Telomeres in Plants and Humans: Not So Different, Not So Similar
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
30654521
PubMed Central
PMC6356271
DOI
10.3390/cells8010058
PII: cells8010058
Knihovny.cz E-zdroje
- Klíčová slova
- Arabidopsis, aging, chromatin, epigenetics, human, review, telomerase, telomere,
- MeSH
- chromatin metabolismus MeSH
- epigeneze genetická MeSH
- lidé MeSH
- rostliny metabolismus MeSH
- stárnutí buněk genetika MeSH
- telomerasa metabolismus MeSH
- telomery metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- chromatin MeSH
- telomerasa MeSH
Parallel research on multiple model organisms shows that while some principles of telomere biology are conserved among all eukaryotic kingdoms, we also find some deviations that reflect different evolutionary paths and life strategies, which may have diversified after the establishment of telomerase as a primary mechanism for telomere maintenance. Much more than animals, plants have to cope with environmental stressors, including genotoxic factors, due to their sessile lifestyle. This is, in principle, made possible by an increased capacity and efficiency of the molecular systems ensuring maintenance of genome stability, as well as a higher tolerance to genome instability. Furthermore, plant ontogenesis differs from that of animals in which tissue differentiation and telomerase silencing occur during early embryonic development, and the "telomere clock" in somatic cells may act as a preventive measure against carcinogenesis. This does not happen in plants, where growth and ontogenesis occur through the serial division of apical meristems consisting of a small group of stem cells that generate a linear series of cells, which differentiate into an array of cell types that make a shoot and root. Flowers, as generative plant organs, initiate from the shoot apical meristem in mature plants which is incompatible with the human-like developmental telomere shortening. In this review, we discuss differences between human and plant telomere biology and the implications for aging, genome stability, and cell and organism survival. In particular, we provide a comprehensive comparative overview of telomere proteins acting in humans and in Arabidopsis thaliana model plant, and discuss distinct epigenetic features of telomeric chromatin in these species.
Zobrazit více v PubMed
Olovnikov A.M. Principle of marginotomy in template synthesis of polynucleotides. Dokl. Akad. Nauk. SSSR. 1971;201:1496–1499. PubMed
Muller H.J. The remaking of chromosomes. Collect. Net. 1938;13:181–195.
McClintock B. The fusion of broken chromosome ends of sister half-chromatids following chromatid breakage at meiotic anaphases. Mo. Agric. Exp. Stn. Res. Bull. 1938;290:1–48.
McClintock B. The stability of broken ends of chromosomes in Zea mays. Genetics. 1941;26:234–282. PubMed PMC
Von Zglinicki T. Oxidative stress shortens telomeres. Trends Biochem. Sci. 2002;27:339–344. doi: 10.1016/S0968-0004(02)02110-2. PubMed DOI
Hoelzl F., Cornils J.S., Smith S., Moodley Y., Ruf T. Telomere dynamics in free-living edible dormice (Glis glis): The impact of hibernation and food supply. J. Exp. Biol. 2016;219:2469–2474. doi: 10.1242/jeb.140871. PubMed DOI PMC
Lopez-Otin C., Blasco M.A., Partridge L., Serrano M., Kroemer G. The Hallmarks of Aging. Cell. 2013;153:1194–1217. doi: 10.1016/j.cell.2013.05.039. PubMed DOI PMC
Simons M.J.P. Questioning causal involvement of telomeres in aging. Ageing Res. Rev. 2015;24:191–196. doi: 10.1016/j.arr.2015.08.002. PubMed DOI
Steenstrup T., Kark J.D., Verhulst S., Thinggaard M., Hjelmborg J.V.B., Dalgard C., Kyvik K.O., Christiansen L., Mangino M., Spector T.D., et al. Telomeres and the natural lifespan limit in humans. Aging US. 2017;9:1130–1142. doi: 10.18632/aging.101216. PubMed DOI PMC
Factor-Litvak P., Susser E., Kezios K., McKeague I., Kark J.D., Hoffman M., Kimura M., Wapner R., Aviv A. Leukocyte Telomere Length in Newborns: Implications for the Role of Telomeres in Human Disease. Pediatrics. 2016;137:e20153927. doi: 10.1542/peds.2015-3927. PubMed DOI PMC
Robin J.D., Ludlow A.T., Batten K., Magdinier F., Stadler G., Wagner K.R., Shay J.W., Wright W.E. Telomere position effect: Regulation of gene expression with progressive telomere shortening over long distances. Genes Dev. 2014;28:2464–2476. doi: 10.1101/gad.251041.114. PubMed DOI PMC
Victorelli S., Passos J.F. Telomeres and Cell Senescence—Size Matters Not. Ebiomedicine. 2017;21:14–20. doi: 10.1016/j.ebiom.2017.03.027. PubMed DOI PMC
Abdallah P., Luciano P., Runge K.W., Lisby M., Geli V., Gilson E., Teixeira M.T. A two-step model for senescence triggered by a single critically short telomere. Nat. Cell Biol. 2009;11:988. doi: 10.1038/ncb1911. PubMed DOI PMC
Hemann M.T., Strong M.A., Hao L.Y., Greider C.W. The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability. Cell. 2001;107:67–77. doi: 10.1016/S0092-8674(01)00504-9. PubMed DOI
Kaul Z., Cesare A.J., Huschtscha L.I., Neumann A.A., Reddel R.R. Five dysfunctional telomeres predict onset of senescence in human cells. Embo Rep. 2012;13:52–59. doi: 10.1038/embor.2011.227. PubMed DOI PMC
Watson J.M., Riha K. Telomeres, aging, and plants: From weeds to Methuselah—A mini-review. Gerontology. 2011;57:129–136. doi: 10.1159/000310174. PubMed DOI
Barsov E.V. Telomerase and primary T cells: Biology and immortalization for adoptive immunotherapy. Immunotherapy. 2011;3:407–421. doi: 10.2217/imt.10.107. PubMed DOI PMC
Shalaby T., Hiyama E., Grotzer M.A. Telomere Maintenance as Therapeutic Target in Embryonal Tumours. Anti-Cancer Agents Med. Chem. 2010;10:196–212. doi: 10.2174/1871520611009030196. PubMed DOI
Fajkus J., Kovarik A., Kralovics R. Telomerase activity in plant cells. Febs Lett. 1996;391:307–309. doi: 10.1016/0014-5793(96)00757-0. PubMed DOI
Fajkus J., Fulneckova J., Hulanova M., Berkova K., Riha K., Matyasek R. Plant cells express telomerase activity upon transfer to callus culture, without extensively changing telomere lengths. Mol. Gen. Genet. 1998;260:470–474. doi: 10.1007/s004380050918. PubMed DOI
Fitzgerald M.S., McKnight T.D., Shippen D.E. Characterization and developmental patterns of telomerase expression in plants. Proc. Natl. Acad. Sci. USA. 1996;93:14422–14427. doi: 10.1073/pnas.93.25.14422. PubMed DOI PMC
Fajkus J., Sykorova E., Leitch A.R. Telomeres in evolution and evolution of telomeres. Chromosome Res. 2005;13:469–479. doi: 10.1007/s10577-005-0997-2. PubMed DOI
Louis E.J. Are Drosophila telomeres an exception or the rule? Genome Biol. 2002;3 doi: 10.1186/gb-2002-3-10-reviews0007. PubMed DOI PMC
Fajkus P., Peska V., Sitova Z., Fulneckova J., Dvorackova M., Gogela R., Sykorova E., Hapala J., Fajkus J. Allium telomeres unmasked: The unusual telomeric sequence (CTCGGTTATGGG)(n) is synthesized by telomerase. Plant J. 2016;85:337–347. doi: 10.1111/tpj.13115. PubMed DOI
Peska V., Fajkus P., Fojtova M., Dvorackova M., Hapala J., Dvoracek V., Polanska P., Leitch A.R., Sykorova E., Fajkus J. Characterisation of an unusual telomere motif (TTTTTTAGGG)n in the plant Cestrum elegans (Solanaceae), a species with a large genome. Plant J. 2015;82:644–654. doi: 10.1111/tpj.12839. PubMed DOI
Peska V., Sitova Z., Fajkus P., Fajkus J. BAL31-NGS approach for identification of telomeres de novo in large genomes. Methods. 2017;114:16–27. doi: 10.1016/j.ymeth.2016.08.017. PubMed DOI
Tran T.D., Cao H.X., Jovtchev G., Neumann P., Novak P., Fojtova M., Vu G.T.H., Macas J., Fajkus J., Schubert I., et al. Centromere and telomere sequence alterations reflect the rapid genome evolution within the carnivorous plant genus Genlisea. Plant J. 2015;84:1087–1099. doi: 10.1111/tpj.13058. PubMed DOI
