Machine-learning meta-analysis reveals ethylene as a central component of the molecular core in abiotic stress responses in Arabidopsis
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, metaanalýza
Grantová podpora
G032717N
Fonds Wetenschappelijk Onderzoek (Research Foundation Flanders)
G082421N
Fonds Wetenschappelijk Onderzoek (Research Foundation Flanders)
1288923N
Fonds Wetenschappelijk Onderzoek (Research Foundation Flanders)
BOF-BAS
Universiteit Gent (UGent)
PubMed
40404615
PubMed Central
PMC12098884
DOI
10.1038/s41467-025-59542-3
PII: 10.1038/s41467-025-59542-3
Knihovny.cz E-zdroje
- MeSH
- Arabidopsis * genetika fyziologie metabolismus MeSH
- ethyleny * metabolismus MeSH
- fyziologický stres * genetika MeSH
- kořeny rostlin genetika metabolismus MeSH
- proteiny huseníčku genetika metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- stanovení celkové genové exprese MeSH
- strojové učení * MeSH
- transkriptom MeSH
- výhonky rostlin genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- Názvy látek
- ethylene MeSH Prohlížeč
- ethyleny * MeSH
- proteiny huseníčku MeSH
Understanding how plants adapt their physiology to overcome severe and often multifactorial stress conditions in nature is vital in light of the climate crisis. This remains a challenge given the complex nature of the underlying molecular mechanisms. To provide a comprehensive picture of stress-mitigation mechanisms, an exhaustive analysis of publicly available stress-related transcriptomic data has been conducted. We combine a meta-analysis with an unsupervised machine-learning algorithm to identify a core of stress-related genes active at 1-6 h and 12-24 h of exposure in Arabidopsis thaliana shoots and roots. To ensure robustness and biological significance of the output, often lacking in meta-analyses, a triple validation is incorporated. We present a 'stress gene core': a set of key genes involved in plant tolerance to ten adverse environmental conditions and ethylene-precursor supplementation rather than individual conditions. Notably, ethylene plays a key regulatory role in this core, influencing gene expression and acting as a critical factor in stress tolerance. Additionally, the analysis provides insights into previously uncharacterized genes, key genes within large families, and gene expression dynamics, which are used to create biologically validated databases that can guide further abiotic stress research. These findings establish a strong framework for advancing multi-stress-resilient crops, paving the way for sustainable agriculture in the face of climate challenges.
CEITEC Central European Institute of Technology Masaryk University Brno Czech Republic
Department of Agri Food Engineering and Biotechnology Castelldefels 08860 Barcelona Spain
Department of Experimental Biology Faculty of Science Masaryk University Brno Czech Republic
Institute of Industrial and Control Engineering Barcelona 08028 Spain
Zobrazit více v PubMed
Food and Agriculture Organization of the United Nations. The Impact of Disasters and Crises on Agriculture and Food Security: 2021 (Food & Agriculture Organization, 2021).
Pandey, P., Irulappan, V., Bagavathiannan, M. V. & Senthil-Kumar, M. Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Front. Plant Sci.8, 537 (2017). PubMed PMC
Oshunsanya, S. O., Nwosu, N. J. & Li, Y. Abiotic stress in agricultural crops under climatic conditions. In Sustainable Agriculture, Forest and Environmental Management (eds Jhariya, M., Banerjee, A., Meena, R. & Yadav, D.) 71–100 (Springer, Singapore, 2019).
