Expansin-mediated developmental and adaptive responses: A matter of cell wall biomechanics?

. 2022 ; 3 () : e11. [epub] 20220613

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid37077967
Odkazy

PubMed 37077967
PubMed Central PMC10095946
DOI 10.1017/qpb.2022.6
PII: S2632882822000066
Knihovny.cz E-zdroje

Biomechanical properties of the cell wall (CW) are important for many developmental and adaptive responses in plants. Expansins were shown to mediate pH-dependent CW enlargement via a process called CW loosening. Here, we provide a brief overview of expansin occurrence in plant and non-plant species, their structure and mode of action including the role of hormone-regulated CW acidification in the control of expansin activity. We depict the historical as well as recent CW models, discuss the role of expansins in the CW biomechanics and address the developmental importance of expansin-regulated CW loosening in cell elongation and new primordia formation. We summarise the data published so far on the role of expansins in the abiotic stress response as well as the rather scarce evidence and hypotheses on the possible mechanisms underlying expansin-mediated abiotic stress resistance. Finally, we wrap it up by highlighting possible future directions in expansin research.

Zobrazit více v PubMed

Armezzani, A. , Abad, U. , Ali, O. , Andres Robin, A. , Vachez, L. , Larrieu, A. , Mellerowicz, E. J. , Taconnat, L. , Battu, V. , Stanislas, T. , Liu, M. , Vernoux, T. , Traas, J. , & Sassi, M. (2018). Transcriptional induction of cell wall remodelling genes is coupled to microtubule-driven growth isotropy at the shoot apex in Arabidopsis . Development, 145, dev162255. PubMed

Arsuffi, G. , & Braybrook, S. A. (2018). Acid growth: An ongoing trip. Journal of Experimental Botany, 2, 137–146. PubMed

Barbez, E. , Dunser, K. , Gaidora, A. , Lendl, T. , & Busch, W. (2017). Auxin steers root cell expansion via apoplastic pH regulation in Arabidopsis thaliana . Proceedings of the National Academy of Sciences USA, 114, E4884–E4893. PubMed PMC

Bootten, T. J. , Harris, P. J. , Melton, L. D. , & Newman, R. H. (2004). Solid-state 13C-NMR spectroscopy shows that the xyloglucans in the primary cell walls of mung bean (Vigna radiata L.) occur in different domains: A new model for xyloglucan–cellulose interactions in the cell wall. Journal of Experimental Botany, 55, 571–583. PubMed

Boraston, A. B. , Creagh, A. L. , Alam, M. M. , Kormos, J. M. , Tomme, P. , Haynes, C. A. , Warren, R. A. , & Kilburn, D. G. (2001). Binding specificity and thermodynamics of a family 9 carbohydrate-binding module from Thermotoga maritima xylanase 10A. Biochemistry, 40, 6240–6247. PubMed

Bordoloi, K. , Dihingia, P. , Krishnatreya, D. , & Agarwala, N. (2021). Genome-wide identification, characterization and expression analysis of the expansin gene family under drought stress in tea (Camellia sinensis L.). Plant Science Today, 8, 32–44.

Boron, A. K. , Van Loock, B. , Suslov, D. , Markakis, M. N. , Verbelen, J. P. , & Vissenberg, K. (2015). Over-expression of AtEXLA2 alters etiolated Arabidopsis hypocotyl growth. Annals of Botany, 115, 67–80. PubMed PMC

Bou Dahner, F. , Chen, Y. , Bozorg, B. , Clough, J. , Jonsson, H. , & Braybrook, S. A. (2018). Anisotropic growth is achieved through the additive mechanical effect of material anisotropy and elastic symmetry. eLife, 7, e38161. PubMed PMC

Brummell, D. A. , Harpster, M. H. , Civello, P. M. , Palys, J. M. , Bennett, A. B. , & Dunsmuir, P. (1999). Modification of expansin protein abundance in tomato fruit alters softening and cell wall polymer metabolism during ripening. Plant Cell, 11, 2203–2216. PubMed PMC

Caderas, D. , Muster, M. , Vogler, H. , Mandel, T. , Rose, J. K. C. , McQueen-Mason, S. , & Kuhlemeier, C. (2000). Limited correlation between expansin gene expression and elongation growth rate. Plant Physiology, 123, 1399–1413. PubMed PMC

Carpita, N. C. (1996). Structure and biogenesis of the cell walls of grasses. Annual Review Plant Physiology Plant Molecular Biology, 47, 445–476. PubMed

Carpita, N. C. , & Gibeaut, D. M. (1993). Structural models of primary cell walls in flowering plants: Consistency of molecular structure with the physical properties of the walls during growth. Plant Journal, 3, 1–30. PubMed

Castro, B. , Citterico, M. , Kimura, S. , Stevens, D. M. , Wrzaczek, M. , & Coaker, G. (2021). Stress-induced reactive oxygen species compartmentalization, perception and signalling. Nature Plants, 7, 403–412. PubMed PMC

Cavalier, D. M. , Lerouxel, O. , Neumetzler, L. , Yamauchi, K. , Reinecke, A. , Freshour, G. , Zabotina, O. A. , Hahn, M. G. , Burgert, I. , Pauly, M. , Raikhel, N. V. , & Keegstra, K. (2008). Disrupting two Arabidopsis thaliana xylosyltransferase genes results in plants deficient in xyloglucan, a major primary cell wall component. Plant Cell, 20, 1519–1537. PubMed PMC

Chase, W. R. , Zhaxybayeva, O. , Rocha, J. , Cosgrove, D. J. , & Shapiro, L. R. (2020). Global cellulose biomass, horizontal gene transfers and domain fusions drive microbial expansin evolution. New Phytologist, 226, 921–938. PubMed

Chebli, Y. , Bidhendi, A. J. , Kapoor, K. , & Geitmann, A. (2021). Cytoskeletal regulation of primary plant cell wall assembly. Current Biology, 31, R681–R695. PubMed

Chebli, Y. , & Geitmann, A. (2017). Cellular growth in plants requires regulation of cell wall biochemistry. Current Opinion in Cell Biology, 44, 28–35. PubMed

Chen, L. , Zou, W. , Fei, C. , Wu, G. , Li, X. , Lin, H. , & Xi, D. (2018a). α-Expansin EXPA4 positively regulates abiotic stress tolerance but negatively regulates pathogen resistance in Nicotiana tabacum . Plant and Cell Physiology, 59, 2317–2330. PubMed

Chen, Y. , Han, Y. , Kong, X. , Kang, H. , Ren, Y. , & Wang, W. (2017). Ectopic expression of wheat expansin gene TaEXPA2 improved the salt tolerance of transgenic tobacco by regulating Na+/K+ and antioxidant competence. Physiologia Plantarum, 159, 161–177. PubMed

