Telomere elongation upon transfer to callus culture reflects the reprogramming of telomere stability control in Arabidopsis
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
16-04653S
Grantová Agentura České Republiky
CEITEC 2020 (LQ1601)
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0 /0.0/15_003/0000477
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
30128721
DOI
10.1007/s11103-018-0765-2
PII: 10.1007/s11103-018-0765-2
Knihovny.cz E-zdroje
- Klíčová slova
- Arabidopsis thaliana, Callus, Chromosome stability, Epigenetics, Regenerated plants, Telomere,
- MeSH
- Arabidopsis účinky léků genetika metabolismus MeSH
- chromatin genetika MeSH
- cytidin analogy a deriváty farmakologie MeSH
- druhová specificita MeSH
- ekotyp MeSH
- epigeneze genetická účinky léků MeSH
- histony metabolismus MeSH
- homeostáza telomer * účinky léků MeSH
- messenger RNA genetika metabolismus MeSH
- mutace genetika MeSH
- proteiny huseníčku metabolismus MeSH
- regenerace účinky léků MeSH
- rostlinné geny MeSH
- tabák genetika MeSH
- techniky tkáňových kultur * MeSH
- telomerasa metabolismus MeSH
- telomery metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chromatin MeSH
- cytidin MeSH
- histony MeSH
- messenger RNA MeSH
- proteiny huseníčku MeSH
- pyrimidin-2-one beta-ribofuranoside MeSH Prohlížeč
- telomerasa MeSH
Standard pathways involved in the regulation of telomere stability do not contribute to gradual telomere elongation observed in the course of A. thaliana calli propagation. Genetic and epigenetic changes accompanying the culturing of plant cells have frequently been reported. Here we aimed to characterize the telomere homeostasis during long term callus propagation. While in Arabidopsis thaliana calli gradual telomere elongation was observed, telomeres were stable in Nicotiana tabacum and N. sylvestris cultures. Telomere elongation during callus propagation is thus not a general feature of plant cells. The long telomere phenotype in Arabidopsis calli was correlated neither with changes in telomerase activity nor with activation of alternative mechanisms of telomere elongation. The dynamics of telomere length changes was maintained in mutant calli with loss of function of important epigenetic modifiers but compromised in the presence of epigenetically active drug zebularine. To examine whether the cell culture-induced disruption of telomere homeostasis is associated with the modulated structure of chromosome ends, epigenetic properties of telomere chromatin were analysed. Albeit distinct changes in epigenetic modifications of telomere histones were observed, these were broadly stochastic. Our results show that contrary to animal cells, the structure and function of plant telomeres is not determined significantly by the epigenetic character of telomere chromatin. Set of differentially transcribed genes was identified in calli, but considering the known telomere- or telomerase-related functions of respective proteins, none of these changes per se was apparently related to the elongated telomere phenotype. Based on our data, we propose that the disruption in telomere homeostasis in Arabidopsis calli arises from the interplay of multiple factors, as a part of reprogramming of plant cells to long-term culture conditions.
Zobrazit více v PubMed
Oncogene. 2002 Jan 21;21(4):598-610 PubMed
Symp Soc Exp Biol. 1957;11:118-30 PubMed
Nat Genet. 1999 May;22(1):94-7 PubMed
Nat Biotechnol. 2013 Aug;31(8):686-8 PubMed
Mol Cell. 2009 Oct 23;36(2):207-18 PubMed
Plant J. 2003 May;34(3):283-91 PubMed
Genes Dev. 2012 Nov 15;26(22):2512-23 PubMed
Mol Cell. 2007 Jul 6;27(1):163-9 PubMed
Nucleic Acids Res. 2014 Mar;42(5):2919-31 PubMed
Biol Cell. 2009 Jul;101(7):375-92, 1 p following 392 PubMed
Curr Opin Genet Dev. 2010 Apr;20(2):190-6 PubMed
Dev Biol. 2007 Jun 15;306(2):838-46 PubMed
Plant Cell. 1998 Oct;10(10):1691-8 PubMed
Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):1711-6 PubMed
EMBO J. 2002 Jun 3;21(11):2819-26 PubMed
Genes Chromosomes Cancer. 2011 Oct;50(10):823-9 PubMed
Biophys Chem. 2005 Oct 3;117(3):225-31 PubMed
Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14422-7 PubMed
Chromosoma. 2010 Oct;119(5):485-93 PubMed
Proc Natl Acad Sci U S A. 2011 Jan 4;108(1):73-78 PubMed
FEBS Lett. 1996 Aug 12;391(3):307-9 PubMed
Methods. 2017 Feb 1;114:74-84 PubMed
Development. 2009 Feb;136(4):509-23 PubMed
Plant Cell. 2015 Jun;27(6):1788-800 PubMed
Front Plant Sci. 2014 Nov 04;5:593 PubMed
Jpn J Genet. 1994 Aug;69(4):361-70 PubMed
Blood Cells Mol Dis. 2000 Oct;26(5):534-9 PubMed
J Vis Exp. 2014 Dec 19;(94):null PubMed
Nucleic Acids Res. 1991 Sep 11;19(17):4780 PubMed
Plant Mol Biol. 2011 Nov;77(4-5):371-80 PubMed
Dev Cell. 2010 Mar 16;18(3):463-71 PubMed
Mol Gen Genet. 1995 Jun 10;247(5):633-8 PubMed
Nat Rev Genet. 2008 Jun;9(6):465-76 PubMed
PLoS Genet. 2010 Jun 10;6(6):e1000986 PubMed
Cell. 1988 Apr 8;53(1):127-36 PubMed
Nat Biotechnol. 2009 Dec;27(12):1181-5 PubMed
Mol Cells. 2016 Jun 30;39(6):484-94 PubMed
Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5222-6 PubMed
Plant Cell. 2007 Jan;19(1):23-31 PubMed
Front Plant Sci. 2016 Jun 28;7:851 PubMed
Nucleic Acids Res. 2012 Nov;40(21):e163 PubMed
Cells. 2017 Jun 19;6(2):null PubMed
EMBO J. 2009 Aug 19;28(16):2323-36 PubMed
J Cell Sci. 2007 Oct 15;120(Pt 20):3678-87 PubMed
Methods Mol Biol. 2005;286:103-10 PubMed
Plant Cell. 2004 Nov;16(11):2910-22 PubMed
Plant Physiol. 2017 Nov;175(3):1158-1174 PubMed
Plant J. 2014 Mar;77(5):770-81 PubMed
Plant J. 2005 Sep;43(5):662-74 PubMed
Nucleic Acids Res. 2011 Mar;39(6):2007-17 PubMed
J Biol Chem. 2001 Jun 22;276(25):22772-8 PubMed
Mol Gen Genet. 1998 Dec;260(5):470-4 PubMed
Plant Cell Rep. 2018 Mar;37(3):501-513 PubMed
Nat Protoc. 2006;1(3):1583-90 PubMed
Plant Mol Biol. 2008 Apr;66(6):637-46 PubMed
Crit Rev Biochem Mol Biol. 2017 Feb;52(1):57-73 PubMed
FEBS Lett. 2000 Feb 4;467(1):47-51 PubMed
Plant Cell. 2004 Aug;16(8):1959-67 PubMed
Plant J. 2009 Feb;57(3):542-54 PubMed