Wright W.E., Piatyszek M.A., Rainey W.E., Byrd W., Shay J.W. Telomerase activity in human germline and embryonic tissues and cells. Dev. Genet. 1996;18:173–179. doi: 10.1002/(SICI)1520-6408(1996)18:2<173::AID-DVG10>3.0.CO;2-3. PubMed DOI
Ramirez R.D., Wright W.E., Shay J.W., Taylor R.S. Telomerase activity concentrates in the mitotically active segments of human hair follicles. J. Investig. Dermatol. 1997;108:113–117. doi: 10.1111/1523-1747.ep12285654. PubMed DOI
Hiyama E., Hiyama K., Yokoyama T., Shay J.W. Immunohistochemical detection of telomerase (hTERT) protein in human cancer tissues and a subset of cells in normal tissues. Neoplasia. 2001;3:17–26. doi: 10.1038/sj.neo.7900134. PubMed DOI PMC
Hiyama E., Hiyama K. Telomere and telomerase in stem cells. Br. J. Cancer. 2007;96:1020–1024. doi: 10.1038/sj.bjc.6603671. PubMed DOI PMC
Hiyama K., Hirai Y., Kyoizumi S., Akiyama M., Hiyama E., Piatyszek M.A., Shay J.W., Ishioka S., Yamakido M. Activation of Telomerase in Human-Lymphocytes and Hematopoietic Progenitor Cells. J. Immunol. 1995;155:3711–3715. PubMed
Yui J., Chiu C.P., Lansdorp P.M. Telomerase activity in candidate stem cells from fetal liver and adult bone marrow. Blood. 1998;91:3255–3262. PubMed
Ito H., Kyo S., Kanaya T., Takakura M., Inoue M., Namiki M. Expression of human telomerase subunits and correlation with telomerase activity in urothelial cancer. Clin. Cancer Res. 1998;4:1603–1608. PubMed
Kyo S., Takakura M., Kohama T., Inoue M. Telomerase activity in human endometrium. Cancer Res. 1997;57:610–614. PubMed
Jureckova J.F., Sykorova E., Hafidh S., Honys D., Fajkus J., Fojtova M. Tissue-specific expression of telomerase reverse transcriptase gene variants in Nicotiana tabacum. Planta. 2017;245:549–561. doi: 10.1007/s00425-016-2624-1. PubMed DOI
Ogrocka A., Sykorova E., Fajkus J., Fojtova M. Developmental silencing of the AtTERT gene is associated with increased H3K27me3 loading and maintenance of its euchromatic environment. J. Exp. Bot. 2012;63:4233–4241. doi: 10.1093/jxb/ers107. PubMed DOI PMC
Riha K., Fajkus J., Siroky J., Vyskot B. Developmental control of telomere lengths and telomerase activity in plants. Plant Cell. 1998;10:1691–1698. doi: 10.1105/tpc.10.10.1691. PubMed DOI PMC
Zachova D., Fojtova M., Dvorackova M., Mozgova I., Lermontova I., Peska V., Schubert I., Fajkus J., Sykorova E. Structure-function relationships during transgenic telomerase expression in Arabidopsis. Physiol. Plant. 2013;149:114–126. doi: 10.1111/ppl.12021. PubMed DOI
Winter D., Vinegar B., Nahal H., Ammar R., Wilson G.V., Provart N.J. An “Electronic Fluorescent Pictograph” Browser for Exploring and Analyzing Large-Scale Biological Data Sets. PLoS ONE. 2007;2 doi: 10.1371/journal.pone.0000718. PubMed DOI PMC
Greider C.W., Blackburn E.H. Identification of a Specific Telomere Terminal Transferase-Activity in Tetrahymena Extracts. Cell. 1985;43:405–413. doi: 10.1016/0092-8674(85)90170-9. PubMed DOI
Greider C.W., Blackburn E.H. A Telomeric Sequence in the Rna of Tetrahymena Telomerase Required for Telomere Repeat Synthesis. Nature. 1989;337:331–337. doi: 10.1038/337331a0. PubMed DOI
Chan H., Wang Y.Q., Feigon J. Progress in Human and Tetrahymena Telomerase Structure Determination. Annu. Rev. Biophys. 2017;46:199–225. doi: 10.1146/annurev-biophys-062215-011140. PubMed DOI PMC
Nguyen T.H.D., Tam J., Wu R.A., Greber B.J., Toso D., Nogales E., Collins K. Cryo-EM structure of substrate-bound human telomerase holoenzyme. Nature. 2018;557:190. doi: 10.1038/s41586-018-0062-x. PubMed DOI PMC
Lermontova I., Schubert V., Bornke F., Macas J., Schubert I. Arabidopsis CBF5 interacts with the H/ACA snoRNP assembly factor NAF1. Plant Mol. Biol. 2007;65:615–626. doi: 10.1007/s11103-007-9226-z. PubMed DOI
Pendle A.F., Clark G.P., Boon R., Lewandowska D., Lam Y.W., Andersen J., Mann M., Lamond A.I., Brown J.W.S., Shaw P.J. Proteomic analysis of the Arabidopsis nucleolus suggests novel nucleolar functions. Mol. Biol. Cell. 2005;16:260–269. doi: 10.1091/mbc.e04-09-0791. PubMed DOI PMC
Rossignol P., Collier S., Bush M., Shaw P., Doonan J.H. Arabidopsis POT1A interacts with TERT-V(18), an N-terminal splicing variant of telomerase. J. Cell Sci. 2007;120:3678–3687. doi: 10.1242/jcs.004119. PubMed DOI
Nakamura T.M., Morin G.B., Chapman K.B., Weinrich S.L., Andrews W.H., Lingner J., Harley C.B., Cech T.R. Telomerase catalytic subunit homologs from fission yeast and human. Science. 1997;277:955–959. doi: 10.1126/science.277.5328.955. PubMed DOI
Oguchi K., Liu H.T., Tamura K., Takahashi H. Molecular cloning and characterization of AtTERT, a telomerase reverse transcriptase homolog in Arabidopsis thaliana. Febs Lett. 1999;457:465–469. doi: 10.1016/S0014-5793(99)01083-2. PubMed DOI
Baumann P., Cech T.R. Pot1, the putative telomere end-binding protein in fission yeast and humans. Science. 2001;292:1171–1175. doi: 10.1126/science.1060036. PubMed DOI
Houghtaling B.R., Cuttonaro L., Chang W., Smith S. A dynamic molecular link between the telomere length regulator TRF1 and the chromosome end protector TRF2. Curr. Biol. 2004;14:1621–1631. doi: 10.1016/j.cub.2004.08.052. PubMed DOI
Liu D., Safari A., O’Connor M.S., Chan D.W., Laegeler A., Qin J., Zhou S.Y. PTOP interacts with POT1 and regulates its localization to telomeres. Nat. Cell Biol. 2004;6:673–680. doi: 10.1038/ncb1142. PubMed DOI
Ye J.Z.S., Hockemeyer D., Krutchinsky A.N., Loayza D., Hooper S.M., Chait B.T., de Lange T. POT1-interacting protein PIP1: A telomere length regulator that recruits POT1 to the TIN2/TRF1 complex. Genes Dev. 2004;18:1649–1654. doi: 10.1101/gad.1215404. PubMed DOI PMC
Chen L.Y., Redon S., Lingner J. The human CST complex is a terminator of telomerase activity. Nature. 2012;488:540. doi: 10.1038/nature11269. PubMed DOI
Tani A., Murata M. Alternative splicing of Pot1 (Protection of telomere)-like genes in Arabidopsis thaliana. Genes Genet. Syst. 2005;80:41–48. doi: 10.1266/ggs.80.41. PubMed DOI
Cifuentes-Rojas C., Kannan K., Tseng L., Shippen D.E. Two RNA subunits and POT1a are components of Arabidopsis telomerase. Proc. Natl. Acad. Sci. USA. 2011;108:73–78. doi: 10.1073/pnas.1013021107. PubMed DOI PMC
Kannan K., Nelson A.D.L., Shippen D.E. Dyskerin is a component of the Arabidopsis telomerase RNP required for telomere maintenance. Mol. Cell. Biol. 2008;28:2332–2341. doi: 10.1128/MCB.01490-07. PubMed DOI PMC
Arora A., Beilstein M.A., Shippen D.E. Evolution of Arabidopsis protection of telomeres 1 alters nucleic acid recognition and telomerase regulation. Nucleic Acids Res. 2016;44:9821–9830. doi: 10.1093/nar/gkw807. PubMed DOI PMC
Van Steensel B., de Lange T. Control of telomere length by the human telomeric protein TRF1. Nature. 1997;385:740–743. doi: 10.1038/385740a0. PubMed DOI
Kim S.H., Kaminker P., Campisi J. TIN2, a new regulator of telomere length in human cells. Nat. Genet. 1999;23:405–412. doi: 10.1038/70508. PubMed DOI PMC
Ye J.Z.S., de Lange T. TIN2 is a tankyrase 1 PARP modulator in the TRF1 telomere length control complex. Nat. Genet. 2004;36:618–623. doi: 10.1038/ng1360. PubMed DOI
Zhou X.Z., Lu K.P. The Pin2/TRF1-interacting: Protein PinX1 is a potent telomerase inhibitor. Cell. 2001;107:347–359. doi: 10.1016/S0092-8674(01)00538-4. PubMed DOI
Wu Y., Xiao S., Zhu X.D. MRE11-RAD50-NBS1 and ATM function as co-mediators of TRF1 in telomere length control. Nat. Struct. Mol. Biol. 2007;14:832–840. doi: 10.1038/nsmb1286. PubMed DOI