Chen, Y. , Han, Y. , Meng, Z. , Zhou, S. , Xiangzhu, K. , & Wei, W. (2016). Overexpression of the wheat expansin gene TaEXPA2 improved seed production and drought tolerance in transgenic tobacco plants. PLoS One, 11, 1–24. PubMed PMC

Chen, Y. , Ren, Y. , Zhang, G. , An, J. , Yang, J. , Wang, Y. , & Wang, W. (2018b). Overexpression of the wheat expansin gene TaEXPA2 improves oxidative stress tolerance in transgenic Arabidopsis plants . Plant Physiology and Biochemistry, 124, 190–198. PubMed

Chen, Y. , Zhang, B. , Li, C. , Lei, C. , Kong, C. , Yang, Y. , & Gong, M. (2019). A comprehensive expression analysis of the expansin gene family in potato (Solanum tuberosum) discloses stress-responsive expansin-like B genes for drought and heat tolerances. PLoS One, 14, e0219837. PubMed PMC

Cho, H. T. , & Cosgrove, D. J. (2002). Regulation of root hair initiation and expansin gene expression in Arabidopsis . Plant Cell, 14, 3237–3253. PubMed PMC

Choi, D. S. , Lee, Y. , Cho, H. T. , & Kende, H. (2003). Regulation of expansin gene expression affects growth and development in transgenic rice plants. Plant Cell, 15, 1386–1398. PubMed PMC

Cosgrove, D. J. (1989). Characterization of long-term extension of isolated cell-walls from growing cucumber hypocotyls. Planta, 177, 121–130. PubMed

Cosgrove, D. J. (1993). Wall extensibility: Its nature, measurement and relationship to plant cell growth. New Phytologist, 124, 1–23. PubMed

Cosgrove, D. J. (2000). Loosening of plant cell walls by expansins. Nature, 407, 321–326. PubMed

Cosgrove, D. J. (2005). Growth of the plant cell wall. Nature Reviews Molecular Cell Biology, 6, 850–861. PubMed

Cosgrove, D. J. (2011). Measuring in vitro extensibility of growing plant cell walls. Methods in Molecular Biology, 715, 291–303. PubMed

Cosgrove, D. J. (2014). Re-constructing our models of cellulose and primary cell wall assembly. Current Opinion in Plant Biology, 22, 122–131. PubMed PMC

Cosgrove, D. J. (2015). Plant expansins: Diversity and interactions with plant cell walls. Current Opinion in Plant Biology, 25, 162–172. PubMed PMC

Cosgrove, D. J. (2016a). Plant cell wall extensibility: Connecting plant cell growth with cell wall structure, mechanics, and the action of wall modifying enzymes. Journal of Experimental Botany, 67, 463–476. PubMed

Cosgrove, D. J. (2016b). Catalysts of plant cell wall loosening. F1000Research, 5, 119. PubMed PMC

Cosgrove, D. J. (2018a). Diffuse growth of plant cell walls. Plant Physiology, 176, 16–27. PubMed PMC

Cosgrove, D. J. (2018b). Nanoscale structure, mechanics and growth of epidermal cell walls. Current Opinion Plant Biology, 46, 77–86. PubMed

Cosgrove, D. J. (2021). Expanding wheat yields with expansin. New Phytologist, 230, 403–405. PubMed

Cosgrove, D. J. , Bedinger, P. , & Durachko, D. M. (1997). Group I allergens of grass pollen as cell wall-loosening agents. Proceedings of the National Academy of Sciences USA, 94, 6559–6564. PubMed PMC

Craft, J. , Samalova, M. , Baroux, C. , Townley, H. , Martinez, A. , Jepson, I. , Tsiantis, M. , & Moore, I. (2005). New pOp/LhG4 vectors for stringent glucocorticoid-dependent transgene expression in Arabidopsis . Plant Journal, 41, 899–918. PubMed

Dick-Perez, M. , Zhang, Y. , Hayes, J. , Salazar, A. , Zabotina, O. A. , & Hong, M. (2011). Structure and interactions of plant cell-wall polysaccharides by two- and three-dimensional magic-angle-spinning solid-state NMR. Biochemistry, 50, 989–1000. PubMed

Du, M. , Spalding, E. P. , & Gray, W. M. (2020). Rapid auxin-mediated cell expansion. Annual Review of Plant Biology, 71, 379–402. PubMed PMC

Duan, Y. H. , Ma, Y. Y. , Zhao, X. D. , Huang, R. L. , Su, R. X. , Qi, W. , & He, Z. M. (2018). Real-time adsorption and action of expansin on cellulose. Biotechnology for Biofuels, 11, 317–329. PubMed PMC

Dunser, K. , & Kleine-Vehn, J. (2015). Differential growth regulation in plants – The acid growth balloon theory. Current Opinion in Plant Biology, 28, 55–59. PubMed

Durachko, D. , Park, Y. B. , Zhang, T. , & Cosgrove, D. J. (2017). Biomechanical characterization of onion epidermal cell walls. Bio-Protocol, 7, e2662. 10.21769/BioProtoc.22662 PubMed DOI PMC

Durachko, D. M. , & Cosgrove, D. J. (2009). Measuring plant cell wall extension (creep) induced by acidic pH and by alpha-expansin. Journal of Visualized Experiments, 25, e1263. PubMed PMC

Elsayad, K. , Werner, S. , Gallemí, M. , Kong, J. , Sanchez Guajardo, E. R. , Zhang, L. , Jaillais, Y. , Greb, T. , & Belkhadir, Y. (2016). Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission–Brillouin imaging. Science Signaling, 9, rs5. PubMed

Fendrych, M. , Akhmanova, M. , Merrin, J. , Glanc, M. , Hagihara, S. , Takahashi, K. , Uchida, N. , Torii, K. U. , & Friml, J. (2018). Rapid and reversible root growth inhibition by TIR1 auxin signalling. Nature Plants, 4, 453–459. PubMed PMC

Fendrych, M. , Leung, J. , & Friml, J. (2016). Tir1/AFB-aux/IAA auxin perception mediates rapid cell wall acidification and growth of Arabidopsis hypocotyls. eLife, 5, 1–19. PubMed PMC

Fleming, A. J. , McQueen-Mason, S. , Mandel, T. , & Kuhlemeier, C. (1997). Induction of leaf primordia by the cell wall protein expansin. Science, 276, 1415–1418.

Fry, S. C. (1989). The structure and functions of xyloglucan. Journal of Experimental Botany, 40, 1–12.

