An armadillo-domain protein participates in a telomerase interaction network
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
18-07027S
Grantová Agentura České Republiky
PubMed
29948659
DOI
10.1007/s11103-018-0747-4
PII: 10.1007/s11103-018-0747-4
Knihovny.cz E-zdroje
- Klíčová slova
- ARMC6, Armadillo/β-catenin-like repeat, AtTERT, Homologous recombination, Protein–protein interaction, Telomerase activity,
- MeSH
- Arabidopsis enzymologie genetika MeSH
- holoenzymy MeSH
- lidé MeSH
- proteiny huseníčku genetika metabolismus MeSH
- proteiny s doménou armadillo genetika metabolismus MeSH
- reportérové geny MeSH
- techniky dvojhybridového systému MeSH
- telomerasa genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ARMC6 protein, human MeSH Prohlížeč
- holoenzymy MeSH
- proteiny huseníčku MeSH
- proteiny s doménou armadillo MeSH
- telomerasa MeSH
Arabidopsis and human ARM protein interact with telomerase. Deregulated mRNA levels of DNA repair and ribosomal protein genes in an Arabidopsis arm mutant suggest non-telomeric ARM function. The human homolog ARMC6 interacts with hTRF2. Telomerase maintains telomeres and has proposed non-telomeric functions. We previously identified interaction of the C-terminal domain of Arabidopsis telomerase reverse transcriptase (AtTERT) with an armadillo/β-catenin-like repeat (ARM) containing protein. Here we explore protein-protein interactions of the ARM protein, AtTERT domains, POT1a, TRF-like family and SMH family proteins, and the chromatin remodeling protein CHR19 using bimolecular fluorescence complementation (BiFC), yeast two-hybrid (Y2H) analysis, and co-immunoprecipitation. The ARM protein interacts with both the N- and C-terminal domains of AtTERT in different cellular compartments. ARM interacts with CHR19 and TRF-like I family proteins that also bind AtTERT directly or through interaction with POT1a. The putative human ARM homolog co-precipitates telomerase activity and interacts with hTRF2 protein in vitro. Analysis of Arabidopsis arm mutants shows no obvious changes in telomere length or telomerase activity, suggesting that ARM is not essential for telomere maintenance. The observed interactions with telomerase and Myb-like domain proteins (TRF-like family I) may therefore reflect possible non-telomeric functions. Transcript levels of several DNA repair and ribosomal genes are affected in arm mutants, and ARM, likely in association with other proteins, suppressed expression of XRCC3 and RPSAA promoter constructs in luciferase reporter assays. In conclusion, ARM can participate in non-telomeric functions of telomerase, and can also perform its own telomerase-independent functions.
Department of Biological Sciences Purdue University West Lafayette IN 47907 1392 USA
Department of Biology Faculty of Science and Medicine University of Fribourg Fribourg Switzerland
Institute of Biophysics The Czech Academy of Sciences Královopolská 135 61265 Brno Czech Republic
Institute of Science and Technology Austria 3400 Klosterneuburg Austria
