SYNERGISTIC ON AUXIN AND CYTOKININ 1 positively regulates growth and attenuates soil pathogen resistance

. 2020 May 01 ; 11 (1) : 2170. [epub] 20200501

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32358503
Odkazy

PubMed 32358503
PubMed Central PMC7195429
DOI 10.1038/s41467-020-15895-5
PII: 10.1038/s41467-020-15895-5
Knihovny.cz E-zdroje

Plants as non-mobile organisms constantly integrate varying environmental signals to flexibly adapt their growth and development. Local fluctuations in water and nutrient availability, sudden changes in temperature or other abiotic and biotic stresses can trigger changes in the growth of plant organs. Multiple mutually interconnected hormonal signaling cascades act as essential endogenous translators of these exogenous signals in the adaptive responses of plants. Although the molecular backbones of hormone transduction pathways have been identified, the mechanisms underlying their interactions are largely unknown. Here, using genome wide transcriptome profiling we identify an auxin and cytokinin cross-talk component; SYNERGISTIC ON AUXIN AND CYTOKININ 1 (SYAC1), whose expression in roots is strictly dependent on both of these hormonal pathways. We show that SYAC1 is a regulator of secretory pathway, whose enhanced activity interferes with deposition of cell wall components and can fine-tune organ growth and sensitivity to soil pathogens.

Zobrazit více v PubMed

Schaller GE, Bishopp A, Kieber JJ. The yin-yang of hormones: cytokinin and auxin interactions in plant development. Plant Cell Online. 2015;27:44–63. doi: 10.1105/tpc.114.133595. PubMed DOI PMC

Wang YH, Irving HR. Developing a model of plant hormone interactions. Plant Signal. Behav. 2011;6:494–500. doi: 10.4161/psb.6.4.14558. PubMed DOI PMC

Dello Ioio R, et al. A genetic framework for the control of cell division and differentiation in the root meristem. Science. 2008;322:1380–1384. doi: 10.1126/science.1164147. PubMed DOI

Zhao Z, et al. Hormonal control of the shoot stem-cell niche. Nature. 2010;465:1089–1092. doi: 10.1038/nature09126. PubMed DOI

Bielach A, et al. Spatiotemporal regulation of lateral root organogenesis in Arabidopsis by cytokinin. Plant Cell. 2012;24:3967–3981. doi: 10.1105/tpc.112.103044. PubMed DOI PMC

Müller D, et al. Cytokinin is required for escape but not release from auxin mediated apical dominance. Plant J. 2015;82:874–886. doi: 10.1111/tpj.12862. PubMed DOI PMC

Skoog F, Miller CO. Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp. Soc. Exp. Biol. 1957;11:118–130. PubMed

Yang Z, et al. Synergistic action of auxin and cytokinin mediates aluminum-induced root growth inhibition in Arabidopsis. EMBO Rep. 2017;18:1213–1230. doi: 10.15252/embr.201643806. PubMed DOI PMC

Dharmasiri N, Dharmasiri S, Estelle M. The F-box protein TIR1 is an auxin receptor. Nature. 2005;435:441–445. doi: 10.1038/nature03543. PubMed DOI

Hwang I, Sheen J. Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature. 2001;413:383–389. doi: 10.1038/35096500. PubMed DOI

Inoue T, et al. Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature. 2001;409:35059117. doi: 10.1038/35059117. PubMed DOI

Kepinski S, Leyser O. The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature. 2005;435:446–451. doi: 10.1038/nature03542. PubMed DOI

Ueguchi C, Koizumi H, Suzuki T, Mizuno T. Novel family of sensor histidine kinase genes in Arabidopsis thaliana. Plant Cell Physiol. 2001;42:231–235. doi: 10.1093/pcp/pce015. PubMed DOI

Schlereth A, et al. MONOPTEROS controls embryonic root initiation by regulating a mobile transcription factor. Nature. 2010;464:nature08836. doi: 10.1038/nature08836. PubMed DOI

Marhavý P, et al. Cytokinin modulates endocytic trafficking of PIN1 auxin efflux carrier to control plant organogenesis. Dev. Cell. 2011;21:796–804. doi: 10.1016/j.devcel.2011.08.014. PubMed DOI