Fry, S. C. (1998). Oxidative scission of plant cell wall polysaccharides by ascorbate-induced hydroxyl radicals. Biochemical Journal, 332, 507–515. PubMed PMC

Gaete-Eastman, C. , Morales-Quintana, L. , Herrera, R. , & Moya-Leon, M. A. (2015). In-silico analysis of structure and binding site feature of expansin protein from mountain papaya fruit (VpEXPA2), through molecular modelling, docking and dynamics simulation studies. Journal of Molecular Modeling, 21, 1–12. PubMed

Geilfus, C. , Ober, D. , Eichacker, L. A. , Mühling, K. H. , & Zörb, C. (2015). Down-regulation of ZmEXPB6 (Zea mays [Image: see text] -Expansin 6) protein is correlated with salt-mediated growth reduction in the leaves of Z. mays L.. Journal of Biological Chemistry, 290, 11235–11245. PubMed PMC

Georgelis, N. , Nikolaidis, N. , & Cosgrove, D. J. (2015). Bacterial expansins and related proteins from the world of microbes. Applied Microbiology and Biotechnology, 99, 3807–3823. PubMed PMC

Georgelis, N. , Tabuchi, A. , Nikolaidis, N. , & Cosgrove, D. J. (2011). Structure-function analysis of the bacterial expansin EXLX1. Journal of Biological Chemistry, 286, 16814–16823. PubMed PMC

Georgelis, N. , Yennawar, N. H. , & Cosgrove, D. J. (2012). Structural basis for entropy-driven cellulose binding by a type-a cellulose-binding module (CBM) and bacterial expansin. Proceedings of the National Academy of Sciences, 109, 14830–14835. PubMed PMC

Gigli-Bisceglia, N. , Engelsdorf, T. , & Hamann, T. (2020). Plant cell wall integrity maintenance in model plants and crop species-relevant cell wall components and underlying guiding principles. Cellular and Molecular Life Sciences, 77, 2049–2077. PubMed PMC

Goh, H. H. , Sloan, J. , Dorca-Fornell, C. , & Fleming, A. (2012). Inducible repression of multiple expansin genes leads to growth suppression during leaf development. Plant Physiology, 159, 1759–1770. PubMed PMC

Goh, H. H. , Sloan, J. , Malinowski, R. , & Fleming, A. (2014). Variable expansin expression in Arabidopsis leads to different growth responses. Journal of Plant Physiology, 171, 329–339. PubMed

Goldberg, R. , Morvan, C. , Jauneau, A. , & Jarvis, M. C. (1996). Methylesterificatin, de-esterification and gelation of pectins in the primary cell wall. Progress in Biotechnology, 14, 151–172.

Großeholz, R. , Wanke, F. , Glöckner, N. , Rausch, L. , Rohr, L. , Scholl, S. , Scacchi, E. , Spazierer, A.-J. , Shabala, L. , Shabala, S. , Schumacher, K. , Kummer, U. , & Harter, K. (2021). Computational modeling and quantitative cell physiology reveal central parameters for the brassinosteroid-regulated cell growth of the Arabidopsis root. bioRxiv 2021.04.13.439595. PubMed PMC

Gruel, J. , Landrein, B. , Tarr, P. , Schuster, C. , Refahi, Y. , Sampathkumar, A. , Hamant, O. , Meyerowitz, E. M. , & Jonsson, H. (2016). An epidermis-driven mechanism positions and scales stem cell niches in plants. Science Advances, 2, e1500989. PubMed PMC

Hager, A. , Menzel, H. , & Krauss, A. (1971). Experiments and hypothesis concerning the primary action of auxin in elongation growth. Planta, 100, 47–75. PubMed

Hamann, T. (2015). The plant cell wall integrity maintenance mechanism-concepts for organization and mode of action. Plant Cell Physiology, 56, 215–223. PubMed

Hamant, O. , Heisler, M. G. , Jonsson, H. , Krupinski, P. , Uyttewaal, M. , Bokov, P. , Corson, F. , Sahlin, P. , Boudaoud, A. , Meyerowitz, E. M. , Couder, Y. , & Traas, J. (2008). Developmental patterning by mechanical signals in Arabidopsis . Science, 322, 1650–1655. PubMed

Han, Y. , Chen, Y. , Yin, S. , Zhang, M. , & Wang, W. (2015). Over-expression of TaEXPB23, a wheat expansin gene, improves oxidative stress tolerance in transgenic tobacco plants. Journal of Plant Physiology, 173, 62–71. PubMed

Han, Y. Y. , Li, A. X. , Li, F. , Zhao, M. R. , & Wang, W. (2012). Characterization of a wheat (Triticum aestivum L.) expansin gene, TaEXPB23, involved in the abiotic stress response and phytohormone regulation. Plant Physiology and Biochemistry, 54, 49–58. PubMed

Han, Z. , Liu, Y. , Deng, X. , Liu, D. , Liu, Y. , Hu, Y. , & Yan, Y. (2019). Genome-wide identification and expression analysis of expansin gene family in common wheat (Triticum aestivum L.). BMC Genomics, 20, 101. PubMed PMC

Hao, Z. , Qian, X. , Xiao, X. , Huabo, L. , Junkai, Z. , & Jichen, X. (2017). Transgenic tobacco plants expressing grass AstEXPA1 gene show improved performance to several stresses. Plant Biotechnology Reports, 11, 331–337.

Hayashi, T. (1989). Xyloglucans in the primary cell wall. Annual Review of Plant Physiology and Plant Molecular Biology, 40, 139–168.

Hepler, N. K. , Bowman, A. , Carey, R. E. , & Cosgrove, D. J. (2020). Expansin gene loss is a common occurrence during adaptation to an aquatic environment. Plant Journal, 101, 666–680. PubMed

Hepler, N. K. , & Cosgrove, D. J. (2019). Directed in vitro evolution of bacterial expansin BsEXLX1 for higher cellulose binding and its consequences for plant cell wall-loosening activities. FEBS Letters, 593, 2545–2555. PubMed

Herburger, K. , Frankova, L. , Picmanova, M. , Loh, J. W. , Valenzuela-Ortega, M. , Meulewaeter, F. , Hudson, A. D. , French, C. E. , & Fry, S. C. (2020). Hetero-trans- [Image: see text] -glucanase produces cellulose–xyloglucan covalent bonds in the cell walls of structural plant tissues and is stimulated by expansin. Molecular Plant, 13, 1047–1062. PubMed PMC