Zobrazit více v PubMed
Genome. 2004 Apr;47(2):316-24 PubMed
J Biol Chem. 2004 Nov 12;279(46):47799-807 PubMed
Science. 2003 Aug 1;301(5633):653-7 PubMed
Mol Biosyst. 2011 Apr;7(4):1013-23 PubMed
Protoplasma. 2017 Jul;254(4):1547-1562 PubMed
J Cell Sci. 1994 Dec;107 ( Pt 12):3655-63 PubMed
Ann N Y Acad Sci. 2000 Jun;910:21-33; discussion 33-5 PubMed
Plant J. 2007 Sep;51(6):1126-36 PubMed
Nat Protoc. 2016 Oct;11(10):1817-32 PubMed
Nat Struct Mol Biol. 2015 Nov;22(11):875-80 PubMed
J Exp Bot. 2011 Nov;62(15):5531-45 PubMed
Plant Mol Biol. 1994 Jun;25(3):493-506 PubMed
J Exp Bot. 2012 Jun;63(11):4233-41 PubMed
RNA. 2000 May;6(5):778-84 PubMed
EMBO J. 2005 Mar 23;24(6):1095-103 PubMed
Plant Physiol. 2015 Aug;168(4):1206-18 PubMed
BMC Genomics. 2010 Jul 21;11:443 PubMed
Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14422-7 PubMed
Plant Cell. 2008 Oct;20(10):2798-814 PubMed
FEBS Lett. 1996 Aug 12;391(3):307-9 PubMed
Genes Dev. 2010 Mar 15;24(6):613-22 PubMed
Cell. 2000 Sep 29;103(1):157-67 PubMed
Plant Cell. 2016 Jan;28(1):87-101 PubMed
Front Plant Sci. 2014 Apr 10;5:143 PubMed
Chromosoma. 2015 Dec;124(4):519-28 PubMed
Genes Dev. 2005 Sep 15;19(18):2100-10 PubMed
J Exp Bot. 2003 Oct;54(391):2231-7 PubMed
EMBO J. 2007 Aug 8;26(15):3653-61 PubMed
Nucleic Acids Res. 2015 Mar 11;43(5):2691-700 PubMed
Science. 1995 Dec 8;270(5242):1663-7 PubMed
Physiol Plant. 2013 Sep;149(1):114-26 PubMed
Nucleic Acids Res. 2014 Feb;42(3):e21 PubMed
Nature. 2009 Jul 2;460(7251):66-72 PubMed
Nat Genet. 1997 Oct;17(2):231-5 PubMed
BMC Plant Biol. 2007 Jul 23;7:39 PubMed
Cell. 1987 Dec 24;51(6):887-98 PubMed
J Mol Biol. 1994 Jun 3;239(2):163-9 PubMed
PLoS One. 2014 Jan 21;9(1):e86220 PubMed
Trends Cell Biol. 2010 Aug;20(8):470-81 PubMed
Plant J. 2006 Dec;48(6):947-61 PubMed
Curr Protein Pept Sci. 2011 Mar;12(2):84-92 PubMed
Front Plant Sci. 2016 Jun 28;7:851 PubMed
Plant Mol Biol. 2016 Jan;90(1-2):189-206 PubMed
PLoS One. 2010 Aug 25;5(8):e12407 PubMed
Front Plant Sci. 2011 Jun 20;2:19 PubMed
J Cell Sci. 2007 Oct 15;120(Pt 20):3678-87 PubMed
Trends Plant Sci. 2002 Oct;7(10):457-61 PubMed
Plant J. 2003 Mar;33(6):957-66 PubMed
Plant J. 2014 Mar;77(5):770-81 PubMed
J Exp Bot. 2002 Nov;53(378):2151-8 PubMed
Cell. 1985 Dec;43(2 Pt 1):405-13 PubMed
Biology (Basel). 2013 Nov 21;2(4):1338-56 PubMed
Trends Cell Biol. 2003 Sep;13(9):463-71 PubMed
Plant Cell. 2009 Oct;21(10):3350-67 PubMed
Plant Physiol. 2009 Jun;150(2):1062-71 PubMed
Front Plant Sci. 2015 Nov 12;6:985 PubMed
Plant J. 2015 Jul;83(1):18-37 PubMed
Nat Commun. 2015 Nov 06;6:8717 PubMed
FEBS Lett. 2004 Dec 17;578(3):311-5 PubMed
Plant Cell. 2012 May;24(5):1746-59 PubMed
Mol Genet Genomics. 2002 Mar;267(1):16-26 PubMed
Nature. 2012 Sep 27;489(7417):581-4 PubMed
Plant J. 1993 Jul;4(1):125-35 PubMed
Plant Mol Biol. 2006 Jan;60(1):107-24 PubMed
EMBO J. 1989 Jun;8(6):1711-7 PubMed
J Mol Biol. 2006 Oct 6;362(5):1120-31 PubMed
Front Genet. 2016 Jan 05;6:349 PubMed
Nat Rev Mol Cell Biol. 2006 Jul;7(7):484-94 PubMed