Marhavý P, et al. Auxin reflux between the endodermis and pericycle promotes lateral root initiation. EMBO J. 2013;32:149–158. doi: 10.1038/emboj.2012.303. PubMed DOI PMC

Růžička K, et al. Cytokinin regulates root meristem activity via modulation of the polar auxin transport. Proc. Natl Acad. Sci. USA. 2009;106:4284–4289. doi: 10.1073/pnas.0900060106. PubMed DOI PMC

Šimášková M, et al. Cytokinin response factors regulate PIN-FORMED auxin transporters. Nat. Commun. 2015;6:8717. doi: 10.1038/ncomms9717. PubMed DOI

Vanstraelen M, Benková E. Hormonal interactions in the regulation of plant development. Annu. Rev. Cell Dev. Biol. 2012;28:463–487. doi: 10.1146/annurev-cellbio-101011-155741. PubMed DOI

Krouk G, et al. A framework integrating plant growth with hormones and nutrients. Trends Plant Sci. 2011;16:178–182. doi: 10.1016/j.tplants.2011.02.004. PubMed DOI

Sánchez-Rodríguez C, Rubio-Somoza I, Sibout R, Persson S. Phytohormones and the cell wall in Arabidopsis during seedling growth. Trends Plant Sci. 2010;15:291–301. doi: 10.1016/j.tplants.2010.03.002. PubMed DOI

Verma V, Ravindran P, Kumar PP. Plant hormone-mediated regulation of stress responses. BMC Plant Biol. 2016;16:86. doi: 10.1186/s12870-016-0771-y. PubMed DOI PMC

Hurný, A. & Benková, E. Methodological advances in auxin and cytokinin biology. in Auxins and Cytokinins in Plant Biology 1–29 (Humana Press, New York, NY, 2017). 10.1007/978-1-4939-6831-2_1. PubMed

Denancé N, Sánchez-Vallet A, Goffner D, Molina A. Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs. Front. Plant Sci. 2013;4:1–12. doi: 10.3389/fpls.2013.00155. PubMed DOI PMC

Huot B, Yao J, Montgomery BL, He SY. Growth-defense tradeoffs in plants: a balancing act to optimize fitness. Mol. Plant. 2014;7:1267–1287. doi: 10.1093/mp/ssu049. PubMed DOI PMC

Boivin S, Fonouni-Farde C, Frugier F. How auxin and cytokinin phytohormones modulate root microbe interactions. Front. Plant Sci. 2016;7:1240. doi: 10.3389/fpls.2016.01240. PubMed DOI PMC

Sabatini S, et al. An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell. 1999;99:463–472. doi: 10.1016/S0092-8674(00)81535-4. PubMed DOI

Zürcher E, Liu J, di Donato M, Geisler M, Müller B. Plant development regulated by cytokinin sinks. Science. 2016;353:1027–1030. doi: 10.1126/science.aaf7254. PubMed DOI

Chae HS, Faure F, Kieber JJ. The eto1, eto2, and eto3 mutations and cytokinin treatment increase ethylene biosynthesis in Arabidopsis by increasing the stability of ACS protein. Plant Cell. 2003;15:545–559. doi: 10.1105/tpc.006882. PubMed DOI PMC

Raz V, Ecker JR. Regulation of differential growth in the apical hook of Arabidopsis. Development. 1999;126:3661–3668. PubMed

Žádníková P, et al. Role of PIN-mediated auxin efflux in apical hook development of Arabidopsis thaliana. Development. 2010;137:607–617. doi: 10.1242/dev.041277. PubMed DOI

Gendreau E, et al. Cellular basis of hypocotyl growth in Arabidopsis thaliana. Plant Physiol. 1997;114:295–305. doi: 10.1104/pp.114.1.295. PubMed DOI PMC

Geldner N, et al. Rapid, combinatorial analysis of membrane compartments in intact plants with a multicolor marker set. Plant J. 2009;59:169–178. doi: 10.1111/j.1365-313X.2009.03851.x. PubMed DOI PMC

Drakakaki G, et al. Isolation and proteomic analysis of the SYP61 compartment reveal its role in exocytic trafficking in Arabidopsis. Cell Res. 2012;22:413–424. doi: 10.1038/cr.2011.129. PubMed DOI PMC