Hervieux, N. , Tsugawa, S. , Fruleux, A. , Dumond, M. , Routier-Kierzkowska, A. L. , Komatsuzaki, T. , Boudaoud, A. , Larkin, J. C. , Smith, R. S. , Li, C. B. , & Hamant, O. (2017). Mechanical shielding of rapidly growing cells buffers growth heterogeneity and contributes to organ shape reproducibility. Current Biology, 27, 3468–3479. PubMed

Hou, L. , Zhang, Z. Y. , Dou, S. H. , Zhang, Y. D. , Pang, X. M. , & Li, Y. Y. (2019). Genome-wide identification, characterization, and expression analysis of the expansin gene family in Chinese jujube (Ziziphus jujube Mill.). Planta, 249, 815–829. PubMed

Hurny, A. , Cuesta, C. , Cavallari, N. , Otvos, K. , Duclercq, J. , Dokladal, L. , Montesinos, J. C. , Gallemi, M. , Semeradova, H. , Rauter, T. , Stenzel, I. , Persiau, G. , Benade, F. , Bhalearo, R. , Sykorova, E. , Gorzsas, A. , Sechet, J. , Mouille, G. , Heilmann, I. , … Benkova, E. (2020). Synergistic on auxin and cytokinin 1 positively regulates growth and attenuates soil pathogen resistance. Nature Communications, 11, 2170. PubMed PMC

Ilias, I. A. , Negishi, K. , Yasue, K. , Jomura, N. , Morohashi, K. , Baharum, S. N. , & Goh, H. H. (2019). Transcriptome-wide effects of expansin gene manipulation in etiolated Arabidopsis seedling. Journal of Plant Research, 132, 159–172. PubMed

Jones, L. , & McQueen-Mason, S. (2004). A role for expansins in dehydration and rehydration of the resurrection plant Craterostigma plantagineum . FEBS Letters, 559, 61–65. PubMed

Jumper, J. , Evans, R. , Pritzel, A. , Green, T. , Figurnov, M. , Ronneberger, O. , Tunyasuvunakool, K. , Bates, R. , Zidek, A. , Potapenko, A. , Bridgland, A. , Meyer, C. , Kohl, S. A. A. , Ballard, A. J. , Cowie, A. , Romera-Paredes, B. , Nikolov, S. , Jain, R. , Adler, J. , … Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596, 583–589. PubMed PMC

Kerff, F. , Amoroso, A. , Herman, R. , Sauvage, E. , Petrella, S. , Filée, P. , Charlier, P. , Joris, B. , Tabuchi, A. , Nikolaidis, N. , & Cosgrove, D. J. (2008). Crystal structure and activity of Bacillus subtilis YoaJ (EXLX1), a bacterial expansin that promotes root colonization. Proceedings of the National Academy of Sciences USA, 105, 16876–16881. PubMed PMC

Kim, E. S. , Lee, H. J. , Bang, W. G. , Choi, I. G. , & Kim, K. H. (2009). Functional characterization of a bacterial expansin from Bacillus subtilis for enhanced enzymatic hydrolysis of cellulose. Biotechnology and Bioengineering, 102, 1342–1353. PubMed

Kim, I. J. , Ko, H. J. , Kim, T. W. , Nam, K. H. , Choi, I. G. , & Kim, K. H. (2013). Binding characteristics of a bacterial expansin (BsEXLX1) for various types of pretreated lignocellulose. Applied Microbiology and Biotechnology, 97, 5381–5388. PubMed

Landrein, B. , Kiss, A. , Sassi, M. , Chauvet, A. , Das, P. , Cortizo, M. , Laufs, P. , Takeda, S. , Aida, M. , Traas, J. , Vernoux, T. , Boudaoud, A. , & Hamant, O. (2015). Mechanical stress contributes to the expression of the STM homeobox gene in Arabidopsis shoot meristems. eLife, 4, e07811. PubMed PMC

Li, K. , Ma, B. , Shen, J. , Zhao, S. , Ma, X. , Wang, Z. , Fan, Y. , Tang, Q. , & Wei, D. (2021b). The evolution of the expansin gene family in brassica species. Plant Physiology and Biochemistry, 167, 630–638. PubMed

Li, L. , Gallei, M. , & Friml, F. (2021a). Bending to auxin: Fast acid growth for tropisms. Trends in Plant Science. PubMed

Li, L. , Verstraeten, I. , Roosjen, M. , Takahashi, K. , Rodriguez, L. , Merrin, J. , Chen, J. , Shabala, L. , Smet, W. , Ren, H. , Vanneste, S. , Shabala, S. , De Rybel, B. , Weijers, D. , Kinoshita, T. , Gray, W. M. , & Friml, J. (2021c). Cell surface and intracellular auxin signalling for H+ fluxes in root growth. Nature, 599, 273–277. PubMed PMC

Li, Y. , Tu, L. , Pettolino, F. A. , Ji, S. , Hao, J. , Yuan, D. , Deng, F. , Tan, J. , Hu, H. , Wang, Q. , Llewellyn, D. J. , & Zhang, X. (2016). GbEXPATR, a species-specific expansin, enhances cotton fibre elongation through cell wall restructuring. Plant Biotechnology Journal, 14, 951–963. PubMed PMC

Lin, W. , Zhou, X. , Tang, W. , Takahashi, K. , Pan, X. , Dai, J. , Ren, H. , Zhu, X. , Pan, S. , Zheng, H. , Gray, W. M. , Xu, T. , Kinoshita, T. , & Yang, Z. (2021). TMK-based cell-surface auxin signalling activates cell-wall acidification. Nature, 599, 278–282. PubMed PMC

Liu, X. , Ma, Y. , & Zhang, M. (2015). Research advances in expansins and expansion-like proteins involved in lignocellulose degradation. Biotechnology Letters, 37, 1541–1551. PubMed

Liu, Y. , Zhang, L. , Hao, W. , Zhang, L. , Liu, Y. , & Chen, L. (2019). Expression of two α-type expansins from Ammopiptanthus nanus in Arabidopsis thaliana enhance tolerance to cold and drought stresses. International Journal of Molecular Sciences, 20, 5255. PubMed PMC

Lohoff, C. , Buchholz, P. C. F. , Le Roes-Hill, M. , & Pleiss, J. (2020). The Expansin engineering database: A navigation and classification tool for expansins and homologues. Proteins, 89, 149–162. PubMed

Lu, P. , Kang, M. , Jiang, X. , Dai, F. , Gao, J. , & Zhang, C. (2013). RhEXPA4, a rose expansin gene, modulates leaf growth and confers drought and salt tolerance to Arabidopsis . Planta, 237, 1547–1559. PubMed