Schrumpfova P., Kuchar M., Mikova G., Skrisovska L., Kubicarova T., Fajkus J. Characterization of two Arabidopsis thaliana myb-like proteins showing affinity to telomeric DNA sequence. Genome. 2004;47:316–324. doi: 10.1139/g03-136. PubMed DOI
Schrumpfova P.P., Kuchar M., Palecek J., Fajkus J. Mapping of interaction domains of putative telomere-binding proteins AtTRB1 and AtPOT1b from Arabidopsis thaliana. Febs Lett. 2008;582:1400–1406. doi: 10.1016/j.febslet.2008.03.034. PubMed DOI
Schrumpfova P.P., Vychodilova I., Dvorackova M., Majerska J., Dokladal L., Schorova S., Fajkus J. Telomere repeat binding proteins are functional components of Arabidopsis telomeres and interact with telomerase. Plant J. 2014;77:770–781. doi: 10.1111/tpj.12428. PubMed DOI PMC
Schrumpfova P.P., Vychodilova I., Hapala J., Schorova S., Dvoracek V., Fajkus J. Telomere binding protein TRB1 is associated with promoters of translation machinery genes in vivo. Plant Mol. Biol. 2016;90:189–206. doi: 10.1007/s11103-015-0409-8. PubMed DOI
Zhou Y., Wang Y.J., Krause K., Yang T.T., Dongus J.A., Zhang Y.J., Turck F. Telobox motifs recruit CLF/SWN-PRC2 for H3K27me3 deposition via TRB factors in Arabidopsis. Nat. Genet. 2018;50:638. doi: 10.1038/s41588-018-0109-9. PubMed DOI
Dokladal L., Benkova E., Honys D., Dupl’akova N., Lee L.Y., Gelvin S.B., Sykorova E. An armadillo-domain protein participates in a telomerase interaction network. Plant Mol. Biol. 2018;97:407–420. doi: 10.1007/s11103-018-0747-4. PubMed DOI
Lee W.K., Cho M.H. Telomere-binding protein regulates the chromosome ends through the interaction with histone deacetylases in Arabidopsis thaliana. Nucleic Acids Res. 2016;44:4610–4624. doi: 10.1093/nar/gkw067. PubMed DOI PMC
Tan L.M., Zhang C.J., Hou X.M., Shao C.R., Lu Y.J., Zhou J.X., Li Y.Q., Li L., Chen S., He X.J. The PEAT protein complexes are required for histone deacetylation and heterochromatin silencing. Embo J. 2018;37:e98770. doi: 10.15252/embj.201798770. PubMed DOI PMC
Van Steensel B., Smogorzewska A., de Lange T. TRF2 protects human telomeres from end-to-end fusions. Cell. 1998;92:401–413. doi: 10.1016/S0092-8674(00)80932-0. PubMed DOI
Kabir S., Sfeir A., de Lange T. Taking apart Rap1 An adaptor protein with telomeric and non-telomeric functions. Cell Cycle. 2010;9:4061–4067. doi: 10.4161/cc.9.20.13579. PubMed DOI PMC
Rai R., Hu C., Broton C., Chen Y., Lei M., Chang S. NBS1 Phosphorylation Status Dictates Repair Choice of Dysfunctional Telomeres. Mol. Cell. 2017;65:801. doi: 10.1016/j.molcel.2017.01.016. PubMed DOI PMC
O’Connor M.S., Safari A., Liu D., Qin J., Zhou S.Y. The human Rap1 protein complex and modulation of telomere length. J. Biol. Chem. 2004;279:28585–28591. doi: 10.1074/jbc.M312913200. PubMed DOI
Chen Y., Yang Y.T., van Overbeek M., Donigian J.R., Baciu P., de Lange T., Lei M. A shared docking motif in TRF1 and TRF2 used for differential recruitment of telomeric proteins. Science. 2008;319:1092–1096. doi: 10.1126/science.1151804. PubMed DOI
Song K., Jung D., Jung Y., Lee S.G., Lee I. Interaction of human Ku70 with TRF2. Febs Lett. 2000;481:81–85. doi: 10.1016/S0014-5793(00)01958-X. PubMed DOI
Gomez M., Wu J., Schreiber V., Dunlap J., Dantzer F., Wang Y.S., Liu Y. PARP1 is a TRF2-associated poly(ADP-ribose)polymerase and protects eroded telomere. Mol. Biol. Cell. 2006;17:1686–1696. doi: 10.1091/mbc.e05-07-0672. PubMed DOI PMC
Dantzer F., Giraud-Panis M.J., Jaco I., Ame J.C., Schultz I., Blasco M., Koering C.E., Gilson E., Menissier-de Murcia J., de Murcia G., et al. Functional interaction between poly(ADP-ribose) polymerase 2 (PARP-2) and TRF2: PARP activity negatively regulates TRF2. Mol. Cell. Biol. 2004;24:1595–1607. doi: 10.1128/MCB.24.4.1595-1607.2004. PubMed DOI PMC
Wu Y.L., Mitchell T.R.H., Zhu X.D. Human XPF controls TRF2 and telomere length maintenance through distinctive mechanisms. Mech. Ageing Dev. 2008;129:602–610. doi: 10.1016/j.mad.2008.08.004. PubMed DOI
Chen C.M., Wang C.T., Ho C.H. A plant gene encoding a Myb-like protein that binds telomeric GGTTTAG repeats in vitro. J. Biol. Chem. 2001;276:16511–16519. doi: 10.1074/jbc.M009659200. PubMed DOI
Kuchar M., Fajkus J. Interactions of putative telomere-binding proteins in Arabidopsis thaliana: Identification of functional TRF2 homolog in plants. Febs Lett. 2004;578:311–315. doi: 10.1016/j.febslet.2004.11.021. PubMed DOI
Karamysheva Z.N., Surovtseva Y.V., Vespa L., Shakirov E.V., Shippen D.E. A C-terminal Myb extension domain defines a novel family of double-strand telomeric DNA-binding proteins in Arabidopsis. J. Biol. Chem. 2004;279:47799–47807. doi: 10.1074/jbc.M407938200. PubMed DOI
Majerska J., Schrumpfova P.P., Dokladal L., Schorova S., Stejskal K., Oboril M., Honys D., Kozakova L., Polanska P.S., Sykorova E. Tandem affinity purification of AtTERT reveals putative interaction partners of plant telomerase in vivo. Protoplasma. 2017;254:1547–1562. doi: 10.1007/s00709-016-1042-3. PubMed DOI
Jeong S.A., Kim K., Lee J.H., Cha J.S., Khadka P., Cho H.S., Chung K. Akt-mediated phosphorylation increases the binding affinity of hTERT for importin alpha to promote nuclear translocation. J. Cell Sci. 2015;128:2287–2301. doi: 10.1242/jcs.166132. PubMed DOI
Khurts S., Masutomi K., Delgermaa L., Arai K., Oishi N., Mizuno H., Hayashi N., Hahn W.C., Murakami S. Nucleolin interacts with telomerase. J. Biol. Chem. 2004;279:51508–51515. doi: 10.1074/jbc.M407643200. PubMed DOI
Pontvianne F., Abou-Ellail M., Douet J., Comella P., Matia I., Chandrasekhara C., DeBures A., Blevins T., Cooke R., Medina F.J., et al. Nucleolin Is Required for DNA Methylation State and the Expression of rRNA Gene Variants in Arabidopsis thaliana. PLoS Genet. 2010;6:e1001225. doi: 10.1371/journal.pgen.1001225. PubMed DOI PMC
Pontvianne F., Carpentier M.C., Durut N., Pavlistova V., Jaske K., Schorova S., Parrinello H., Rohmer M., Pikaard C.S., Fojtova M., et al. Identification of Nucleolus-Associated Chromatin Domains Reveals a Role for the Nucleolus in 3D Organization of the A. thaliana Genome. Cell Rep. 2016;16:1574–1587. doi: 10.1016/j.celrep.2016.07.016. PubMed DOI PMC
Venteicher A.S., Meng Z.J., Mason P.J., Veenstra T.D., Artandi S.E. Identification of ATPases pontin and reptin as telomerase components essential for holoenzyme assembly. Cell. 2008;132:945–957. doi: 10.1016/j.cell.2008.01.019. PubMed DOI PMC
Holt B.F., Boyes D.C., Ellerstrom M., Siefers N., Wiig A., Kauffman S., Grant M.R., Dangl J.L. An evolutionarily conserved mediator of plant disease resistance gene function is required for normal Arabidopsis development. Dev. Cell. 2002;2:807–817. doi: 10.1016/S1534-5807(02)00174-0. PubMed DOI
Giannone R.J., McDonald H.W., Hurst G.B., Shen R.F., Wang Y.S., Liu Y. The Protein Network Surrounding the Human Telomere Repeat Binding Factors TRF1, TRF2, and POT1. PLoS ONE. 2010;5:e12407. doi: 10.1371/journal.pone.0012407. PubMed DOI PMC
Lee L.Y., Wu F.H., Hsu C.T., Shen S.C., Yeh H.Y., Liao D.C., Fang M.J., Liu N.T., Yen Y.C., Dokladal L., et al. Screening a cDNA Library for Protein-Protein Interactions Directly in Planta. Plant Cell. 2012;24:1746–1759. doi: 10.1105/tpc.112.097998. PubMed DOI PMC
Kappei D., Butter F., Benda C., Scheibe M., Draskovic I., Stevense M., Novo C.L., Basquin C., Araki M., Araki K., et al. HOT1 is a mammalian direct telomere repeat-binding protein contributing to telomerase recruitment. Embo J. 2013;32:1681–1701. doi: 10.1038/emboj.2013.105. PubMed DOI PMC
Chai W.H., Ford L.P., Lenertz L., Wright W.E., Shay J.W. Human Ku70/80 associates physically with telomerase through interaction with hTERT. J. Biol. Chem. 2002;277:47242–47247. doi: 10.1074/jbc.M208542200. PubMed DOI