Gendre D, et al. Trans-Golgi network localized ECHIDNA/Ypt interacting protein complex is required for the secretion of cell wall polysaccharides in Arabidopsis. Plant Cell. 2013;25:2633–2646. doi: 10.1105/tpc.113.112482. PubMed DOI PMC

Bassham DC, Brandizzi F, Otegui MS, Sanderfoot AA. The secretory system of Arabidopsis. Arab. Book. 2008;6:e0116. doi: 10.1199/tab.0116. PubMed DOI PMC

Früholz, S. & Pimpl, P. Analysis of nanobody–epitope interactions in living cells via quantitative protein transport assays. in Plant Protein Secretion 171–182 (Humana Press, New York, NY, 2017). 10.1007/978-1-4939-7262-3_15. PubMed

Wolf S, Greiner S. Growth control by cell wall pectins. Protoplasma. 2012;249:169–175. doi: 10.1007/s00709-011-0371-5. PubMed DOI

Young RE, et al. Analysis of the Golgi apparatus in Arabidopsis seed coat cells during polarized secretion of pectin-rich mucilage. Plant Cell. 2008;20:1623–1638. doi: 10.1105/tpc.108.058842. PubMed DOI PMC

Mouille G, Robin S, Lecomte M, Pagant S, Höfte H. Classification and identification of Arabidopsis cell wall mutants using fourier-transform infrared (FT-IR) microspectroscopy. Plant J. Cell Mol. Biol. 2003;35:393–404. doi: 10.1046/j.1365-313X.2003.01807.x. PubMed DOI

Derbyshire P, McCann MC, Roberts K. Restricted cell elongation in Arabidopsis hypocotyls is associated with a reduced average pectin esterification level. BMC Plant Biol. 2007;7:31. doi: 10.1186/1471-2229-7-31. PubMed DOI PMC

Bethke, G. & Glazebrook, J. Measuring pectin properties to track cell wall alterations during plant–pathogen interactions. in Plant Innate Immunity: Methods and Protocols (ed. Gassmann, W.) 55–60 (Springer, 2019). 10.1007/978-1-4939-9458-8_6. PubMed

Cosgrove DJ. Catalysts of plant cell wall loosening. F1000Research. 2016;5:119. doi: 10.12688/f1000research.7180.1. PubMed DOI PMC

Daher FB, Braybrook SA. How to let go: pectin and plant cell adhesion. Front. Plant Sci. 2015;3:523. PubMed PMC

Ando S, et al. Increase in BrAO1 gene expression and aldehyde oxidase activity during clubroot development in Chinese cabbage (Brassica rapa L.) Mol. Plant Pathol. 2006;7:223–234. doi: 10.1111/j.1364-3703.2006.00333.x. PubMed DOI

Devos S, Vissenberg K, Verbelen J-P, Prinsen E. Infection of Chinese cabbage by Plasmodiophorabrassicae leads to a stimulation of plant growth: impacts on cell wall metabolism and hormone balance. New Phytol. 2005;166:241–250. doi: 10.1111/j.1469-8137.2004.01304.x. PubMed DOI

Schuller A, Ludwig-Müller J. A family of auxin conjugate hydrolases from Brassica rapa: characterization and expression during clubroot disease. New Phytol. 2006;171:145–157. doi: 10.1111/j.1469-8137.2006.01727.x. PubMed DOI

Siemens J, et al. Transcriptome analysis of Arabidopsis clubroots indicate a key role for cytokinins in disease development. Mol. Plant. Microbe Interact. 2006;19:480–494. doi: 10.1094/MPMI-19-0480. PubMed DOI

Knaust A, Ludwig-Müller J. The ethylene signaling pathway is needed to restrict root gall growth in Arabidopsis after infection with the obligate biotrophic protist Plasmodiophora brassicae. J. Plant Growth Regul. 2013;32:9–21. doi: 10.1007/s00344-012-9271-y. DOI

Siemens J, Nagel M, Ludwig‐Müller J, Sacristán MD. The interaction of Plasmodiophora brassicae and Arabidopsis thaliana: parameters for disease quantification and screening of mutant lines. J. Phytopathol. 2002;150:592–605. doi: 10.1046/j.1439-0434.2002.00818.x. DOI