Lv, L.-M. , Zuo, D.-Y. , Wang, X.-F. , Cheng, H.-L. , Zhang, Y.-P. , Wang, Q.-L. , Song, G.-L. , & Ma, Z.-Y. (2020). Genome-wide identification of the expansin gene family reveals that expansin genes are involved in fibre cell growth in cotton. BMC Plant Biology, 20, 223–236. PubMed PMC

Ma, N. , Wang, Y. , Qiu, S. , Kang, Z. , Che, S. , Wang, G. , & Huang, J. (2013). Overexpression of OsEXPA8, a root-specific gene, improves rice growth and root system architecture by facilitating cell extension. PLoS One, 8, e75997. PubMed PMC

Majda, M. , Grones, P. , Sintorn, I. M. , Vain, T. , Milani, P. , Krupinski, P. , Zagorska-Marek, B. , Viotti, C. , Jonsson, H. , Mellerowicz, E. J. , Hamant, O. , & Robert, S. (2017). Mechanochemical polarization of contiguous cell walls shapes plant pavement cells. Developmental Cell, 43, 290–304. PubMed

Marga, F. , Grandbois, M. , Cosgrove, D. J. , & Tobias, I. (2005). Cell wall extension results in the coordinate separation of parallel microfibrils: Evidence from scanning electron microscopy and atomic force microscopy. Plant Journal, 43, 181–190. PubMed

Marowa, P. , Ding, A. , & Kong, Y. (2016). Expansins: Roles in plant growth and potential applications in crop improvement. Plant Cell Reports, 35, 949–965. PubMed PMC

Marowa, P. , Ding, A. , Xu, Z. , & Kong, Y. (2020). Overexpression of NtEXPA11 modulates plant growth and development and enhances stress tolerance in tobacco. Plant Physiology and Biochemistry, 151, 477–485. PubMed

Mateluna, P. , Valenzuela-Riffo, F. , Morales-Quintana, L. , Herrera, R. , & Ramos, P. (2017). Transcriptional and computational study of expansins differentially expressed in the response to inclination in radiata pine. Plant Physiology and Biochemistry, 115, 12–24. PubMed

McQueen-Mason, S. , Durachko, D. M. , & Cosgrove, D. J. (1992). Two endogenous proteins that induce cell wall extension in plants. Plant Cell, 4, 1425–1433. PubMed PMC

McQueen-Mason, S. J. , & Cosgrove, D. J. (1995). Expansin mode of action on cell walls. Analysis of wall hydrolysis, stress relaxation, and binding. Plant Physiology, 107, 87–100. PubMed PMC

Mielke, S. , Zimmer, M. , Meena, M. K. , Dreos, R. , Stellmach, H. , Hause, B. , Voiniciuc, C. , & Gasperini, D. (2021). Jasmonate biosynthesis arising from altered cell walls is prompted by turgor-driven mechanical compression. Science Advances, 7, eabf0356. PubMed PMC

Mittler, R. (2017). ROS are good. Trends in Plant Sciences, 22, 11–19. PubMed

Müller, K. , Linkies, A. , Vreeburg, R. A. , Fry, S. C. , Krieger-Liszkay, A. , & Leubner-Metzger, G. (2009). In vivo cell wall loosening by hydroxyl radicals during cress seed germination and elongation growth. Plant Physiology, 150, 1855–1865. PubMed PMC

Narayan, J. A. , Chakravarthi, M. , Nerkar, G. , Manoj, V. M. , Dharshini, S. , Subramonian, N. , Premachandran, M. N. , Kumar, R. A. , Surendar, K. K. , Hemaprabha, G. , Ram, B. , & Appunu, C. (2021). Overexpression of expansin EaEXPA1, a cell wall loosening protein enhances drought tolerance in sugarcane. Industrial Crops and Products, 159, 113035.

Narayan, J. A. , Dharshini, S. , Manoj, V. M. , Padmanabhan, T. S. S. , Kadirvelu, K. , Suresha, G. S. , Subramonian, N. , Ram, B. , Premachandran, M. N. , & Appunu, C. (2019). Isolation and characterization of water-deficit stress-responsive α-expansin 1 (EXPA1) gene from Saccharum complex. 3 Biotech, 9, 186. PubMed PMC

Nardi, C. , Escudero, C. , Villarreal, N. , Martinez, G. , & Civello, P. M. (2013). The carbohydrate-binding module of Fragaria x ananassa expansin 2 (CBM-FaExp2) binds to cell wall polysaccharides and decreases cell wall enzyme activities “in vitro”. Journal of Plant Research, 126, 151–159. PubMed

Nishitani, K. (1998). Construction and restructuring of the cellulose–xyloglucan framework in the apoplast as mediated by the xyloglucan related protein family—A hypothetical scheme. Journal of Plant Research, 111, 159–166.

Novakovic, L. , Guo, T. , Bacic, A. , Sampathkumar, A. , & Johnson, K. L. (2018). Hitting the wall—Sensing and signaling pathways involved in plant cell wall remodeling in response to abiotic stress. Plants, 7, 89. PubMed PMC

Orłowski, A. , Artzi, L. , Cazade, P. A. , Gunnoo, M. , Bayer, E. A. , & Thompson, D. (2018). On the distinct binding modes of expansin and carbohydrate-binding module proteins on crystalline and nanofibrous cellulose: Implications for cellulose degradation by designer cellulosomes. Journal of the Chemical Society Faraday Transactions, 20, 8278–8293. PubMed

Pacheco-Villalobos, D. , Diaz-Moreno, S. M. , van der Schuren, A. , Tamaki, T. , Kang, Y. H. , Gujas, B. , Novak, O. , Jaspert, N. , Li, Z. , Wolf, S. , Oecking, C. , Ljung, K. , Bulone, V. , & Hardtke, C. S. (2016). The effects of high steady state auxin levels on root cell elongation in Brachypodium . Plant Cell, 28, 1009–1024. PubMed PMC

Pacifici, E. , Di Mambro, R. , Dello Ioio, R. , Costantino, P. , & Sabatini, S. (2018). Acidic cell elongation drives cell differentiation in the Arabidopsis root. EMBO Journal, 37, e99134. PubMed PMC

Park, Y. B. , & Cosgrove, D. J. (2012a). A revised architecture of primary cell walls based on biomechanical changes induced by substrate-specific endoglucanases. Plant Physiology, 158, 1933–1943. PubMed PMC

Park, Y. B. , & Cosgrove, D. J. (2012b). Changes in cell wall biomechanical properties in the xyloglucan-deficient xxt1/xxt2 mutant of Arabidopsis . Plant Physiology, 158, 465–475. PubMed PMC

Park, Y. B. , & Cosgrove, D. J. (2015). Xyloglucan and its interactions with other components of the growing cell wall. Plant Cell Physiology, 56, 180–194. PubMed