Fell V.L., Schild-Poulter C. The Ku heterodimer: Function in DNA repair and beyond. Mutat. Res. Rev. Mutat. Res. 2015;763:15–29. doi: 10.1016/j.mrrev.2014.06.002. PubMed DOI
Bundock P., van Attikum H., Hooykaas P. Increased telomere length and hypersensitivity to DNA damaging agents in an Arabidopsis KU70 mutant. Nucleic Acids Res. 2002;30:3395–3400. doi: 10.1093/nar/gkf445. PubMed DOI PMC
Riha K., Watson J.M., Parkey J., Shippen D.E. Telomere length deregulation and enhanced sensitivity to genotoxic stress in Arabidopsis mutants deficient in Ku70. Embo J. 2002;21:2819–2826. doi: 10.1093/emboj/21.11.2819. PubMed DOI PMC
West C.E., Waterworth W.M., Story G.W., Sunderland P.A., Jiang Q., Bray C.M. Disruption of the Arabidopsis AtKu80 gene demonstrates an essential role for AtKu80 protein in efficient repair of DNA double-strand breaks in vivo. Plant J. 2002;31:517–528. doi: 10.1046/j.1365-313X.2002.01370.x. PubMed DOI
Gallego M.E., Jalut N., White C.I. Telomerase dependence of telomere lengthening in Ku80 mutant Arabidopsis. Plant Cell. 2003;15:782–789. doi: 10.1105/tpc.008623. PubMed DOI PMC
Cifuentes-Rojas C., Nelson A.D.L., Boltz K.A., Kannan K., She X.T., Shippen D.E. An alternative telomerase RNA in Arabidopsis modulates enzyme activity in response to DNA damage. Genes Dev. 2012;26:2512–2523. doi: 10.1101/gad.202960.112. PubMed DOI PMC
Valuchova S., Fulnecek J., Prokop Z., Stolt-Bergner P., Janouskova E., Hofr C., Riha K. Protection of Arabidopsis blunt-ended telomeres is mediated by a physical association with the Ku heterodimer. Plant Cell. 2017 doi: 10.1105/tpc.17.00064. PubMed DOI PMC
Holt S.E., Aisner D.L., Baur J., Tesmer V.M., Dy M., Ouellette M., Trager J.B., Morin G.B., Toft D.O., Shay J.W., et al. Functional requirement of p23 and Hsp90 in telomerase complexes. Genes Dev. 1999;13:817–826. doi: 10.1101/gad.13.7.817. PubMed DOI PMC
Chen B., Zhong D.B., Monteiro A. Comparative genomics and evolution of the HSP90 family of genes across all kingdoms of organisms. BMC Genom. 2006;7:156 PubMed PMC
Zhang Z.M., Sullivan W., Felts S.J., Prasad B.D., Toft D.O., Krishna P. Characterization of plant p23-like proteins for their co-chaperone activities. Cell Stress Chaperones. 2010;15:703–715. doi: 10.1007/s12192-010-0182-1. PubMed DOI PMC
Wortman M.J., Johnson E.M., Bergemann A.D. Mechanism of DNA binding and localized strand separation by Pur alpha and comparison with Pur family member, Pur beta. Biochim. Biophys. Acta-Mol. Cell Res. 2005;1743:64–78. doi: 10.1016/j.bbamcr.2004.08.010. PubMed DOI
Mermoud J.E., Rowbotham S.P., Varga-Weisz P.D. Keeping chromatin quiet How nucleosome remodeling restores heterochromatin after replication. Cell Cycle. 2011;10:4017–4025. doi: 10.4161/cc.10.23.18558. PubMed DOI PMC
Dona M., Scheid O.M. DNA Damage Repair in the Context of Plant Chromatin. Plant Physiol. 2015;168:1206–1218. doi: 10.1104/pp.15.00538. PubMed DOI PMC
Nguyen D., St-Sauveur V.G., Bergeron D., Dupuis-Sandoval F., Scott M.S., Bachand F. A Polyadenylation-Dependent 3′ End Maturation Pathway Is Required for the Synthesis of the Human Telomerase RNA. Cell Rep. 2015;13:2244–2257. doi: 10.1016/j.celrep.2015.11.003. PubMed DOI
Dokladal L., Honys D., Rana R., Lee L.Y., Gelvin S.B., Sykorova E. cDNA Library Screening Identifies Protein Interactors Potentially Involved in Non-Telomeric Roles of Arabidopsis Telomerase. Front. Plant Sci. 2015;6:985. doi: 10.3389/fpls.2015.00985. PubMed DOI PMC
Ma H.L., Su L., Yue H.W., Yin X.L., Zhao J., Zhang S.L., Kung H.F., Xu Z.G., Miao J.Y. HMBOX1 interacts with MT2A to regulate autophagy and apoptosis in vascular endothelial cells. Sci. Rep. 2015;5:15121. doi: 10.1038/srep15121. PubMed DOI PMC
Feng X.Y., Luo Z.H., Jiang S., Li F., Han X., Hu Y., Wang D., Zhao Y., Ma W.B., Liu D., et al. The telomere-associated homeobox-containing protein TAH1/HMBOX1 participates in telomere maintenance in ALT cells. J. Cell Sci. 2013;126:3982–3989. doi: 10.1242/jcs.128512. PubMed DOI PMC
Lamartine J., Seri M., Cinti R., Heitzmann F., Creaven M., Radomski N., Jost E., Lenoir G.M., Romeo G., Sylla B.S. Molecular cloning and mapping of a human cDNA (PA2G4) that encodes a protein highly homologous to the mouse cell cycle protein p38-2G4. Cytogenet. Cell Genet. 1997;78:31–35. doi: 10.1159/000134621. PubMed DOI
Feng J.L., Funk W.D., Wang S.S., Weinrich S.L., Avilion A.A., Chiu C.P., Adams R.R., Chang E., Allsopp R.C., Yu J.H., et al. The Rna Component of Human Telomerase. Science. 1995;269:1236–1241. doi: 10.1126/science.7544491. PubMed DOI
Cohen S.B., Graham M.E., Lovrecz G.O., Bache N., Robinson P.J., Reddel R.R. Protein composition of catalytically active human telomerase from immortal cells. Science. 2007;315:1850–1853. doi: 10.1126/science.1138596. PubMed DOI
Heiss N.S., Knight S.W., Vulliamy T.J., Klauck S.M., Wiemann S., Mason P.J., Poustka A., Dokal I. X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. Nat. Genet. 1998;19:32–38. doi: 10.1038/ng0598-32. PubMed DOI
Henras A., Henry Y., Bousquet-Antonelli C., Noaillac-Depeyre J., Gelugne J.P., Caizergues-Ferrer M. Nhp2p and Nop10p are essential for the function of H/ACA snoRNPs. Embo J. 1998;17:7078–7090. doi: 10.1093/emboj/17.23.7078. PubMed DOI PMC
Saito H., Fujiwara T., Shin S., Okui K., Nakamura Y. Cloning and mapping of a human novel cDNA (NHP2L1) that encodes a protein highly homologous to yeast nuclear protein NHP2. Cytogenet. Cell Genet. 1996;72:191–193. doi: 10.1159/000134186. PubMed DOI
Watkins N.J., Gottschalk A., Neubauer G., Kastner B., Fabrizio P., Mann M., Luhrmann R. Cbf5p, a potential pseudouridine synthase, and Nhp2p, a putative RNA-binding protein, are present together with Gar1p in all H BOX/ACA-motif snoRNPs and constitute a common bipartite structure. RNA. 1998;4:1549–1568. doi: 10.1017/S1355838298980761. PubMed DOI PMC
Fatica A., Dlakic M., Tollervey D. Naf1p is a box H/ACA snoRNP assembly factor. RNA. 2002;8:1502–1514. PubMed PMC
Ting N.S.Y., Yu Y.P., Pohorelic B., Lees-Miller S.P., Beattie T.L. Human Ku70/80 interacts directly with hTR, the RNA component of human telomerase. Nucleic Acids Res. 2005;33:2090–2098. doi: 10.1093/nar/gki342. PubMed DOI PMC
Sexton A.N., Collins K. The 5′ Guanosine Tracts of Human Telomerase RNA Are Recognized by the G-Quadruplex Binding Domain of the RNA Helicase DHX36 and Function To Increase RNA Accumulation. Mol. Cell. Biol. 2011;31:736–743. doi: 10.1128/MCB.01033-10. PubMed DOI PMC
Moon D.H., Segal M., Boyraz B., Guinan E., Hofmann I., Cahan P., Tai A.K., Agarwal S. Poly(A)-specific ribonuclease (PARN) mediates 3′-end maturation of the telomerase RNA component. Nat. Genet. 2015;47:1482. doi: 10.1038/ng.3423. PubMed DOI PMC
Chiba Y., Johnson M.A., Lidder P., Vogel J.T., van Erp H., Green P.J. AtPARN is an essential poly(A) ribonuclease in Arabidopsis. Gene. 2004;328:95–102. doi: 10.1016/j.gene.2003.11.028. PubMed DOI
Venteicher A.S., Abreu E.B., Meng Z.J., McCann K.E., Terns R.M., Veenstra T.D., Terns M.P., Artandi S.E. A Human Telomerase Holoenzyme Protein Required for Cajal Body Localization and Telomere Synthesis. Science. 2009;323:644–648. doi: 10.1126/science.1165357. PubMed DOI PMC
Sykorova E., Fajkus J. Structure-function relationships in telomerase genes. Biol. Cell. 2009;101:375–392. doi: 10.1042/BC20080205. PubMed DOI
Sykorova E., Fulneckova J., Mokros P., Fajkus J., Fojtova M., Peska V. Three TERT genes in Nicotiana tabacum. Chromosome Res. 2012;20:381–394. doi: 10.1007/s10577-012-9282-3. PubMed DOI
