Cytokinin response factors regulate PIN-FORMED auxin transporters
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
26541513
DOI
10.1038/ncomms9717
PII: ncomms9717
Knihovny.cz E-resources
- MeSH
- Arabidopsis MeSH
- Chromatin Immunoprecipitation MeSH
- Cytokinins metabolism MeSH
- Plants, Genetically Modified MeSH
- Microscopy, Confocal MeSH
- Plant Roots metabolism MeSH
- Real-Time Polymerase Chain Reaction MeSH
- Indoleacetic Acids metabolism MeSH
- Membrane Transport Proteins genetics metabolism MeSH
- Arabidopsis Proteins genetics metabolism MeSH
- Gene Expression Regulation, Plant MeSH
- Response Elements MeSH
- Signal Transduction MeSH
- Transcription Factors genetics metabolism MeSH
- Green Fluorescent Proteins MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- CRF3 protein, Arabidopsis MeSH Browser
- CRF6 protein, Arabidopsis MeSH Browser
- Cytokinins MeSH
- Indoleacetic Acids MeSH
- Membrane Transport Proteins MeSH
- PIN1 protein, Arabidopsis MeSH Browser
- PIN7 protein, Arabidopsis MeSH Browser
- Arabidopsis Proteins MeSH
- Transcription Factors MeSH
- Green Fluorescent Proteins MeSH
Auxin and cytokinin are key endogenous regulators of plant development. Although cytokinin-mediated modulation of auxin distribution is a developmentally crucial hormonal interaction, its molecular basis is largely unknown. Here we show a direct regulatory link between cytokinin signalling and the auxin transport machinery uncovering a mechanistic framework for cytokinin-auxin cross-talk. We show that the CYTOKININ RESPONSE FACTORS (CRFs), transcription factors downstream of cytokinin perception, transcriptionally control genes encoding PIN-FORMED (PIN) auxin transporters at a specific PIN CYTOKININ RESPONSE ELEMENT (PCRE) domain. Removal of this cis-regulatory element effectively uncouples PIN transcription from the CRF-mediated cytokinin regulation and attenuates plant cytokinin sensitivity. We propose that CRFs represent a missing cross-talk component that fine-tunes auxin transport capacity downstream of cytokinin signalling to control plant development.
Department of Plant Systems Biology VIB Technologiepark 927 B 9052 Gent Belgium
Institute of Experimental Botany ASCR Rozvojová 263 16502 Prague Czech Republic
Institute of Science and Technology Austria Am Campus 1 3400 Klosterneuburg Austria
Laboratory of Biochemistry Wageningen University Dreijenlaan 3 6703HA Wageningen the Netherlands
See more in PubMed
Proc Natl Acad Sci U S A. 2010 Jun 8;107(23 ):10749-53 PubMed
Cell. 2002 Mar 8;108(5):661-73 PubMed
Nat Cell Biol. 2006 Mar;8(3):249-56 PubMed
Nature. 2005 Jun 30;435(7046):1251-6 PubMed
Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3609-14 PubMed
Dev Cell. 2011 Oct 18;21(4):796-804 PubMed
J Exp Bot. 2011 Oct;62(14):4995-5002 PubMed
Plant Cell. 2011 Jun;23(6):2184-95 PubMed
Plant Cell. 2009 Jul;21(7):2008-21 PubMed
Plant Cell. 2007 Jul;19(7):2186-96 PubMed
Curr Biol. 2007 Apr 17;17(8):678-82 PubMed
Nature. 2005 Jan 6;433(7021):39-44 PubMed
Plant Cell. 2010 Sep;22(9):2956-69 PubMed
Plant J. 1998 Dec;16(6):735-43 PubMed
Plant Methods. 2009 Nov 24;5:16 PubMed
Brief Bioinform. 2004 Dec;5(4):378-88 PubMed
Plant Cell. 2002 Dec;14(12):2985-94 PubMed
Nature. 2005 May 26;435(7041):446-51 PubMed
Nat Protoc. 2006;1(1):98-103 PubMed
Nature. 2003 Nov 20;426(6964):255-60 PubMed
Nat Protoc. 2007;2(4):924-32 PubMed
Plant Cell. 2007 Dec;19(12 ):3889-900 PubMed
Nature. 2010 Jun 24;465(7301):1089-92 PubMed
Curr Biol. 2011 Jun 7;21(11):917-26 PubMed
Plant Physiol. 2007 Dec;145(4):1144-54 PubMed
Nat Cell Biol. 2011 Apr;13(4):447-52 PubMed
Proc Natl Acad Sci U S A. 2009 Mar 17;106(11):4284-9 PubMed
Trends Plant Sci. 2002 May;7(5):193-5 PubMed
Development. 1997 Jan;124(1):33-44 PubMed
Cell. 2003 Nov 26;115(5):591-602 PubMed
Plant J. 2011 Nov;68(3):560-9 PubMed
Cell. 2014 Sep 11;158(6):1431-43 PubMed
Nature. 2001 Feb 22;409(6823):1060-3 PubMed
Plant Physiol. 1995 Apr;107(4):1075-82 PubMed
Plant Cell Physiol. 2013 Jun;54(6):971-81 PubMed
Plant Cell. 2000 Mar;12(3):393-404 PubMed
Science. 2008 Nov 28;322(5906):1380-4 PubMed
Genes Dev. 2006 Apr 15;20(8):1015-27 PubMed
Nature. 2001 Sep 27;413(6854):383-9 PubMed
Proc Natl Acad Sci U S A. 2006 Jul 18;103(29):11081-5 PubMed
Plant Mol Biol. 2003 Sep;53(1-2):247-59 PubMed
PLoS One. 2011;6(6):e21524 PubMed
Nature. 2008 Jun 19;453(7198):1094-7 PubMed
Genome Res. 2004 Oct;14(10B):2093-101 PubMed
Biochemistry. 2002 Apr 2;41(13):4202-8 PubMed
Plant J. 2004 Sep;39(5):776-89 PubMed
Mol Cell Biol. 2006 May;26(9):3672-9 PubMed
Nature. 2003 Nov 13;426(6963):147-53 PubMed
Dev Cell. 2005 Jul;9(1):109-19 PubMed
Plant Cell Environ. 2012 Feb;35(2):308-20 PubMed
Nature. 2010 Apr 8;464(7290):913-6 PubMed
Plant Cell Environ. 2009 Jun;32(6):694-703 PubMed
Plant Cell Physiol. 2012 Oct;53(10):1683-95 PubMed
Genes Dev. 2011 Jul 1;25(13):1439-50 PubMed
Plant Methods. 2005 Dec 18;1:13 PubMed
Plant Cell. 2012 Oct;24(10):3967-81 PubMed
PLoS Biol. 2008 Dec 16;6(12):e307 PubMed
Expression of Genes Involved in ABA and Auxin Metabolism and LEA Gene during Embryogenesis in Hemp
Molecular framework integrating nitrate sensing in root and auxin-guided shoot adaptive responses
Dynamics of Auxin and Cytokinin Metabolism during Early Root and Hypocotyl Growth in Theobroma cacao
Cytokinin functions as an asymmetric and anti-gravitropic signal in lateral roots
An armadillo-domain protein participates in a telomerase interaction network
Cytokinin-Auxin Crosstalk in the Gynoecial Primordium Ensures Correct Domain Patterning
Auxin transport and conjugation caught together