Pastor, N. , Davila, S. , Perez-Rueda, E. , & Segovia, L. (2015). Electrostatic analysis of bacterial expansins. Proteins, 83, 215–223. PubMed

Peaucelle, A. , Louvet, R. , Johansen, J. N. , Hofte, H. , Laufs, P. , Pelloux, J. , & Mouille, G. (2008). Arabidopsis phyllotaxis is controlled by the methylesterification status of cell-wall pectins. Current Biology, 18, 1943–1948. PubMed

Peng, L. , Xu, Y. , Wang, X. , Feng, X. , Zhao, Q. , Feng, S. , Zhao, Z. , Hu, B. , & Li, F. (2019). Overexpression of paralogues of the wheat expansin gene TaEXPA8 improves low-temperature tolerance in Arabidopsis . Plant Biology, 21, 1119–1131. PubMed

Pien, S. , Wyrzykowska, J. , McQueen-Mason, S. , Smart, C. , & Fleming, A. (2001). Local expression of expansin induces the entire process of leaf development and modifies leaf shape. Proceedings of the National Academy of Sciences USA, 98, 11812–11817. PubMed PMC

Ramakrishna, P. , Ruiz Duarte, P. , Rance, G. A. , Schubert, M. , Vordermaier, V. , Vu, L. D. , Murphy, E. , Vilches Barro, A. , Swarup, K. , Moirangthem, K. , Jorgensen, B. , van de Cotte, B. , Goh, T. , Lin, Z. , Vobeta, U. , Beeckman, T. , Bennett, M. J. , Gevaert, K. , Maizel, A. , & De Smet, I. (2019). EXPANSIN A1-mediated radial swelling of pericycle cells positions anticlinal cell divisions during lateral root initiation. Proceedings of the National Academy of Sciences USA, 116, 8597–8602. PubMed PMC

Rayle, D. L. , & Cleland, R. (1970). Enhancement of wall loosening and elongation by acid solutions. Plant Physiology, 46, 250–253. PubMed PMC

Rayle, D. L. , & Cleland, R. E. (1992). The acid growth theory of auxin-induced cell elongation is alive and well. Plant Physiology, 99, 1271–1274. PubMed PMC

Reinhardt, D. , Wittwer, F. , Mandel, T. , & Kuhlemeier, C. (1998). Localized upregulation of a new expansin gene predicts the site of leaf formation in the tomato meristem. Plant Cell, 10, 1427–1437. PubMed PMC

Ren, Y. , Chen, Y. , An, J. , Zhao, Z. , Zhang, Z. , Wang, Y. , & Wang, W. (2018). Wheat expansin gene TaEXPA2 is involved in conferring plant tolerance to cd toxicity. Plant Science, 270, 245–256. PubMed

Robinson, R. (2021). Mechanobiology of cell division in plant growth. New Phytologist, 231, 559–564. PubMed

Rochange, S. F. , Wenzel, C. L. , & McQueen-Mason, S. J. (2001). Impaired growth in transgenic plants over-expressing an expansin isoform. Plant Molecular Biology, 46, 581–589. PubMed

Roudier, F. , Fernandez, A. G. , Fujita, M. , Himmelspach, R. , Borner, G. H. H. , Schindelman, G. , Song, S. , Baskin, T. I. , Dupree, P. , Wasteneys, G. O. , & Benfey, P. N. (2005). COBRA, an Arabidopsis extracellular glycosyl-phosphatidyl inositol-anchored protein, specifically controls highly anisotropic expansion through its involvement in cellulose microfibril orientation. Plant Cell, 17, 1749–1763. PubMed PMC

Rui, Y. , & Dinneny, J. R. (2020). A wall with integrity: Surveillance and maintenance of the plant cell wall under stress. New Phytologist, 225, 1428–1439. PubMed

Samalova, M. , Elsayad, K. , Melnikava, A. , Peaucelle, A. , Gahurova, E. , Gumulec, J. , Spyroglou, I. , Zemlyanskaya, E. V. , Ubogoeva, E. V. , & Hejatko, J. (2020). Expansin-controlled cell wall stiffness regulates root growth in Arabidopsis. bioRxiv, 2020.2006.2025.170969.

Sampathkumar, A. , Yan, A. , Krupinski, P. , & Meyerowitz, E. M. (2014). Physical forces regulate plant development and morphogenesis. Current Biology, 24, 475–483. PubMed PMC

Sampedro, J. , & Cosgrove, D. J. (2005). The expansin superfamily. Genome Biology, 6, 242. PubMed PMC

Sampedro, J. , Guttman, M. , Li, L. C. , & Cosgrove, D. J. (2015). Evolutionary divergence of beta-expansin structure and function in grasses parallels emergence of distinctive primary cell wall traits. Plant Journal, 81, 108–120. PubMed

Santiago, T. R. , Pereira, V. M. , de Souza, W. R. , Steindorff, A. S. , Cunha, B. A. D. B. , Gaspar, M. , Favaro, L. C. L. , Formighieri, E. F. , Kobayashi, A. K. , & Molinari, H. B. C. (2018). Genome-wide identification, characterization and expression profile analysis of expansins gene family in sugarcane (Saccharum spp.) PLoS One, 13, e0191081. PubMed PMC

Sassi, M. , Ali, O. , Boudon, F. , Cloarec, G. , Abad, U. , Cellier, C. , Chen, X. , Gilles, B. , Milani, P. , Friml, J. , Vernoux, T. , Godin, C. , Hamant, O. , & Traas, J. (2014). An auxin-mediated shift toward growth isotropy promotes organ formation at the shoot meristem in Arabidopsis . Current Biology, 24, 2335–2342. PubMed

Scarcelli, G. , Polacheck, W. J. , Nia, H. T. , Patel, K. , Grodzinsky, A. J. , Kamm, R. D. , & Yun, S. H. (2015). Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy. Nature Methods, 12, 1132–1134. PubMed PMC

Schindelman, G. , Morikami, A. , Jung, J. , Baskin, T. I. , Carpita, N. C. , Derbyshire, P. , McCann, M., C., & Benfey, P. N. (2001). COBRA encodes a putative GPI-anchored protein, which is polarly localized and necessary for oriented cell expansion in Arabidopsis . Genes Development, 15, 1115–1127. PubMed PMC

Schopfer, P. (2001). Hydroxyl radical-induced cell-wall loosening in vitro and in vivo: Implications for the control of elongation growth. Plant Journal, 28, 679–688. PubMed

Schweikert, C. , Liszkay, A. , & Schopfer, P. (2000). Scission of polysaccharides by peroxidase-generated hydroxyl radicals. Phytochemistry, 53, 565–570. PubMed