Chakrabarti K., Pearson M., Grate L., Sterne-Weiler T., Deans J., Donohue J.P., Ares M. Structural RNAs of known and unknown function identified in malaria parasites by comparative genomics and RNA analysis. RNA. 2007;13:1923–1939. doi: 10.1261/rna.751807. PubMed DOI PMC
Webb C.J., Zakian V.A. Identification and characterization of the Schizosaccharomyces pombe TER1 telomerase RNA. Nat. Struct. Mol. Biol. 2008;15:34–42. doi: 10.1038/nsmb1354. PubMed DOI PMC
Leonardi J., Box J.A., Bunch J.T., Baumann P. TER1, the RNA subunit of fission yeast telomerase. Nat. Struct. Mol. Biol. 2008;15:26–33. doi: 10.1038/nsmb1343. PubMed DOI
Xie M.Y., Mosig A., Qi X., Li Y., Stadler P.F., Chen J.J.L. Structure and function of the smallest vertebrate telomerase RNA from teleost fish. J. Biol. Chem. 2008;283:2049–2059. doi: 10.1074/jbc.M708032200. PubMed DOI
Kachouri-Lafond R., Dujon B., Gilson E., Westhof E., Fairhead C., Teixeira M.T. Large telomerase RNA, telomere length heterogeneity and escape from senescence in Candida glabrata. Febs Lett. 2009;583:3605–3610. doi: 10.1016/j.febslet.2009.10.034. PubMed DOI
Gunisova S., Elboher E., Nosek J., Gorkovoy V., Brown Y., Lucier J.F., Laterreur N., Wellinger R.J., Tzfati Y., Tomaska L. Identification and comparative analysis of telomerase RNAs from Candida species reveal conservation of functional elements. RNA-A Publ. RNA Soc. 2009;15:546–559. doi: 10.1261/rna.1194009. PubMed DOI PMC
Waldl M., Thiel B.C., Ochsenreiter R., Holzenleiter A., de Araujo Oliveira J.V., Walter M., Wolfinger M.T., Stadler P.F. TERribly Difficult: Searching for Telomerase RNAs in Saccharomycetes. Genes (Basel) 2018;9:372. doi: 10.3390/genes9080372. PubMed DOI PMC
Sykorova E., Lim K.Y., Kunicka Z., Chase M.W., Bennett M.D., Fajkus J., Leitch A.R. Telomere variability in the monocotyledonous plant order Asparagales. Proc. R. Soc. B-Biol. Sci. 2003;270:1893–1904. doi: 10.1098/rspb.2003.2446. PubMed DOI PMC
Sykorova E., Fajkus J., Meznikova M., Lim K.Y., Neplechova K., Blattner F.R., Chase M.W., Leitch A.R. Minisatellite telomeres occur in the family Alliaceae but are lost in Allium. Am. J. Bot. 2006;93:814–823. doi: 10.3732/ajb.93.6.814. PubMed DOI
De Lange T. Shelterin: The protein complex that shapes and safeguards human telomeres. Genes Dev. 2005;19:2100–2110. doi: 10.1101/gad.1346005. PubMed DOI
De Lange T. What I got wrong about shelterin. J. Biol. Chem. 2018;293:10453–10456. doi: 10.1074/jbc.AW118.003234. PubMed DOI PMC
Palm W., de Lange T. How Shelterin Protects Mammalian Telomeres. Annu. Rev. Genet. 2008;42:301–334. doi: 10.1146/annurev.genet.41.110306.130350. PubMed DOI
Sfeir A., de Lange T. Removal of Shelterin Reveals the Telomere End-Protection Problem. Science. 2012;336:593–597. doi: 10.1126/science.1218498. PubMed DOI PMC
Kibe T., Zimmermann M., de Lange T. TPP1 Blocks an ATR-Mediated Resection Mechanism at Telomeres. Mol. Cell. 2016;61:236–246. doi: 10.1016/j.molcel.2015.12.016. PubMed DOI PMC
Zimmermann M., Lottersberger F., Buonomo S.B., Sfeir A., de Lange T. 53BP1 Regulates DSB Repair Using Rif1 to Control 5 ‘ End Resection. Science. 2013;339:700–704. doi: 10.1126/science.1231573. PubMed DOI PMC
Dalby A.B., Hofr C., Cech T.R. Contributions of the TEL-patch Amino Acid Cluster on TPP1 to Telomeric DNA Synthesis by Human Telomerase. J. Mol. Biol. 2015;427:1291–1303. doi: 10.1016/j.jmb.2015.01.008. PubMed DOI PMC
Latrick C.M., Cech T.R. POT1-TPP1 enhances telomerase processivity by slowing primer dissociation and aiding translocation. Embo J. 2010;29:924–933. doi: 10.1038/emboj.2009.409. PubMed DOI PMC
Nandakumar J., Bell C.F., Weidenfeld I., Zaug A.J., Leinwand L.A., Cech T.R. The TEL patch of telomere protein TPP1 mediates telomerase recruitment and processivity. Nature. 2012;492:285. doi: 10.1038/nature11648. PubMed DOI PMC
Schmidt J.C., Cech T.R. Human telomerase: Biogenesis, trafficking, recruitment, and activation. Genes Dev. 2015;29:1095–1105. doi: 10.1101/gad.263863.115. PubMed DOI PMC
Griffith J.D., Comeau L., Rosenfield S., Stansel R.M., Bianchi A., Moss H., de Lange T. Mammalian telomeres end in a large duplex loop. Cell. 1999;97:503–514. doi: 10.1016/S0092-8674(00)80760-6. PubMed DOI
Stansel R.M., de Lange T., Griffith J.D. T-loop assembly in vitro involves binding of TRF2 near the 3’ telomeric overhang. Embo J. 2001;20:5532–5540. doi: 10.1093/emboj/20.19.5532. PubMed DOI PMC
Sfeir A., Kosiyatrakul S.T., Hockemeyer D., MacRae S.L., Karlseder J., Schildkraut C.L., de Lange T. Mammalian Telomeres Resemble Fragile Sites and Require TRF1 for Efficient Replication. Cell. 2009;138:90–103. doi: 10.1016/j.cell.2009.06.021. PubMed DOI PMC
Tong A.S., Stern J.L., Sfeir A., Kartawinata M., de Lange T., Zhu X.D., Bryan T.M. ATM and ATR Signaling Regulate the Recruitment of Human Telomerase to Telomeres. Cell Rep. 2015;13:1633–1646. doi: 10.1016/j.celrep.2015.10.041. PubMed DOI PMC
Cesare A.J., Quinney N., Willcox S., Subramanian D., Griffith J.D. Telomere looping in P-sativum (common garden pea) Plant J. 2003;36:271–279. doi: 10.1046/j.1365-313X.2003.01882.x. PubMed DOI
Mozgova I., Schrumpfova P.P., Hofr C., Fajkus J. Functional characterization of domains in AtTRB1, a putative telomere-binding protein in Arabidopsis thaliana. Phytochemistry. 2008;69:1814–1819. doi: 10.1016/j.phytochem.2008.04.001. PubMed DOI
Marian C.O., Bordoli S.J., Goltz M., Santarella R.A., Jackson L.P., Danilevskaya O., Beckstette M., Meeley R., Bass H.W. The maize Single myb histone 1 gene, Smh1, belongs to a novel gene family and encodes a protein that binds telomere DNA repeats in vitro. Plant Physiol. 2003;133:1336–1350. doi: 10.1104/pp.103.026856. PubMed DOI PMC
Bilaud T., Koering C.E., BinetBrasselet E., Ancelin K., Pollice A., Gasser S.M., Gilson E. The telobox, a Myb-related telomeric DNA binding motif found in proteins from yeast, plants and human. Nucleic Acids Res. 1996;24:1294–1303. doi: 10.1093/nar/24.7.1294. PubMed DOI PMC
Peska V., Schrumpfova P.P., Fajkus J. Using the Telobox to Search for Plant Telomere Binding Proteins. Curr. Protein Pept. Sci. 2011;12:75–83. doi: 10.2174/138920311795684968. PubMed DOI
Schrumpfova P.P., Schorova S., Fajkus J. Telomere- and Telomerase-Associated Proteins and Their Functions in the Plant Cell. Front. Plant Sci. 2016;7:851. PubMed PMC
Zhou Y., Hartwig B., James G.V., Schneeberger K., Turck F. Complementary Activities of TELOMERE REPEAT BINDING Proteins and Polycomb Group Complexes in Transcriptional Regulation of Target Genes. Plant Cell. 2016;28:87–101. doi: 10.1105/tpc.15.00787. PubMed DOI PMC
El Mai M., Wagner K.D., Michiels J.F., Ambrosetti D., Borderie A., Destree S., Renault V., Djerbi N., Giraud-Panis M.J., Gilson E., et al. The Telomeric Protein TRF2 Regulates Angiogenesis by Binding and Activating the PDGFR beta Promoter. Cell Rep. 2014;9:1047–1060. doi: 10.1016/j.celrep.2014.09.038. PubMed DOI
Krutilina R.I., Oei S.L., Buchlow G., Yau P.M., Zalensky A.O., Zalenskaya I.A., Bradbury E.M., Tomilin N.V. A negative regulator of telomere-length protein TRF1 is associated with interstitial (TTAGGG)n blocks in immortal Chinese hamster ovary cells. Biochem. Biophys. Res. Commun. 2001;280:471–475. doi: 10.1006/bbrc.2000.4143. PubMed DOI
Martinez P., Thanasoula M., Carlos A.R., Gomez-Lopez G., Tejera A.M., Schoeftner S., Dominguez O., Pisano D.G., Tarsounas M., Blasco M.A. Mammalian Rap1 controls telomere function and gene expression through binding to telomeric and extratelomeric sites. Nat. Cell Biol. 2010;12:768. doi: 10.1038/ncb2081. PubMed DOI PMC
Morse R.H. RAP, RAP, open up! New wrinkles for RAP1 in yeast. Trends Genet. 2000;16:51–53. doi: 10.1016/S0168-9525(99)01936-8. PubMed DOI