Savary, S. et al. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol.3, 430–439 (2019). PubMed
Zhang, H., Zhao, Y. & Zhu, J.-K. Thriving under stress: how plants balance growth and the stress response. Dev. Cell55, 529–543 (2020). PubMed
Zandalinas, S. I. & Mittler, R. Plant responses to multifactorial stress combination. N. Phytol.234, 1161–1167 (2022). PubMed
Kuromori, T., Fujita, M., Takahashi, F., Yamaguchi-Shinozaki, K. & Shinozaki, K. Inter-tissue and inter-organ signaling in drought stress response and phenotyping of drought tolerance. Plant J.109, 342–358 (2022). PubMed PMC
Li, H., Testerink, C. & Zhang, Y. How roots and shoots communicate through stressful times. Trends Plant Sci.26, 940–952 (2021). PubMed
Singh, A. et al. Tissue specific and abiotic stress regulated transcription of histidine kinases in plants is also influenced by diurnal rhythm. Front. Plant Sci.6, 711 (2015). PubMed PMC
Choudhury, F. K., Devireddy, A. R., Azad, R. K., Shulaev, V. & Mittler, R. Rapid accumulation of glutathione during light stress in Arabidopsis. Plant Cell Physiol.59, 1817–1826 (2018). PubMed
Moore, M., Vogel, M. O. & Dietz, K. J. The acclimation response to high light is initiated within seconds as indicated by upregulation of AP2/ERF transcription factor network in Arabidopsis thaliana. Plant Signal Behav.9, 976479 (2014). PubMed PMC
Kollist, H. et al. Rapid responses to abiotic stress: priming the landscape for the signal transduction network. Trends Plant Sci.24, 25–37 (2019). PubMed
Depaepe, T. et al. At the crossroads of survival and death: the reactive oxygen species–ethylene–sugar triad and the unfolded protein response. Trends Plant Sci.26, 338–351 (2021). PubMed
Depaepe, T. & Van Der Straeten, D. Tools of the ethylene trade: a chemical kit to influence ethylene responses in plants and its use in agriculture. Small Methods4, 1900267 (2020).
Chang, K. N. et al. Temporal transcriptional response to ethylene gas drives growth hormone cross-regulation in Arabidopsis. Elife2, e00675 (2013). PubMed PMC
Anderson, J. P. et al. Antagonistic interaction between abscisic acid and jasmonate–ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell16, 3460–3479 (2004). PubMed PMC
Van den Broeck, L. et al. From network to phenotype: the dynamic wiring of an Arabidopsis transcriptional network induced by osmotic stress. Mol. Syst. Biol.13, 961 (2017). PubMed PMC
Hossain, M. A. et al. Heat or cold priming-induced cross-tolerance to abiotic stresses in plants: key regulators and possible mechanisms. Protoplasma255, 399–412 (2018). PubMed
Zhang, X., Shen, L., Li, F., Meng, D. & Sheng, J. Arginase induction by heat treatment contributes to amelioration of chilling injury and activation of antioxidant enzymes in tomato fruit. Postharvest Biol. Technol.79, 1–8 (2013).
Chou, T.-S., Chao, Y.-Y. & Kao, C. H. Involvement of hydrogen peroxide in heat shock- and cadmium-induced expression of ascorbate peroxidase and glutathione reductase in leaves of rice seedlings. J. Plant Physiol.169, 478–486 (2012). PubMed
Hossain, M. A., Mostofa, M. G. & Fujita, M. Cross protection by cold-shock to salinity and drought stress-induced oxidative stress in mustard (Brassica campestris L.) seedlings. Mol. Plant Breed.4, 50–70 (2013).
Atkinson, N. J. & Urwin, P. E. The interaction of plant biotic and abiotic stresses: from genes to the field. J. Exp. Bot.63, 3523–3543 (2012). PubMed
Panahi, B., Frahadian, M., Dums, J. T. & Hejazi, M. A. Integration of cross species RNA-seq meta-analysis and machine-learning models identifies the most important salt stress-responsive pathways in microalga. Front. Genet.10, 752 (2019). PubMed PMC
Toro-Domínguez, D. et al. A survey of gene expression meta-analysis: methods and applications. Brief. Bioinform.22, 1694–1705 (2021). PubMed
Meta-analysis in basic biology. Nat. Methods13, 959–959 10.1038/nmeth.4102 (2016).
Gibney, E. Could machine learning fuel a reproducibility crisis in science? Nature608, 250–251 (2022). PubMed
Cortes, C. & Vapnik, V. Support-vector networks. Mach. Learn20, 273–297 (1995).
Winters-Hilt, S. & Merat, S. SVM clustering. BMC Bioinform.8(Suppl. 7), S18 (2007). PubMed PMC
Krishnaveni, N. & Radha, V. Performance evaluation of clustering-based classification algorithms for detection of online spam reviews. In Data Intelligence and Cognitive Informatics. Algorithms for Intelligent Systems 255–266 (eds Jeena Jacob, I., Kolandapalayam Shanmugam, S., Piramuthu, S. & Falkowski-Gilski, P.) (Springer, Singapore, 2021).