Müller B, Sheen J. Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis. Nature. 2008;453:1094–1097. doi: 10.1038/nature06943. PubMed DOI PMC

Dello Ioio R, et al. Cytokinins determine Arabidopsis root-meristem size by controlling cell differentiation. Curr. Biol. 2007;17:678–682. doi: 10.1016/j.cub.2007.02.047. PubMed DOI

Argyros RD, et al. Type B response regulators of Arabidopsis play key roles in cytokinin signaling and plant development. Plant Cell. 2008;20:2102–2116. doi: 10.1105/tpc.108.059584. PubMed DOI PMC

Dharmasiri N, et al. Plant development is regulated by a family of auxin receptor F box proteins. Dev. Cell. 2005;9:109–119. doi: 10.1016/j.devcel.2005.05.014. PubMed DOI

Hutchison CE, et al. The Arabidopsis histidine phosphotransfer proteins are redundant positive regulators of cytokinin signaling. Plant Cell. 2006;18:3073–3087. doi: 10.1105/tpc.106.045674. PubMed DOI PMC

Mason MG. Multiple type-B response regulators mediate cytokinin signal transduction in Arabidopsis. Plant Cell. 2005;17:3007–3018. doi: 10.1105/tpc.105.035451. PubMed DOI PMC

Nishimura C, et al. Histidine kinase homologs that act as cytokinin receptors possess overlapping functions in the regulation of shoot and root growth in Arabidopsis. Plant Cell. 2004;16:1365–1377. doi: 10.1105/tpc.021477. PubMed DOI PMC

To JPC, Kieber JJ. Cytokinin signaling: two-components and more. Trends Plant Sci. 2008;13:85–92. doi: 10.1016/j.tplants.2007.11.005. PubMed DOI

Petersson SV, et al. An auxin gradient and maximum in the Arabidopsis root apex shown by high-resolution cell-specific analysis of IAA distribution and synthesis. Plant Cell. 2009;21:1659–1668. doi: 10.1105/tpc.109.066480. PubMed DOI PMC

Brenner WG, Schmülling T. Transcript profiling of cytokinin action in Arabidopsis roots and shoots discovers largely similar but also organ-specific responses. BMC Plant Biol. 2012;12:112. doi: 10.1186/1471-2229-12-112. PubMed DOI PMC

Polko JK, Kieber JJ. The regulation of cellulose biosynthesis in plants. Plant Cell. 2019;31:282–296. doi: 10.1105/tpc.18.00760. PubMed DOI PMC

Saffer AM. Expanding roles for pectins in plant development. J. Integr. Plant Biol. 2018;60:910–923. doi: 10.1111/jipb.12662. PubMed DOI

Bouton S, et al. QUASIMODO1 encodes a putative membrane-bound glycosyltransferase required for normal pectin synthesis and cell adhesion in Arabidopsis. Plant Cell. 2002;14:2577–2590. doi: 10.1105/tpc.004259. PubMed DOI PMC

Krupková E, Immerzeel P, Pauly M, Schmülling T. The TUMOROUS SHOOT DEVELOPMENT2 gene of Arabidopsis encoding a putative methyltransferase is required for cell adhesion and co-ordinated plant development. Plant J. Cell Mol. Biol. 2007;50:735–750. doi: 10.1111/j.1365-313X.2007.03123.x. PubMed DOI

Mouille G, et al. Homogalacturonan synthesis in Arabidopsisthaliana requires a Golgi-localized protein with a putative methyltransferase domain. Plant J. Cell Mol. Biol. 2007;50:605–614. doi: 10.1111/j.1365-313X.2007.03086.x. PubMed DOI

Peaucelle A, Wightman R, Höfte H. The control of growth symmetry breaking in the Arabidopsis hypocotyl. Curr. Biol. 2015;25:1746–1752. doi: 10.1016/j.cub.2015.05.022. PubMed DOI

Phyo P, et al. Gradients in wall mechanics and polysaccharides along growing inflorescence stems. Plant Physiol. 2017;175:1593–1607. doi: 10.1104/pp.17.01270. PubMed DOI PMC