Rizzo A., Iachettini S., Salvati E., Zizza P., Maresca C., D’Angelo C., Benarroch-Popivker D., Capolupo A., del Gaudio F., Cosconati S., et al. SIRT6 interacts with TRF2 and promotes its degradation in response to DNA damage. Nucleic Acids Res. 2017;45:1820–1834. doi: 10.1093/nar/gkw1202. PubMed DOI PMC
Simonet T., Zaragosi L.E., Philippe C., Lebrigand K., Schouteden C., Augereau A., Bauwens S., Ye J., Santagostino M., Giulotto E., et al. The human TTAGGG repeat factors 1 and 2 bind to a subset of interstitial telomeric sequences and satellite repeats. Cell Res. 2011;21:1028–1038. doi: 10.1038/cr.2011.40. PubMed DOI PMC
Ye J., Renault V.M., Jamet K., Gilson E. Transcriptional outcome of telomere signalling. Nat. Rev. Genet. 2014;15:491–503. doi: 10.1038/nrg3743. PubMed DOI
Zhang P., Pazin M.J., Schwartz C.M., Becker K.G., Wersto R.P., Dilley C.M., Mattson M.P. Nontelomeric TRF2-REST Interaction Modulates Neuronal Gene Silencing and Fate of Tumor and Stem Cells. Curr. Biol. 2008;18:1489–1494. doi: 10.1016/j.cub.2008.08.048. PubMed DOI PMC
Fulcher N., Riha K. Using Centromere Mediated Genome Elimination to Elucidate the Functional Redundancy of Candidate Telomere Binding Proteins in Arabidopsis thaliana. Front. Genet. 2016;6:349. doi: 10.3389/fgene.2015.00349. PubMed DOI PMC
Perrault S.D., Hornsby P.J., Betts D.H. Global gene expression response to telomerase in bovine adrenocortical cells. Biochem. Biophys. Res. Commun. 2005;335:925–936. doi: 10.1016/j.bbrc.2005.07.156. PubMed DOI
Majerska J., Sykorova E., Fajkus J. Non-telomeric activities of telomerase. Mol. Biosyst. 2011;7:1013–1023. doi: 10.1039/c0mb00268b. PubMed DOI
Park J.I., Venteicher A.S., Hong J.Y., Choi J., Jun S., Shkreli M., Chang W., Meng Z.J., Cheung P., Ji H., et al. Telomerase modulates Wnt signalling by association with target gene chromatin. Nature. 2009;460:66–U77. doi: 10.1038/nature08137. PubMed DOI PMC
Freeling M. Bias in Plant Gene Content Following Different Sorts of Duplication: Tandem, Whole-Genome, Segmental, or by Transposition. Annu. Rev. Plant Biol. 2009;60:433–453. doi: 10.1146/annurev.arplant.043008.092122. PubMed DOI
Mandakova T., Lysak M.A. Chromosomal Phylogeny and Karyotype Evolution in x=7 Crucifer Species (Brassicaceae) Plant Cell. 2008;20:2559–2570. doi: 10.1105/tpc.108.062166. PubMed DOI PMC
Price C.M., Boltz K.A., Chaiken M.F., Stewart J.A., Beilstein M.A., Shippen D.E. Evolution of CST function in telomere maintenance. Cell Cycle. 2010;9:3157–3165. doi: 10.4161/cc.9.16.12547. PubMed DOI PMC
Feng X.Y., Hsu S.J., Bhattacharjee A., Wang Y.Y., Diao J.J., Price C.M. CTC1-STN1 terminates telomerase while STN1-TEN1 enables C-strand synthesis during telomere replication in colon cancer cells. Nat. Commun. 2018;9:2827. doi: 10.1038/s41467-018-05154-z. PubMed DOI PMC
Feng X.Y., Hsu S.J., Kasbek C., Chaiken M., Price C.M. CTC1-mediated C-strand fill-in is an essential step in telomere length maintenance. Nucleic Acids Res. 2017;45:4281–4293. doi: 10.1093/nar/gkx125. PubMed DOI PMC
Stewart J.A., Wang F., Chaiken M.F., Kasbek C., Chastain P.D., Wright W.E., Price C.M. Human CST promotes telomere duplex replication and general replication restart after fork stalling. Embo J. 2012;31:3537–3549. doi: 10.1038/emboj.2012.215. PubMed DOI PMC
Bedoyan J.K., Lejnine S., Makarov V.L., Langmore J.P. Condensation of rat telomere-specific nucleosomal arrays containing unusually short DNA repeats and histone H1. J. Biol. Chem. 1996;271:18485–18493. doi: 10.1074/jbc.271.31.18485. PubMed DOI
Lejnine S., Makarov V.L., Langmore J.P. Conserved Nucleoprotein Structure at the Ends of Vertebrate and Invertebrate Chromosomes. Proc. Natl. Acad. Sci. USA. 1995;92:2393–2397. doi: 10.1073/pnas.92.6.2393. PubMed DOI PMC
Makarov V.L., Lejnine S., Bedoyan J., Langmore J.P. Nucleosomal Organization of Telomere-Specific Chromatin in Rat. Cell. 1993;73:775–787. doi: 10.1016/0092-8674(93)90256-P. PubMed DOI
Tommerup H., Dousmanis A., Delange T. Unusual Chromatin in Human Telomeres. Mol. Cell. Biol. 1994;14:5777–5785. doi: 10.1128/MCB.14.9.5777. PubMed DOI PMC
Fajkus J., Kovarik A., Kralovics R., Bezdek M. Organization of Telomeric and Subtelomeric Chromatin in the Higher-Plant Nicotiana tabacum. Mol. Gen. Genet. 1995;247:633–638. doi: 10.1007/BF00290355. PubMed DOI
Dejardin J., Kingston R.E. Purification of Proteins Associated with Specific Genomic Loci. Cell. 2009;136:175–186. doi: 10.1016/j.cell.2008.11.045. PubMed DOI PMC
Fajkus J., Trifonov E.N. Columnar packing of telomeric nucleosomes. Biochem. Biophys. Res. Commun. 2001;280:961–963. doi: 10.1006/bbrc.2000.4208. PubMed DOI
Bosco N., de Lange T. A TRF1-controlled common fragile site containing interstitial telomeric sequences. Chromosoma. 2012;121:465–474. doi: 10.1007/s00412-012-0377-6. PubMed DOI PMC
Sun H., Karow J.K., Hickson I.D., Maizels N. The Bloom’s syndrome helicase unwinds G4 DNA. J. Biol. Chem. 1998;273:27587–27592. doi: 10.1074/jbc.273.42.27587. PubMed DOI
Muftuoglu M., Wong H.K., Imam S.Z., Wilson D.M., Bohr V.A., Opresko P.L. Telomere repeat binding factor 2 interacts with base excision repair proteins and stimulates DNA synthesis by DNA polymerase beta. Cancer Res. 2006;66:113–124. doi: 10.1158/0008-5472.CAN-05-2742. PubMed DOI
Tatsumi Y., Ezura K., Yoshida K., Yugawa T., Narisawa-Saito M., Kiyono T., Ohta S., Obuse C., Fujita M. Involvement of human ORC and TRF2 in pre-replication complex assembly at telomeres. Genes Cells. 2008;13:1045–1059. doi: 10.1111/j.1365-2443.2008.01224.x. PubMed DOI
Sarek G., Vannier J.B., Panier S., Petrini J.H.J., Boulton S.J. TRF2 Recruits RTEL1 to Telomeres in S Phase to Promote T-Loop Unwinding. Mol. Cell. 2015;57:622–635. doi: 10.1016/j.molcel.2014.12.024. PubMed DOI PMC
Karlseder J., Hoke K., Mirzoeva O.K., Bakkenist C., Kastan M.B., Petrini J.H.J., de Lange T. The telomeric protein TRF2 binds the ATM kinase and can inhibit the ATM-dependent DNA damage response. PLoS Biol. 2004;2:1150–1156. doi: 10.1371/journal.pbio.0020240. PubMed DOI PMC
Hwang M.G., Chung I.K., Kang B.G., Cho M.H. Sequence-specific binding property of Arabidopsis thaliana telomeric DNA binding protein 1 (AtTBP1) Febs Lett. 2001;503:35–40. doi: 10.1016/S0014-5793(01)02685-0. PubMed DOI
Renfrew K.B., Song X.Y., Lee J.R., Arora A., Shippen D.E. POT1a and Components of CST Engage Telomerase and Regulate Its Activity in Arabidopsis. PLoS Genet. 2014;10:e1004738. doi: 10.1371/journal.pgen.1004738. PubMed DOI PMC
Wyatt H.D.M., Tsang A.R., Lobb D.A., Beattie T.L. Human Telomerase Reverse Transcriptase (hTERT) Q169 Is Essential for Telomerase Function In Vitro and In Vivo. PLoS ONE. 2009;4:e7176. doi: 10.1371/journal.pone.0007176. PubMed DOI PMC
Ganduri S., Lue N.F. STN1-POLA2 interaction provides a basis for primase-pol alpha stimulation by human STN1. Nucleic Acids Res. 2017;45:9455–9466. doi: 10.1093/nar/gkx621. PubMed DOI PMC
Miyake Y., Nakamura M., Nabetani A., Shimamura S., Tamura M., Yonehara S., Saito M., Ishikawa F. RPA-like Mammalian Ctc1-Stn1-Ten1 Complex Binds to Single-Stranded DNA and Protects Telomeres Independently of the Pot1 Pathway. Mol. Cell. 2009;36:193–206. doi: 10.1016/j.molcel.2009.08.009. PubMed DOI
Derboven E., Ekker H., Kusenda B., Bulankova P., Riha K. Role of STN1 and DNA Polymerase alpha in Telomere Stability and Genome-Wide Replication in Arabidopsis. PLoS Genet. 2014;10:e1004682. doi: 10.1371/journal.pgen.1004682. PubMed DOI PMC
Leehy K.A., Lee J.R., Song X.Y., Renfrew K.B., Shippen D.E. MERISTEM DISORGANIZATION1 Encodes TEN1, an Essential Telomere Protein That Modulates Telomerase Processivity in Arabidopsis. Plant Cell. 2013;25:1343–1354. doi: 10.1105/tpc.112.107425. PubMed DOI PMC
