. Cell Biol. 44, 1055–1059. 10.1016/j.biocel.2012.03.021 PubMed DOI
Bah A., Wischnewski H., Shchepachev V., Azzalin C. M. (2012). The telomeric transcriptome of Schizosaccharomyces pombe. Nucleic Acids Res. 40, 2995–3005. 10.1093/nar/gkr1153 PubMed DOI PMC
Berr A., Shafiq S., Shen W. H. (2011). Histone modifications in transcriptional activation during plant development. Biochim. Biophys. Acta 1809, 567–576. 10.1016/j.bbagrm.2011.07.001 PubMed DOI
Clark S. J., Harrison J., Paul C. L., Frommer M. (1994). High-sensitivity mapping of methylated cytosines. Nucleic Acids Res. 22, 2990–2997. 10.1093/nar/22.15.2990 PubMed DOI PMC
Cokus S. J., Feng S. H., Zhang X. Y., Chen Z. G., Merriman B., Haudenschild C. D., et al. . (2008). Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452, 215–219. 10.1038/nature06745 PubMed DOI PMC
Cusanelli E., Romero C. A., Chartrand P. (2013). Telomeric noncoding RNA TERRA is induced by telomere shortening to nucleate telomerase molecules at short telomeres. Mol. Cell 51, 780–791. 10.1016/j.molcel.2013.08.029 PubMed DOI
Dellaporta L. S., Wood J., Hicks B. J. (1983). A plant DNA minipreparation: version II. Plant Mol. Biol. Rep. 1, 19–21 10.1007/BF02712670 DOI
Fajkus J., Fulneckova J., Hulanova M., Berkova K., Riha K., Matyasek R. (1998). Plant cells express telomerase activity upon transfer to callus culture, without extensively changing telomere lengths. Mol. Gen. Genet. 260, 470–474. 10.1007/s004380050918 PubMed DOI
Fajkus J., Kovarik A., Kralovics R., Bezdek M. (1995a). Organization of telomeric and subtelomeric chromatin in the higher plant Nicotiana tabacum. Mol. Gen. Genet. 247, 633–638. 10.1007/BF00290355 PubMed DOI
Fajkus J., Kralovics R., Kovarik A., Fajkusova L. (1995b). The telomeric sequence is directly attached to the HRS60 subtelomeric tandem repeat in tobacco chromosomes. FEBS Lett. 364, 33–35. 10.1016/0014-5793(95)00347-C PubMed DOI
Fojtova M., Fajkus J. (2014). Epigenetic regulation of telomere maintenance. Cytogenet. Genome Res. 143, 125–135. 10.1159/000360775 PubMed DOI
Fojtova M., Fulneckova J., Fajkus J., Kovarik A. (2002). Recovery of tobacco cells from cadmium stress is accompanied by DNA repair and increased telomerase activity. J. Exp. Bot. 53, 2151–2158. 10.1093/jxb/erf080 PubMed DOI
Galati A., Micheli E., Cacchione S. (2013). Chromatin structure in telomere dynamics. Front. Oncol. 3:46. 10.3389/fonc.2013.00046 PubMed DOI PMC
Ginno P. A., Lott P. L., Christensen H. C., Korf I., Chedin F. (2012). R-loop formation is a distinctive characteristic of unmethylated human CpG island promoters. Mol. Cell 45, 814–825. 10.1016/j.molcel.2012.01.017 PubMed DOI PMC
He L., Liu J., Torres G. A., Zhang H., Jiang J., Xie C. (2012). Interstitial telomeric repeats are enriched in the centromeres of chromosomes in Solanum species. Chromosome Res. 21, 5–13. 10.1007/s10577-012-9332-x PubMed DOI
Hetzl J., Foerster A. M., Raidl G., Mittelsten Scheid O. (2007). CyMATE: a new tool for methylation analysis of plant genomic DNA after bisulphite sequencing. Plant J. 51, 526–536. 10.1111/j.1365-313X.2007.03152.x PubMed DOI
Ijdo J. W., Wells R. A., Baldini A., Reeders S. T. (1991). Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. Nucleic Acids Res. 19, 4780–4780. 10.1093/nar/19.17.4780 PubMed DOI PMC