Yan, J. & Wang, X. Unsupervised and semi-supervised learning: the next frontier in machine learning for plant systems biology. Plant J.111, 1527–1538 (2022). PubMed
Codjoe, J. M., Miller, K. & Haswell, E. S. Plant cell mechanobiology: greater than the sum of its parts. Plant Cell34, 129–145 (2022). PubMed PMC
Tenhaken, R. Cell wall remodeling under abiotic stress. Front. Plant Sci.5, 771 (2014). PubMed PMC
Ghosh, D. & Xu, J. Abiotic stress responses in plant roots: a proteomics perspective. Front. Plant Sci.5, 6 (2014). PubMed PMC
Huang, P.-Y., Catinot, J. & Zimmerli, L. Ethylene response factors in Arabidopsis immunity. J. Exp. Bot.67, 1231–1241 (2016). PubMed
Xu, J. & Zhang, S. Regulation of ethylene biosynthesis and signaling by protein kinases and phosphatases. Mol. Plant7, 939–942 (2014). PubMed
Xu, J. et al. Activation of MAPK kinase 9 induces ethylene and camalexin biosynthesis and enhances sensitivity to salt stress in Arabidopsis. J. Biol. Chem.283, 26996–27006 (2008). PubMed
Shin, K. et al. Genetic identification of ACC-RESISTANT2 reveals involvement of LYSINE HISTIDINE TRANSPORTER1 in the uptake of 1-aminocyclopropane-1-carboxylic acid in Arabidopsis thaliana. Plant Cell Physiol.56, 572–582 (2015). PubMed
Zhu, T. et al. Mitochondrial alternative oxidase-dependent autophagy involved in ethylene-mediated drought tolerance in Solanum lycopersicum. Plant Biotechnol. J.16, 2063–2076 (2018). PubMed PMC
Birkenbihl, R. P., Kracher, B., Roccaro, M. & Somssich, I. E. Induced genome-wide binding of three Arabidopsis WRKY transcription factors during early MAMP-triggered immunity. Plant Cell29, 20–38 (2017). PubMed PMC
Shi, J., Drummond, B. J., Wang, H., Archibald, R. L. & Habben, J. E. Maize and Arabidopsis ARGOS proteins interact with ethylene receptor signaling complex, supporting a regulatory role for ARGOS in ethylene signal transduction. Plant Physiol.171, 2783–2797 (2016). PubMed PMC
Samalova, M. et al. Hormone-regulated expansins: expression, localization, and cell wall biomechanics in Arabidopsis root growth. Plant Physiol.194, 209–229 (2024) PubMed PMC
Samalova, M., Gahurova, E. & Hejatko, J. Expansin-mediated developmental and adaptive responses: a matter of cell wall biomechanics? Quant. Plant Biol.3, e11 (2022). PubMed PMC
Xie, Z., Nolan, T. M., Jiang, H. & Yin, Y. AP2/ERF transcription factor regulatory networks in hormone and abiotic stress responses in Arabidopsis. Front. Plant Sci.10, 228 (2019). PubMed PMC
Nakano, T., Suzuki, K., Fujimura, T. & Shinshi, H. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol.140, 411–432 (2006). PubMed PMC
Zhang, M. & Zhang, S. Mitogen-activated protein kinase cascades in plant signaling. J. Integr. Plant Biol.64, 301–341 (2022). PubMed
Kvint, K., Nachin, L., Diez, A. & Nyström, T. The bacterial universal stress protein: function and regulation. Curr. Opin. Microbiol.6, 140–145 (2003). PubMed
Shaik, R. & Ramakrishna, W. Machine learning approaches distinguish multiple stress conditions using stress-responsive genes and identify candidate genes for broad resistance in rice. Plant Physiol.164, 481–495 (2014). PubMed PMC
Ma, C., Xin, M., Feldmann, K. A. & Wang, X. Machine learning-based differential network analysis: a study of stress-responsive transcriptomes in Arabidopsis. Plant Cell26, 520–537 (2014). PubMed PMC
English, P. J., Lycett, G. W., Roberts, J. A. & Jackson, M. B. Increased 1-aminocyclopropane-1-carboxylic acid oxidase activity in shoots of flooded tomato plants raises ethylene production to physiologically active levels. Plant Physiol.109, 1435–1440 (1995). PubMed PMC