Song X.Y., Leehy K., Warrington R.T., Lamb J.C., Surovtseva Y.V., Shippen D.E. STN1 protects chromosome ends in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 2008;105:19815–19820. doi: 10.1073/pnas.0807867105. PubMed DOI PMC
Surovtseva Y.V., Churikov D., Boltz K.A., Song X.Y., Lamb J.C., Warrington R., Leehy K., Heacock M., Price C.M., Shippen D.E. Conserved Telomere Maintenance Component 1 Interacts with STN1 and Maintains Chromosome Ends in Higher Eukaryotes. Mol. Cell. 2009;36:207–218. doi: 10.1016/j.molcel.2009.09.017. PubMed DOI PMC
Yoo H.H., Kwon C., Lee M.M., Chung I.K. Single-stranded DNA binding factor AtWHY1 modulates telomere length homeostasis in Arabidopsis. Plant J. 2007;49:442–451. doi: 10.1111/j.1365-313X.2006.02974.x. PubMed DOI
Kwon C., Chung I.K. Interaction of an Arabidopsis RNA-binding protein with plant single-stranded telomeric DNA modulates telomerase activity. J. Biol. Chem. 2004;279:12812–12818. doi: 10.1074/jbc.M312011200. PubMed DOI
Li E., Zhang Y. DNA Methylation in Mammals. Cold Spring Harb. Perspect. Biol. 2014;6:a019133. doi: 10.1101/cshperspect.a019133. PubMed DOI PMC
Lister R., Pelizzola M., Dowen R.H., Hawkins R.D., Hon G., Tonti-Filippini J., Nery J.R., Lee L., Ye Z., Ngo Q.M., et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature. 2009;462:315–322. doi: 10.1038/nature08514. PubMed DOI PMC
Zhang X. The epigenetic landscape of plants. Science. 2008;320:489–492. doi: 10.1126/science.1153996. PubMed DOI
Cokus S.J., Feng S.H., Zhang X.Y., Chen Z.G., Merriman B., Haudenschild C.D., Pradhan S., Nelson S.F., Pellegrini M., Jacobsen S.E. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature. 2008;452:215–219. doi: 10.1038/nature06745. PubMed DOI PMC
Ogrocka A., Polanska P., Majerova E., Janeba Z., Fajkus J., Fojtova M. Compromised telomere maintenance in hypomethylated Arabidopsis thaliana plants. Nucleic Acids Res. 2014;42:2919–2931. doi: 10.1093/nar/gkt1285. PubMed DOI PMC
Vrbsky J., Akimcheva S., Watson J.M., Turner T.L., Daxinger L., Vyskot B., Aufsatz W., Riha K. siRNA-Mediated Methylation of Arabidopsis Telomeres. PLoS Genet. 2010;6:e1000986. doi: 10.1371/journal.pgen.1000986. PubMed DOI PMC
Majerova E., Fojtova M., Mozgova I., Bittova M., Fajkus J. Hypomethylating drugs efficiently decrease cytosine methylation in telomeric DNA and activate telomerase without affecting telomere lengths in tobacco cells. Plant Mol. Biol. 2011;77:371–380. doi: 10.1007/s11103-011-9816-7. PubMed DOI
Majerova E., Mandakova T., Vu G.T.H., Fajkus J., Lysak M.A., Fojtova M. Chromatin features of plant telomeric sequences at terminal vs. internal positions. Front. Plant Sci. 2014;5:593. doi: 10.3389/fpls.2014.00593. PubMed DOI PMC
Xie X.Y., Shippen D.E. DDM1 guards against telomere truncation in Arabidopsis. Plant Cell Rep. 2018;37:501–513. doi: 10.1007/s00299-017-2245-6. PubMed DOI PMC
Fojtova M., Fajkus J. Epigenetic Regulation of Telomere Maintenance. Cytogenet. Genome Res. 2014;143:125–135. doi: 10.1159/000360775. PubMed DOI
Fransz P., ten Hoopen R., Tessadori F. Composition and formation of heterochromatin in Arabidopsis thaliana. Chromosome Res. 2006;14:71–82. doi: 10.1007/s10577-005-1022-5. PubMed DOI
Roudier F., Ahmed I., Berard C., Sarazin A., Mary-Huard T., Cortijo S., Bouyer D., Caillieux E., Duvernois-Berthet E., Al-Shikhley L., et al. Integrative epigenomic mapping defines four main chromatin states in Arabidopsis. Embo J. 2011;30:1928–1938. doi: 10.1038/emboj.2011.103. PubMed DOI PMC
Schoeftner S., Blasco M.A. A ‘higher order’ of telomere regulation: Telomere heterochromatin and telomeric RNAs. Embo J. 2009;28:2323–2336. doi: 10.1038/emboj.2009.197. PubMed DOI PMC
Cubiles M.D., Barroso S., Vaquero-Sedas M.I., Enguix A., Aguilera A., Vega-Palas M.A. Epigenetic features of human telomeres. Nucleic Acids Res. 2018;46:2347–2355. doi: 10.1093/nar/gky006. PubMed DOI PMC
Rosenfeld J.A., Wang Z.B., Schones D.E., Zhao K., DeSalle R., Zhang M.Q. Determination of enriched histone modifications in non-genic portions of the human genome. BMC Genom. 2009;10:143. doi: 10.1186/1471-2164-10-143. PubMed DOI PMC
O’Sullivan R.J., Kubicek S., Schreiber S.L., Karlseder J. Reduced histone biosynthesis and chromatin changes arising from a damage signal at telomeres. Nat. Struct. Mol. Biol. 2010;17:1218. doi: 10.1038/nsmb.1897. PubMed DOI PMC
Arnoult N., Van Beneden A., Decottignies A. Telomere length regulates TERRA levels through increased trimethylation of telomeric H3K9 and HP1 alpha. Nat. Struct. Mol. Biol. 2012;19:948–956. doi: 10.1038/nsmb.2364. PubMed DOI
Garcia-Cao M., O’Sullivan R., Peters A.H.F.M., Jenuwein T., Blasco M.A. Epigenetic regulation of telomere length in mammalian cells by the Suv39h1 and Suv39h2 histone methyltransferases. Nat. Genet. 2004;36:94–99. doi: 10.1038/ng1278. PubMed DOI
Saksouk N., Barth T.K., Ziegler-Birling C., Olova N., Nowak A., Rey E., Mateos-Langerak J., Urbach S., Reik W., Torres-Padilla M.E., et al. Redundant Mechanisms to Form Silent Chromatin at Pericentromeric Regions Rely on BEND3 and DNA Methylation. Mol. Cell. 2014;56:580–594. doi: 10.1016/j.molcel.2014.10.001. PubMed DOI
Benetti R., Gonzalo S., Jaco I., SChotta G., Klatt P., Jenuwein T., Blasco M.A. Suv4-20h deficiency results in telomere elongation and derepression of telomere recombination. J. Cell Biol. 2007;178:925–936. doi: 10.1083/jcb.200703081. PubMed DOI PMC
Gonzalo S., Jaco I., Fraga M.F., Chen T.P., Li E., Esteller M., Blasco M.A. DNA methyltransferases control telomere length and telomere recombination in mammalian cells. Nat. Cell Biol. 2006;8:416. doi: 10.1038/ncb1386. PubMed DOI
Montero J.J., Lopez-Silanes I., Megias D., Fraga M.F., Castells-Garcia A., Blasco M.A. TERRA recruitment of polycomb to telomeres is essential for histone trymethylation marks at telomeric heterochromatin. Nat. Commun. 2018;9:1548. doi: 10.1038/s41467-018-03916-3. PubMed DOI PMC
Sovakova P.P., Magdolenova A., Konecna K., Rajecka V., Fajkus J., Fojtova M. Telomere elongation upon transfer to callus culture reflects the reprogramming of telomere stability control in Arabidopsis. Plant Mol. Biol. 2018;98:81–99. doi: 10.1007/s11103-018-0765-2. PubMed DOI
Vaquero-Sedas M.I., Luo C.Y., Vega-Palas M.A. Analysis of the epigenetic status of telomeres by using ChIP-seq data. Nucleic Acids Res. 2012;40:e163. doi: 10.1093/nar/gks730. PubMed DOI PMC
Bulut-Karslioglu A., Perrera V., Scaranaro M., de la Rosa-Velazquez I.A., van de Nobelen S., Shukeir N., Popow J., Gerle B., Opravil S., Pagani M., et al. A transcription factor-based mechanism for mouse heterochromatin formation. Nat. Struct. Mol. Biol. 2012;19:1023. doi: 10.1038/nsmb.2382. PubMed DOI
Azzalin C.M., Reichenbach P., Khoriauli L., Giulotto E., Lingner J. Telomeric repeat-containing RNA and RNA surveillance factors at mammalian chromosome ends. Science. 2007;318:798–801. doi: 10.1126/science.1147182. PubMed DOI
Vaquero-Sedas M.I., Gamez-Arjona F.M., Vega-Palas M.A. Arabidopsis thaliana telomeres exhibit euchromatic features. Nucleic Acids Res. 2011;39:2007–2017. doi: 10.1093/nar/gkq1119. PubMed DOI PMC
Tardat M., Dejardin J. Telomere chromatin establishment and its maintenance during mammalian development. Chromosoma. 2018;127:3–18. doi: 10.1007/s00412-017-0656-3. PubMed DOI PMC
Chai W.H., Du Q., Shay J.W., Wright W.E. Human telomeres have different overhang sizes at leading versus lagging strands. Mol. Cell. 2006;21:427–435. doi: 10.1016/j.molcel.2005.12.004. PubMed DOI