Kovarik A., Fajkus J., Koukalova B., Bezdek M. (1996). Species-specific evolution of telomeric and rDNA repeats in the tobacco composite genome. Theor. Appl. Genet. 92, 1108–1111. 10.1007/BF00224057 PubMed DOI
Majerova E., Fojtova M., Mandaková T., Fajkus J. (2011a). Methylation of plant telomeric DNA: what do the results say? Plant Mol. Biol. 77, 533–536 10.1007/s11103-011-9834-5 DOI
Majerova E., Fojtova M., Mozgova I., Bittova M., Fajkus J. (2011b). Hypomethylating drugs efficiently decrease cytosine methylation in telomeric DNA and activate telomerase without affecting telomere lengths in tobacco cells. Plant Mol. Biol. 77, 371–380. 10.1007/s11103-011-9816-7 PubMed DOI
Mandaková T., Joly S., Krzywinski M., Mummenhoff K., Lysak M. A. (2010). Fast diploidization in close mesopolyploid relatives of Arabidopsis. Plant Cell 22, 2277–2290. 10.1105/tpc.110.074526 PubMed DOI PMC
Mandaková T., Kovarik A., Zozomova-Lihova J., Shimizu-Inatsugi R., Shimizu K. K., Mummenhoff K., et al. . (2013). The more the merrier: recent hybridization and polyploidy in Cardamine. Plant Cell 25, 3280–3295. 10.1105/tpc.113.114405 PubMed DOI PMC
Ng L. J., Cropley J. E., Pickett H. A., Reddel R. R., Suter C. M. (2009). Telomerase activity is associated with an increase in DNA methylation at the proximal subtelomere and a reduction in telomeric transcription. Nucleic Acids Res. 37, 1152–1159. 10.1093/nar/gkn1030 PubMed DOI PMC
Ogrocka A., Polanska P., Majerova E., Janeba Z., Fajkus J., Fojtova M. (2014). Compromised telomere maintenance in hypomethylated Arabidopsis thaliana plants. Nucleic Acids Res. 42, 2919–2931. 10.1093/nar/gkt1285 PubMed DOI PMC
Roudier F., Ahmed I., Berard C., Sarazin A., Mary-Huard T., Cortijo S., et al. . (2011). Integrative epigenomic mapping defines four main chromatin states in Arabidopsis. EMBO J. 30, 1928–1938. 10.1038/emboj.2011.103 PubMed DOI PMC
Uchida W., Matsunaga S., Sugiyama R., Kawano S. (2002). Interstitial telomere-like repeats in the Arabidopsis thaliana genome. Genes Genet. Syst. 77, 63–67. 10.1266/ggs.77.63 PubMed DOI
Vaquero-Sedas M. I., Gamez-Arjona F. M., Vega-Palas M. A. (2011). Arabidopsis thaliana telomeres exhibit euchromatic features. Nucleic Acids Res. 39, 2007–2017. 10.1093/nar/gkq1119 PubMed DOI PMC
Vaquero-Sedas M. I., Luo C. Y., Vega-Palas M. A. (2012). Analysis of the epigenetic status of telomeres by using ChIP-seq data. Nucleic Acids Res. 40:e163. 10.1093/nar/gks730 PubMed DOI PMC
Vrbsky J., Akimcheva S., Watson J. M., Turner T. L., Daxinger L., Vyskot B., et al. . (2010). siRNA-mediated methylation of Arabidopsis telomeres. PLoS Genet. 6:e1000986. 10.1371/journal.pgen.1000986 PubMed DOI PMC
Yoo S. D., Cho Y. H., Sheen J. (2007). Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat. Protoc. 2, 1565–1572. 10.1038/nprot.2007.199 PubMed DOI
Polycomb Repressive Complex 2 in Eukaryotes-An Evolutionary Perspective
Tidying-up the plant nuclear space: domains, functions, and dynamics
Telomeres in Plants and Humans: Not So Different, Not So Similar
Tissue-specific expression of telomerase reverse transcriptase gene variants in Nicotiana tabacum