Depaepe, T., Vanhaelewyn, L. & Van Der Straeten, D. UV-B responses in the spotlight: dynamic photoreceptor interplay and cell-type specificity. Plant Cell Environ.46, 3194–3205 (2023). PubMed
Xiong, L. & Zhu, J. K. Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ.25, 131–139 (2002). PubMed
Kim, J. S., Kidokoro, S., Yamaguchi-Shinozaki, K. & Shinozaki, K. Regulatory networks in plant responses to drought and cold stress. Plant Physiol.195, 170–189 (2024). PubMed PMC
Lewandowska, M. et al. Wounding triggers wax biosynthesis in Arabidopsis leaves in an abscisic acid-dependent and jasmonoyl-isoleucine-dependent manner. Plant Cell Physiol.65, 928–938 (2024). PubMed PMC
Prasad, A., Sedlářová, M., Balukova, A., Rác, M. & Pospíšil, P. Reactive oxygen species as a response to wounding: imaging in Arabidopsis thaliana. Front. Plant Sci.10, 1660 (2019). PubMed PMC
Lee, S. & Park, C. M. Regulation of reactive oxygen species generation under drought conditions in Arabidopsis. Plant Signal Behav.7, 599–601 (2012). PubMed PMC
Sato, H., Mizoi, J., Shinozaki, K. & Yamaguchi-Shinozaki, K. Complex plant responses to drought and heat stress under climate change. Plant J.117, 1873–1892 (2024). PubMed
Jahed, K. R., Saini, A. K. & Sherif, S. M. Coping with the cold: unveiling cryoprotectants, molecular signaling pathways, and strategies for cold stress resilience. Front. Plant Sci.14, 1246093 (2023). PubMed PMC
Taji, T. et al. Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J.29, 417–426 (2002). PubMed
Tan, W.-J. et al. DIACYLGLYCEROL ACYLTRANSFERASE and DIACYLGLYCEROL KINASE modulate triacylglycerol and phosphatidic acid production in the plant response to freezing stress. Plant Physiol.177, 1303–1318 (2018). PubMed PMC
Baez, L. A., Tichá, T. & Hamann, T. Cell wall integrity regulation across plant species. Plant Mol. Biol.109, 483–504 (2022). PubMed PMC
Lamers, J., van der Meer, T. & Testerink, C. How plants sense and respond to stressful environments. Plant Physiol.182, 1624–1635 (2020). PubMed PMC
Kudla, J. et al. Advances and current challenges in calcium signaling. N. Phytol.218, 414–431 (2018). PubMed
Wang, C., Teng, Y., Zhu, S., Zhang, L. & Liu, X. NaCl- and cold-induced stress activate different Ca2+-permeable channels in Arabidopsis thaliana. Plant Growth Regul.87, 217–225 (2019).
Corso, M., Doccula, F. G., de Melo, J. R. F., Costa, A. & Verbruggen, N. Endoplasmic reticulum-localized CCX2 is required for osmotolerance by regulating ER and cytosolic Ca dynamics. Proc. Natl Acad. Sci. USA115, 3966–3971 (2018). PubMed PMC
Li, Z. et al. CCX1, a putative cation/Ca2+ exchanger, participates in regulation of reactive oxygen species homeostasis and leaf senescence. Plant Cell Physiol.57, 2611–2619 (2016). PubMed
Dodd, A. N., Kudla, J. & Sanders, D. The language of calcium signaling. Annu. Rev. Plant Biol.61, 593–620 (2010). PubMed
Zhu, X. et al. Calmodulin-like protein CML24 interacts with CAMTA2 and WRKY46 to regulate ALMT1-dependent Al resistance in Arabidopsis thaliana. N. Phytol.233, 2471–2487 (2022). PubMed
Menke, F. L. H., van Pelt, J. A., Pieterse, C. M. J. & Klessig, D. F. Silencing of the mitogen-activated protein kinase MPK6 compromises disease resistance in Arabidopsis. Plant Cell16, 897–907 (2004). PubMed PMC
Shi, Y. et al. Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-A ARR genes in Arabidopsis. Plant Cell24, 2578–2595 (2012). PubMed PMC
Hartman, S. et al. Ethylene-mediated nitric oxide depletion pre-adapts plants to hypoxia stress. Nat. Commun.10, 4020 (2019). PubMed PMC