Cimino-Reale G., Pascale E., Battiloro E., Starace G., Verna R., D’Ambrosio E. The length of telomeric G-rich strand 3 ‘-overhang measured by oligonucleotide ligation assay. Nucleic Acids Res. 2001;29:e35. doi: 10.1093/nar/29.7.e35. PubMed DOI PMC
Makarov V.L., Hirose Y., Langmore J.P. Long G tails at both ends of human chromosomes suggest a C strand degradation mechanism for telomere shortening. Cell. 1997;88:657–666. doi: 10.1016/S0092-8674(00)81908-X. PubMed DOI
Wright W.E., Tesmer V.M., Huffman K.E., Levene S.D., Shay J.W. Normal human chromosomes have long G-rich telomeric overhangs at one end. Genes Dev. 1997;11:2801–2809. doi: 10.1101/gad.11.21.2801. PubMed DOI PMC
Oganesian L., Karlseder J. Mammalian 5’ C-Rich Telomeric Overhangs Are a Mark of Recombination-Dependent Telomere Maintenance. Mol. Cell. 2011;42:224–236. doi: 10.1016/j.molcel.2011.03.015. PubMed DOI PMC
Riha K., McKnight T.D., Fajkus J., Vyskot B., Shippen D.E. Analysis of the G-overhang structures on plant telomeres: Evidence for two distinct telomere architectures. Plant J. 2000;23:633–641. doi: 10.1046/j.1365-313x.2000.00831.x. PubMed DOI
Kazda A., Zellinger B., Rossler M., Derboven E., Kusenda B., Riha K. Chromosome end protection by blunt-ended telomeres. Genes Dev. 2012;26:1703–1713. doi: 10.1101/gad.194944.112. PubMed DOI PMC
Fojtova M., Sykorova E., Najdekrova L., Polanska P., Zachova D., Vagnerova R., Angelis K.J., Fajkus J. Telomere dynamics in the lower plant Physcomitrella patens. Plant Mol. Biol. 2015;87:591–601. doi: 10.1007/s11103-015-0299-9. PubMed DOI
Riha K., Shippen D.E. Ku is required for telomeric C-rich strand maintenance but not for end-to-end chromosome fusions in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2003;100:611–615. doi: 10.1073/pnas.0236128100. PubMed DOI PMC
Bryan T.M., Englezou A., DallaPozza L., Dunham M.A., Reddel R.R. Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nat. Med. 1997;3:1271–1274. doi: 10.1038/nm1197-1271. PubMed DOI
Neumann A.A., Watson C.M., Noble J.R., Pickett H.A., Tam P.P.L., Reddel R.R. Alternative lengthening of telomeres in normal mammalian somatic cells. Genes Dev. 2013;27:18–23. doi: 10.1101/gad.205062.112. PubMed DOI PMC
Ruckova E., Friml J., Schrumpfova P.P., Fajkus J. Role of alternative telomere lengthening unmasked in telomerase knock-out mutant plants. Plant Mol. Biol. 2008;66:637–646. doi: 10.1007/s11103-008-9295-7. PubMed DOI
Zellinger B., Akimcheva S., Puizina J., Schirato M., Riha K. Ku suppresses formation of telomeric circles and alternative telomere lengthening in Arabidopsis. Mol. Cell. 2007;27:163–169. doi: 10.1016/j.molcel.2007.05.025. PubMed DOI
Karpenshif Y., Bernstein K.A. From yeast to mammals: Recent advances in genetic control of homologous recombination. DNA Repair. 2012;11:781–788. doi: 10.1016/j.dnarep.2012.07.001. PubMed DOI PMC
Barber L.J., Youds J.L., Ward J.D., McIlwraith M.J., O’Neil N.J., Petalcorin M.I.R., Martin J.S., Collis S.J., Cantor S.B., Auclair M., et al. RTEL1 Maintains Genomic Stability by Suppressing Homologous Recombination. Cell. 2008;135:261–271. doi: 10.1016/j.cell.2008.08.016. PubMed DOI PMC
Uringa E.J., Lisaingo K., Pickett H.A., Brind’Amour J., Rohde J.H., Zelensky A., Essers J., Lansdorp P.M. RTEL1 contributes to DNA replication and repair and telomere maintenance. Mol. Biol. Cell. 2012;23:2782–2792. doi: 10.1091/mbc.e12-03-0179. PubMed DOI PMC
Vannier J.B., Pavicic-Kaltenbrunner V., Petalcorin M.I.R., Ding H., Boulton S.J. RTEL1 Dismantles T Loops and Counteracts Telomeric G4-DNA to Maintain Telomere Integrity. Cell. 2012;149:795–806. doi: 10.1016/j.cell.2012.03.030. PubMed DOI
Le Guen T., Jullien L., Schertzer M., Lefebvre A., Kermasson L., de Villartay J.P., Londono-Vallejo A., Revy P. RTEL1 (regulator of telomere elongation helicase 1), a DNA helicase essential for genome stability. Med. Sci. 2013;29:1138–1144. PubMed
Vannier J.B., Sarek G., Boulton S.J. RTEL1: Functions of a disease-associated helicase. Trends Cell Biol. 2014;24:416–425. doi: 10.1016/j.tcb.2014.01.004. PubMed DOI
Faure G., Revy P., Schertzer M., Londono-Vallejo A., Callebaut I. The C-terminal extension of human RTEL1, mutated in Hoyeraal-Hreidarsson syndrome, contains Harmonin-N-like domains. Proteins-Struct. Funct. Bioinform. 2014;82:897–903. doi: 10.1002/prot.24438. PubMed DOI
Margalef P., Kotsantis P., Borel V., Bellelli R., Panier S., Boulton S.J. Stabilization of Reversed Replication Forks by Telomerase Drives Telomere Catastrophe. Cell. 2018;172:439. doi: 10.1016/j.cell.2017.11.047. PubMed DOI PMC
Hu Z.B., Cools T., Kalhorzadeh P., Heyman J., De Veylder L. Deficiency of the Arabidopsis Helicase RTEL1 Triggers a SOG1-Dependent Replication Checkpoint in Response to DNA Cross-Links. Plant Cell. 2015;27:149–161. doi: 10.1105/tpc.114.134312. PubMed DOI PMC
Recker J., Knoll A., Puchta H. The Arabidopsis thaliana Homolog of the Helicase RTEL1 Plays Multiple Roles in Preserving Genome Stability. Plant Cell. 2014;26:4889–4902. doi: 10.1105/tpc.114.132472. PubMed DOI PMC
Riha K., McKnight T.D., Griffing L.R., Shippen D.E. Living with genome instability: Plant responses to telomere dysfunction. Science. 2001;291:1797–1800. doi: 10.1126/science.1057110. PubMed DOI
Olivier M., Charbonnel C., Amiard S., White C.I., Gallego M.E. RAD51 and RTEL1 compensate telomere loss in the absence of telomerase. Nucleic Acids Res. 2018;46:2432–2445. doi: 10.1093/nar/gkx1322. PubMed DOI PMC
Kamisugi Y., Whitaker J.W., Cuming A.C. The Transcriptional Response to DNA-Double-Strand Breaks in Physcomitrella patens. PLoS ONE. 2016;11:e0161204. doi: 10.1371/journal.pone.0161204. PubMed DOI PMC
Olsson M., Wapstra E., Friesen C. Ectothermic telomeres: it’s time they came in from the cold. Philos. Trans. R. Soc. B-Biol. Sci. 2018;373:20160449. doi: 10.1098/rstb.2016.0449. PubMed DOI PMC
Hoelzl F., Smith S., Cornils J.S., Aydinonat D., Bieber C., Ruf T. Telomeres are elongated in older individuals in a hibernating rodent, the edible dormouse (Glis glis) Sci. Rep. 2016;6:36856. doi: 10.1038/srep36856. PubMed DOI PMC
Gomes N.M.V., Ryder O.A., Houck M.L., Charter S.J., Walker W., Forsyth N.R., Austad S.N., Venditti C., Pagel M., Shay J.W., et al. Comparative biology of mammalian telomeres: Hypotheses on ancestral states and the roles of telomeres in longevity determination. Aging Cell. 2011;10:761–768. doi: 10.1111/j.1474-9726.2011.00718.x. PubMed DOI PMC
Ahmed W., Lingner J. Impact of oxidative stress on telomere biology. Differentiation. 2018;99:21–27. doi: 10.1016/j.diff.2017.12.002. PubMed DOI
Zhang J.W., Rane G., Dai X.Y., Shanmugam M.K., Arfuso F., Samy R.P., Lai M.K.P., Kappei D., Kumar A.P., Sethi G. Ageing and the telomere connection: An intimate relationship with inflammation. Ageing Res. Rev. 2016;25:55–69. doi: 10.1016/j.arr.2015.11.006. PubMed DOI
Bottcher M.A., Dingli D., Werner B., Traulsen A. Replicative cellular age distributions in compartmentalized tissues. J. R. Soc. Interface. 2018;15:20180272. doi: 10.1098/rsif.2018.0272. PubMed DOI PMC
Cairns J. Mutation Selection and Natural-History of Cancer. Nature. 1975;255:197–200. doi: 10.1038/255197a0. PubMed DOI
Conboy M.J., Karasov A.O., Rando T.A. High incidence of non-random template strand segregation and asymmetric fate determination in dividing stem cells and their progeny. PLoS Biol. 2007;5:1120–1126. PubMed PMC
Characterisation of the Arabidopsis thaliana telomerase TERT-TR complex
Identification of the Sequence and the Length of Telomere DNA
Polycomb Repressive Complex 2 in Eukaryotes-An Evolutionary Perspective
Composition and Function of Telomerase-A Polymerase Associated with the Origin of Eukaryotes
Telomerase RNAs in land plants