Sloan, J. , Backhaus, A. , Malinowski, R. , McQueen-Mason, S. , & Fleming, A. J. (2009). Phased control of expansin activity during leaf development identifies a sensitivity window for expansin-mediated induction of leaf growth. Plant Physiology, 151, 1844–1854. PubMed PMC

Spartz, A. K. , Ren, H. , Park, M. Y. , Grandt, K. N. , Lee, S. H. , Murphy, A. S. , Sussman, M. R. , Overvoorde, P. J. , & Gray, W. M. (2014). SAUR inhibition of PP2C-D phosphatases activates plasma membrane H+-ATPases to promote cell expansion in Arabidopsis . Plant Cell, 26, 2129–2142. PubMed PMC

Takahashi, K. , Hayashi, K. , & Kinoshita, T. (2012). Auxin activates the plasma membrane H+-ATPase by phosphorylation during hypocotyl elongation in Arabidopsis . Plant Physiology, 159, 632–641. PubMed PMC

Takatani, S. , Verger, S. , Okamoto, T. , Takahashi, T. , Hamant, O. , & Motose, H. (2020). Microtubule response to tensile stress is curbed by NEK6 to buffer growth variation in the Arabidopsis hypocotyl. Current Biology, 30, 1491–1503. PubMed

Tenhaken, R. (2015). Cell wall remodeling under abiotic stress. Frontiers in Plant Science, 5, 771. PubMed PMC

Thiel, G. , & Weise, R. (1999). Auxin augments conductance of K+ inward rectifier in maize coleoptile protoplasts. Planta, 208, 38–45.

Vaahtera, L. , Schulz, J. , & Hamann, T. (2019). Cell wall integrity maintenance during plant development and interaction with the environment. Nature Plants, 5, 924–932. PubMed

Valdivia, E. , Stephenson, A. G. , Durachko, D. M. , & Cosgrove, D. J. (2009). Class B [Image: see text] -expansins are needed for pollen separation and stigma penetration. Sex Plant Reproduction, 22, 141–152. PubMed

Valenzuela-Riffo, F. , Gaete-Eastman, C. , Stappung, Y. , Lizana, R. , Herrera, R. , Moya-Leon, M. A. , & Morales-Quintana, L. (2020). Comparative in silico study of the differences in the structure and ligand interaction properties of three alpha-expansin proteins from Fragaria chiloensis fruit. Journal of Biomolecular Structure and Dynamics, 37, 3245–3258. PubMed

Valenzuela-Riffo, F. , Ramos, P. , & Morales-Quintana, L. (2018). Computational study of FaEXPA1, a strawberry alpha expansin protein, through molecular modeling and molecular dynamics simulation studies. Computational Biology and Chemistry, 76, 79–86. PubMed

Van der Does, D. , Boutrot, F. , Engelsdorf, T. , Rhodes, J. , McKenna, J. F. , Vernhettes, S. , Koevoets, I. , Tintor, N. , Veerabagu, M. , Miedes, E. , Segonzac, C. , Roux, M. , Breda, A. S. , Hardtke, C.S. , Molina, A. , Rep, M. , Testerink, C. , Mouille, G. , Höfte, H. , Hamann, T. , & Zipfel, C. (2017). The Arabidopsis leucine-rich repeat receptor kinase MIK2/LRR-KISS connects cell wall integrity sensing, root growth and response to abiotic and biotic stresses public library of science genetics , 13, e1006832. PubMed PMC

Varadi, M. , Anyango, S. , Deshpande, M. , Nair, S. , Natassia, C. , Yordanova, G. , Yuan, D. , Stroe, O. , Wood, G. , Laydon, A. , Zidek, A. , Green, T. , Tunyasuvunakool, K. , Petersen, S. , Jumper, J. , Clancy, E. , Green, R. , Vora, A. , Lutfi, M. , … Velankar, S. (2021). AlphaFold protein structure database: Massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Research, 50, D439–D444. PubMed PMC

Vermeer, J. E. , von Wangenheim, D. , Barberon, M. , Lee, Y. , Stelzer, E. H. , Maizel, A. , & Geldner, N. (2014). A spatial accommodation by neighboring cells is required for organ initiation in Arabidopsis . Science, 343, 178–183. PubMed

Vilches Barro, A. , Stöckle, D. , Thellmann, M. , Ruiz-Duarte, P. , Bald, L. , Louveaux, M. , von Born, P. , Denninger, P. , Goh, T. , Fukaki, H. , Vermeer, J. E. M. , & Maizel, A. (2019). Cytoskeleton dynamics are necessary for early events of lateral root initiation in Arabidopsis . Current Biology, 29, 2443–2454. PubMed

Vogel, J. (2008). Unique aspects of the grass cell wall. Current Opinion Plant Biology, 11, 301–307. PubMed

Vreeburg, R. A. , Benschop, J. J. , Peeters, A. J. , Colmer, T. D. , Ammerlaan, A. H. , Staal, M. , Elzenga, T. M. , Staals, R. H. , Darley, C. P. , McQueen-Mason, S. J. , & Voesenek, L. A. (2005). Ethylene regulates fast apoplastic acidification and expansin a transcription during submergence-induced petiole elongation in Rumex palustris . Plant Journal, 43, 597–610. PubMed

Wang, T. , Chen, Y. , Tabuchi, A. , Cosgrove, D. J. , & Hong, M. (2016a). The target of β-expansin EXPB1 in maize cell walls from binding and solid-state NMR studies. Plant Physiology, 172, 2107–2119. PubMed PMC

Wang, T. , McFarlane, H. E. , & Persson, S. (2016b). The impact of abiotic factors on cellulose synthesis. Journal of Experimental Botany, 67, 543–552. PubMed

Wang, T. , Park, Y. B. , Caporini, M. A. , Rosay, M. , Zhong, L. , Cosgrove, D. J. , & Hong, M. (2013). Sensitivity-enhanced solid-state NMR detection of expansin’s target in plant cell walls. Proceedings of the National Academy of Sciences USA, 110, 16444–16449. PubMed PMC

Wang, X. , Wilson, L. , & Cosgrove, D. J. (2020). Pectin methylesterase selectively softens the onion epidermal wall yet reduces acid-induced creep. Journal of Experimental Botany, 71, 2629–2640. PubMed PMC

White, P. B. , Wang, T. , Park, Y. B. , Cosgrove, D. J. , & Hong, M. (2014). Water–polysaccharide interactions in the primary cell wall of Arabidopsis thaliana from polarization transfer solid-state NMR. Journal of American Chemical Society, 136, 10399–10409. PubMed