Kim S-J, Brandizzi F. The plant secretory pathway: an essential factory for building the plant cell wall. Plant Cell Physiol. 2014;55:687–693. doi: 10.1093/pcp/pct197. PubMed DOI

Atmodjo MA, Hao Z, Mohnen D. Evolving views of pectin biosynthesis. Annu. Rev. Plant Biol. 2013;64:747–779. doi: 10.1146/annurev-arplant-042811-105534. PubMed DOI

Ogawa M, Kay P, Wilson S, Swain SM. ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE1 (ADPG1), ADPG2, and QUARTET2 are polygalacturonases required for cell separation during reproductive development in Arabidopsis. Plant Cell. 2009;21:216–233. doi: 10.1105/tpc.108.063768. PubMed DOI PMC

Peñarrubia L, et al. Temporal aspects of copper homeostasis and its crosstalk with hormones. Front. Plant Sci. 2015;6:255. doi: 10.3389/fpls.2015.00255. PubMed DOI PMC

Karasov TL, Chae E, Herman JJ, Bergelson J. Mechanisms to mitigate the trade-off between growth and defense. Plant Cell. 2017;29:666–680. doi: 10.1105/tpc.16.00931. PubMed DOI PMC

Lahlali R, et al. Evaluating changes in cell-wall components associated with clubroot resistance using fourier transform infrared spectroscopy and RT-PCR. Int. J. Mol. Sci. 2017;18:2058. doi: 10.3390/ijms18102058. PubMed DOI PMC

Gendre D, et al. Conserved Arabidopsis ECHIDNA protein mediates trans-Golgi-network trafficking and cell elongation. Proc. Natl Acad. Sci. USA. 2011;108:8048–8053. doi: 10.1073/pnas.1018371108. PubMed DOI PMC

Higuchi M, et al. In planta functions of the Arabidopsis cytokinin receptor family. Proc. Natl Acad. Sci. USA. 2004;101:8821–8826. doi: 10.1073/pnas.0402887101. PubMed DOI PMC

Parry G, et al. Complex regulation of the TIR1/AFB family of auxin receptors. Proc. Natl Acad. Sci. USA. 2009;106:22540–22545. doi: 10.1073/pnas.0911967106. PubMed DOI PMC

Ruegger M, et al. The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast grr1p. Genes Dev. 1998;12:198–207. doi: 10.1101/gad.12.2.198. PubMed DOI PMC

Clough SJ, Bent AF. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. Cell Mol. Biol. 1998;16:735–743. doi: 10.1046/j.1365-313x.1998.00343.x. PubMed DOI

Laplaze L, et al. GAL4-GFP enhancer trap lines for genetic manipulation of lateral root development in Arabidopsis thaliana. J. Exp. Bot. 2005;56:2433–2442. doi: 10.1093/jxb/eri236. PubMed DOI

Birnbaum K, et al. Cell type–specific expression profiling in plants via cell sorting of protoplasts from fluorescent reporter lines. Nat. Methods. 2005;2:615–619. doi: 10.1038/nmeth0805-615. PubMed DOI

Irizarry RA, et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostat. Oxf. Engl. 2003;4:249–264. doi: 10.1093/biostatistics/4.2.249. PubMed DOI

Naouar N, et al. Quantitative RNA expression analysis with Affymetrix Tiling 1.0R arrays identifies new E2F target genes. Plant J. 2009;57:184–194. doi: 10.1111/j.1365-313X.2008.03662.x. PubMed DOI

Smyth GK. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 2004;3:Article3. doi: 10.2202/1544-6115.1027. PubMed DOI

Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc. Natl Acad. Sci. USA. 2003;100:9440–9445. doi: 10.1073/pnas.1530509100. PubMed DOI PMC

Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible W-R. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol. 2005;139:5–17. doi: 10.1104/pp.105.063743. PubMed DOI PMC

Zhu Q, Žádníková P, Smet D, Van Der Straeten D, Benková E. Real-time analysis of the apical hook development. Methods Mol. Biol. 2017;1497:1–8. doi: 10.1007/978-1-4939-6469-7_1. PubMed DOI

Malamy JE, Benfey PN. Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development. 1997;124:33–44. PubMed