Vaseva, I. I. et al. Ethylene signaling in salt-stressed Arabidopsis thaliana ein2-1 and ctr1-1 mutants—a dissection of molecular mechanisms involved in acclimation. Plant Physiol. Biochem.167, 999–1010 (2021). PubMed
Zhang, X. et al. MAMP-elicited changes in amino acid transport activity contribute to restricting bacterial growth. Plant Physiol.189, 2315–2331 (2022). PubMed PMC
Batista-Silva, W. et al. The role of amino acid metabolism during abiotic stress release. Plant Cell Environ.42, 1630–1644 (2019). PubMed
Chen, Y. & Zhang, J. Multiple functions and regulatory networks of WRKY33 and its orthologs. Gene931, 148899 (2024). PubMed
De Paepe, A., Vuylsteke, M., Van Hummelen, P., Zabeau, M. & Van Der Straeten, D. Transcriptional profiling by cDNA-AFLP and microarray analysis reveals novel insights into the early response to ethylene in Arabidopsis. Plant J.39, 537–559 (2004). PubMed
Kilian, J. et al. The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J.50, 347–363 (2007). PubMed
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res.43, e47 (2015). PubMed PMC
Kauffmann, A., Gentleman, R. & Huber, W. arrayQualityMetrics—a bioconductor package for quality assessment of microarray data. Bioinformatics25, 415–416 (2009). PubMed PMC
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc.57, 289–300 (1995).
Gower, J. C. A general coefficient of similarity and some of its properties. Biometrics27, 857 (1971).
Galili, T. dendextend: an R package for visualizing, adjusting and comparing trees of hierarchical clustering. Bioinformatics31, 3718–3720 (2018). PubMed PMC
Yoon, S., Baik, B., Park, T. & Nam, D. Powerful p-value combination methods to detect incomplete association. Sci. Rep.11, 6980 (2021). PubMed PMC
Sharifi, S. et al. Integration of machine learning and meta-analysis identifies the transcriptomic bio-signature of mastitis disease in cattle. PLoS ONE13, e0191227 (2018). PubMed PMC
Roman, I., Santana, R., Mendiburu, A. & Lozano, J. A. In-depth analysis of SVM kernel learning and its components. Neural Comput. Appl.33, 6575–6594 (2021).
Lameski, P., Zdravevski, E., Mingov, R. & Kulakov, A. SVM parameter tuning with grid search and its impact on reduction of model over-fitting. In: Yao, Y., Hu, Q., Yu, H., Grzymala-Busse, J.W. (eds) Lecture Notes in Computer Science 464–474 (Springer, Cham, 2015).
Luesse, D. R., Wilson, M. E. & Haswell, E. S. RNA sequencing analysis of the msl2msl3, crl, and ggps1 mutants indicates that diverse sources of plastid dysfunction do not alter leaf morphology through a common signaling pathway. Front. Plant Sci.6, 1148 (2015). PubMed PMC
Bedre, R. & Mandadi, K. GenFam: a web application and database for gene family-based classification and functional enrichment analysis. Plant Direct3, e00191 (2019). PubMed PMC
Szklarczyk, D. et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res.47, D607–D613 (2019). PubMed PMC
Grant, C. E., Bailey, T. L. & Noble, W. S. FIMO: scanning for occurrences of a given motif. Bioinformatics27, 1017–1018 (2011). PubMed PMC
Vanderstraeten, L., Sanchez-Muñoz, R., Depaepe, T., Auwelaert, F. & Van Der Straeten, D. Mix-and-match: an improved, fast and accessible protocol for hypocotyl micrografting of Arabidopsis seedlings with systemic ACC responses as a case study. Plant Methods18, 24 (2022). PubMed PMC
De Vylder, J., Vandenbussche, F., Hu, Y., Philips, W. & Van Der Straeten, D. Rosette tracker: an open source image analysis tool for automatic quantification of genotype effects. Plant Physiol.160, 1149–1159 (2012). PubMed PMC