Whitney, S. E. C. , Gidley, M. J. , & McQueen-Mason, S. J. (2000). Probing expansin action using cellulose/hemicellulose composites. Plant Journal, 22, 327–334. PubMed

Wu, Y. , Sharp, R. E. , Durachko, D. M. , & Cosgrove, D. J. (1996). Growth maintenance of the maize primary root at low water potentials involves increases in cell-wall extension properties, expansin activity, and wall susceptibility to expansins. Plant Physiology, 111, 765–772. PubMed PMC

Wu, Y. , Thorne, E. T. , Sharp, R. E. , & Cosgrove, D. J. (2001). Modification of expansin transcript levels in the maize primary root at low water potentials. Plant Physiology, 126, 1471–1479. PubMed PMC

Xin, X. , Lei, L. , Zheng, Y. , Zhang, T. , Pingali, S. V. , O’Neill, H. , Cosgrove, D. J. , Li, S. , & Gu, Y. (2020). Cellulose synthase interactive1- and microtubule-dependent cell wall architecture is required for acid growth in Arabidopsis hypocotyls. Journal of Experimental Botany, 71, 2982–2994. PubMed PMC

Xu, J. , Tian, J. , Belanger, F. C. , & Huang, B. (2007). Identification and characterization of an expansin gene AsEXP1 associated with heat tolerance in C3 Agrostis grass species. Journal of Experimental Botany, 58, 3789–3796. PubMed

Xu, Q. , Xu, X. , Shi, Y. , Xu, J. , & Huang, B. (2014). Transgenic tobacco plants overexpressing a grass Ppexp1 gene exhibit enhanced tolerance to heat stress. PLoS One, 9, e100792. PubMed PMC

Yan, A. , Wu, M. , Yan, L. , Hu, R. , Ali, I. , & Gan, Y. (2014). AtEXP2 is involved in seed germination and abiotic stress response in Arabidopsis , PLoS One, 9, e85208. PubMed PMC

Yang, J. , Zhang, G. , An, J. , Li, Q. , Chen, Y. , Zhao, X. , Wu, J. , Wang, Y. , Hao, Q. , Wang, W. , & Wang, W. (2020). Expansin gene TaEXPA2 positively regulates drought tolerance in transgenic wheat (Triticum aestivum L.). Plant Science, 298, 110596. PubMed

Yennawar, N. H. , Li, L. C. , Dudzinski, D. M. , Tabuchi, A. , & Cosgrove, D. J. (2006). Crystal structure and activities of EXPB1 (Zea m 1), a beta-expansin and group-1 pollen allergen from maize. Proceedings of the National Academy of Sciences USA, 103, 14664–14671. PubMed PMC

Yoshida, K. , & Komae, K. (2006). Dynamic coordination of cytoskeletal and cell wall systems during plant cell morphogenesis. Plant Cell Physiology, 47, 1541–1554. PubMed

Yuan, S. , Wu, Y. , & Cosgrove, D. J. (2001). A fungal endoglucanase with plant cell wall extension activity. Plant Physiology, 127, 324–333. PubMed PMC

Zenoni, S. , Fasoli, M. , Tornielli, G. B. , Dal Santo, S. , Sanson, A. , de Groot, P. , Sordo, S. , Citterio, S. , Monti, F. , & Pezzotti, M. (2011). Overexpression of PhEXPA1 increases cell size, modifies cell wall polymer composition and affects the timing of axillary meristem development in Petunia hybrida . New Phytologist, 191, 662–677. PubMed

Zenoni, S. , Reale, L. , Tornielli, G. B. , Lanfaloni, L. , Porceddu, A. , Ferrarini, A. , Moretti, C. , Zamboni, A. , Speghini, A. , Ferranti, F. , & Pezzotti, M. (2004). Downregulation of the Petunia hybrida alpha-expansin gene PhEXP1 reduces the amount of crystalline cellulose in cell walls and leads to phenotypic changes in petal limbs. Plant Cell, 16, 295–308. PubMed PMC

Zhang, H. , Ding, Y. , Zhi, J. , Li, X. , Liu, H. , & Xu, J. (2018b). Over-expression of the poplar expansin gene PtoEXPA12 in tobacco plants enhanced cadmium accumulation. International Journal of Biological Macromolecules, 116, 676–682. PubMed

Zhang, H. , Liu, H. , Yang, R. , Xu, X. , Liu, X. , & Xu, J. (2019b). Over-expression of PttEXPA8 gene showed various resistances to diverse stresses. International Journal of Biological Macromolecules, 130, 50–57. PubMed

Zhang, J.-F. , Xu, Y.-Q. , Dong, J.-M. , Peng, L.-N. , Feng, X. , Wang, X. , Li, F. , Miao, Y. , Yao, S.-K. , Zhao, Q.-Q. , Feng, S.-S. , Hu, B.-Z. , & Li, F.-L. (2018a). Genome-wide identification of wheat (Triticum aestivum) expansins and expansin expression analysis in cold-tolerant and cold-sensitive wheat cultivars. PLoS One, 13, e0195138. PubMed PMC

Zhang, P. , Ma, Y. , Cui, M. , Wang, J. , Huang, R. , Su, R. , Qi, W. , He, Z. , & Thielemans, W. (2020). Effect of sugars on the real-time adsorption of expansin on cellulose. Biomacromolecules, 21, 1776–1784. PubMed

Zhang, P. , Su, R. , Duan, Y. , Cui, M. , Huang, R. , Qi, W. , He, Z. , & Thielemans, W. (2021b). Synergy between endo/exo-glucanases and expansin enhances enzyme adsorption and cellulose conversion. Carbohydrate Polymers, 253, 117287. PubMed

Zhang, T. , & Cosgrove, D. J. (2017). Preparation of onion epidermal cell walls for imaging by atomic force microscopy (AFM). Bio-Protocol, 7, e2647. PubMed PMC

Zhang, T. , Mahgsoudy-Louyeh, S. , Tittmann, B. , & Cosgrove, D. J. (2014). Visualization of the nanoscale pattern of recently-deposited cellulose microfibrils and matrix materials in never-dried primary walls of the onion epidermis. Cellulose, 21, 853–862.

Zhang, T. , Tang, H. , Vavylonis, D. , & Cosgrove, D. J. (2019a). Disentangling loosening from softening: Insights into primary cell wall structure. Plant Journal, 100, 1101–1117. PubMed

Zhang, Y. , Yu, J. , Wang, X. , Durachko, D. M. , Zhang, S. , & Cosgrove, D. J. (2021a). Molecular insights into the complex mechanics of plant epidermal cell walls. Science, 372, 706–711. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...