Sauer M, Paciorek T, Benkova E, Friml J. Immunocytochemical techniques for whole-mount in situ protein localization in plants. Nat. Protoc. 2006;1:98–103. doi: 10.1038/nprot.2006.15. PubMed DOI

Sanderfoot AA, Kovaleva V, Bassham DC, Raikhel NV. Interactions between syntaxins identify at least five SNARE complexes within the Golgi/prevacuolar system of the Arabidopsis cell. Mol. Biol. Cell. 2001;12:3733–3743. doi: 10.1091/mbc.12.12.3733. PubMed DOI PMC

Haas TJ, et al. The Arabidopsis AAA ATPase SKD1 is involved in multivesicular endosome function and interacts with its positive regulator LYST-INTERACTING PROTEIN5. Plant Cell. 2007;19:1295–1312. doi: 10.1105/tpc.106.049346. PubMed DOI PMC

Paciorek T, et al. Auxin inhibits endocytosis and promotes its own efflux from cells. Nature. 2005;435:1251–1256. doi: 10.1038/nature03633. PubMed DOI

Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–4680. doi: 10.1093/nar/22.22.4673. PubMed DOI PMC

Wu FH, et al. Tape-Arabidopsis sandwich-a simpler Arabidopsis protoplast isolation method. Plant Methods. 2009;5:16. doi: 10.1186/1746-4811-5-16. PubMed DOI PMC

Ischebeck T, Stenzel I, Heilmann I. Type B phosphatidylinositol-4-phosphate 5-kinases mediate Arabidopsis and Nicotiana tabacum pollen tube growth by regulating apical pectin secretion. Plant Cell. 2008;20:3312–3330. doi: 10.1105/tpc.108.059568. PubMed DOI PMC

Hempel F, et al. MAPKs influence pollen tube growth by controlling the formation of phosphatidylinositol 4,5-bisphosphate in an apical plasma membrane domain. Plant Cell. 2017;29:3030–3050. doi: 10.1105/tpc.17.00543. PubMed DOI PMC

Ischebeck T, et al. Functional cooperativity of enzymes of phosphoinositide conversion according to synergistic effects on pectin secretion in tobacco pollen tubes. Mol. Plant. 2010;3:870–881. doi: 10.1093/mp/ssq031. PubMed DOI

Cruz-Ramírez A, et al. A bistable circuit involving SCARECROW-RETINOBLASTOMA integrates cues to inform asymmetric stem cell division. Cell. 2012;150:1002–1015. doi: 10.1016/j.cell.2012.07.017. PubMed DOI PMC

Van Leene J, et al. An improved toolbox to unravel the plant cellular machinery by tandem affinity purification of Arabidopsis protein complexes. Nat. Protoc. 2014;10:169–187. doi: 10.1038/nprot.2014.199. PubMed DOI

Neumetzler L, et al. The FRIABLE1 gene product affects cell adhesion in Arabidopsis. PLoS ONE. 2012;7:e42914. doi: 10.1371/journal.pone.0042914. PubMed DOI PMC

Blumenkrantz N, Asboe-Hansen G. New method for quantitative determination of uronic acids. Anal. Biochem. 1973;54:484–489. doi: 10.1016/0003-2697(73)90377-1. PubMed DOI

Klavons JA, Bennett RD. Determination of methanol using alcohol oxidase and its application to methyl ester content of pectins. J. Agric. Food Chem. 1986;34:597–599. doi: 10.1021/jf00070a004. DOI

Fang L, et al. Loss of inositol phosphorylceramide sphingolipid mannosylation induces plant immune responses and reduces cellulose content in Arabidopsis. Plant Cell. 2016;28:2991–3004. doi: 10.1105/tpc.16.00186. PubMed DOI PMC

Eilers PHC. Parametric time warping. Anal. Chem. 2004;76:404–411. doi: 10.1021/ac034800e. PubMed DOI

Savitzky Abraham, Golay MJE. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964;36:1627–1639. doi: 10.1021/ac60214a047. DOI

Fähling M, Graf H, Siemens J. Pathotype separation of Plasmodiophora brassicae by the host plant. J. Phytopathol. 2003;151:425–430. doi: 10.1046/j.1439-0434.2003.00744.x. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...